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ABSTRACT. For k € {1,2,3,...}, we construct an even compactly supported piecewise poly-
nomial 1, whose Fourier transform satisfies Ay (1 + w?)™%F < ¢y (w) < Br(1 +w?)~%, w € R,
for some constants By, > A, > 0. The degree of 1 is shown to be minimal, and is strictly
less than that of Wendland’s function ¢ ;1 when k > 2. This shows that, for £ > 2, Wend-
land’s piecewise polynomial ¢1 ;_1 is not of minimal degree if one places no restrictions on
the number of pieces.

1. INTRODUCTION

A function ® € L;(R?) is said to have Sobolev regularity k > 0 if its Fourier transform
D(w) := (2m)~ Y2 [, ®(z)e "™ dx satisfies

A+ [w])™F < Bw) < B+ |wl)) %, weRY,

for some constants B > A > 0. Such functions are useful in radial basis function methods
since the generated native space will equal the Sobolev space WF(R?). The reader is re-
ferred to Schaback [3] for a description of the current state of the art in the construction of
compactly supported functions ® having prescribed Sobolev regularity. Wendland (see [4]
and [5]) has constructed radial functions @4 ¢(x) = ¢q.¢(||z||), where ¢4 ¢ is a piecewise poly-

t), |t <1
nomial of the form ¢4 (t) = { §(| ) :t} ; 1

and ¢ € {0,1,2,...}, with the case d = 1, ¢ = 0 excluded, ®,, has Sobolev regularity
k =0+ (d+1)/2 and the degree of the piecewise polynomial ¢4 ¢, namely |d/2]+30+1, is
minimal with respect to this property. A natural question to ask is whether the degree of
¢a,¢ would still be minimal if we considered functions of the form ®(x) = ¢(||z||) where ¢ is
a piecewise polynomial having bounded support. In this note, we answer this question in
the univariate case d = 1. Specifically, we construct a compactly supported even piecewise

, p being a polynomial. For d € {1,2,3,...}
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polynomial vy, with Sobolev regularity k (see Theorem 2.8), and we show that the degree
of 1, namely 2k, is minimal (see Theorem 2.10). In comparison with Wendland’s function
®; ;1 (which has Sobolev regularity k£ when k& > 1), we see that degy = deg ¢y —1, if
k = 2, while deg ¢y, = 2k < 3k — 2 = deg ¢1 ,—1 when £ > 2.

2. RESuULTS

Wendland’s piecewise polynomial ¢4, can be identified as a constant multiple of the
B-spline having ¢ + 1 knots at the nodes —1 and 1 and |d/2] + ¢ + 1 knots at 0. This can
be verified simply by observing that ¢4, and the above-mentioned B-spline have the same
degree, |d/2] + 3¢ + 1, and satisfy the same number of continuity conditions across each
of the nodes —1,0, 1, namely [d/2] +2¢+1 at —1,1 and 2¢ + 1 at 0. It is well understood
in the theory of B-splines that multiple knots are to be avoided if one wishes to keep the
degree low, and with this in mind, we define 5 as follows. For k = 1,2,3,..., let ¥ be
the B-spline having knots —k,...,—2,—-1,0;0,1,2,...,k (note that 0 is the only double
knot). For easy reference, we display 1 (t) (normalized) for ¢t € [0, k] and k = 1,2, 3:

8 —24t2 + 2413 — 7t4, te€ 0,1
a0 =017, = ’ o

(2 -1)4, te(1,2]
198 — 270t + 270t* — 1805 + 3719, t€[0,1]
P3(t) = { 153 + 270t — 945t 4 9003 — 405t* + 9015 — 8¢5, t € (1,2]
(3—1)8, t € (2,3]

We begin by mentioning several salient facts about the B-spline v, which can be found in
[1, pp. 108-131]. The piecewise polynomial v, is supported on [—k, k], positive on (—k, k),
even and of degree 2k. Furthermore, it is 2k — 1 times continuously differentiable on R\{0}
and 2k — 2 times continuously differentiable on all of R. It follows from this that the 2k —1
order derivative, D?*~1¢);. is a piecewise linear function which is supported on [k, k] and
is continuous except at the origin where it has a jump discontinuity. Consequently, the 2k
order derivative has the form

k
D?!fy. = /27mapdo + Z V2maji(x,.

-1y T X
j=1

[7]717‘7)),

for some constants ag, ai,as, ... ,ar and where dg is the Dirac d-distribution defined by
So(f) = £(0). We can thus express the Fourier transform of D?*v); as

(D**4r) (w) = ao + 22 a; in() = sl = L) _ a0+ 2(a; — aj+1)78in(jw),

w

with apy1 := 0, whence it follows that

~ _ k
(2.1) Yr(w) = (w) 2 (D) Tw) = (271“ apgw + 22 — aj4+1)sin(jw)



A. AL-RASHDAN & M.J. JOHNSON 3

Lemma 2.2. Let 3 € R. Then there exist unique scalars ci,cs, ... ,cr € R such that
(2.3) B+ Z c;cos(jw)| = O(\w|2k) as w — 0.
j=1

Proof. Define g(w) = 8 + Zle ¢i cos(iw). Since g € C*°(R) is even, (2.3) holds if and
only if D*¢(0) = 0 for £ = 0,1,2,...,k — 1. These conditions form the system of linear
equations [c1, ¢a, ... ,cx]A = [—03,0,0,...,0], where A is the k x k matrix given by A(i,j) =
(—1)7=142=2 Writing A(i, j) = (—22)7 1, we recognize A as a nonsingular Vandermonde
matrix, and therefore, (2.3) holds if and only if [c1, ¢, ... ,cx] = [-(3,0,0,...,0]471. O

Theorem 2.4. Let 3,c1,¢a,...,ck € R be such that (2.8) holds. Then

(2.5) B+ Z ¢jcos(jw) = Bag(l —cosw)®,  w R,
j=1
where oy, > 0 is defined by = = 1 fo —cosw)k dw.
Proof. Since cos? w € span{1,cosw,cos2w, ... ,coskw} for j = 0,1,...,k, it follows that

there exist b; € R such that (1 — cosw)* = by + Z?Zl b; cos(jw). Note that

1 1 (7 1
0<ak:;/0 (1—cosw)kdw:;/0 bodw+2b—/ cos(jw) dw = by,

and hence Bay (1 —cosw)F = B+ Z _1 Boybj cos(jw). Since ’ﬁak (1 — cosw) } = |w\ )
as w — 0, it follows from the lemma that ¢; = Bagb; for j = 1,2,...,k, and therefore
(2.5) holds. [

Corollary 2.6. Let ag be as in (2.1). Then (—1)*ag > 0 and

~ (—1)kaoak

(2.7) Vi (w) = W/o (1—cost)*dt, w#0.

Proof. Tt follows from (2.1) that @k(w) = fUZTlJ)jf(w), where f(w) := agw + 2521 2(a; —
a;+1)sin(jw). Since 1)y, is supported on [—k, k] and positive on (—k, k), it follows that i
is continuous (in fact entire) and 5 (0) > 0. Consequently, |f(w)| = O(jw|** 1) as w — 0.
Since f is infinitely differentiable, it follows that | f'(w)| = ’ao + Zle 2j(a; —ajq1)cos(jw)| =

O(|w|*) as w — O and so by Theorem 2.4, f'(w) = aoak(l — cosw)k. Since f(0) = 0
we can write f(w) = [ f/(t)dt = agay [, (1 — cost)® dt, and hence obtain (2.7). That

(—=1)*ag > 0 is now ev1dent since 0 < wk( ) = lim,,_,o+ wk( ). O
Remark. At this point, it is also easy to show that

zzk(w) = (w2k+1 Zb sin(jw)), w #0,

where the scalars {b;} are determined by the fact that Wy is continuous at 0.
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Theorem 2.8. For k € {1,2,3,...}, ¥y has Sobolev regularity k; that is, there exist
constants By, > A > 0 such that

(2.9) A1+ w7 < Pp(w) < Be(1+|w]?)7F, weR.

Proof. As in the proof of Corollary 2.6, let us write 12;.C (w) = L(U;k—llﬁf(w), where f(w) :=
aOuH—Z?:l 2(aj—aj41)sin(jw). Since limy, oo f(w) = ay, it follows that lim,,_, o w? vy (w) =
(=1)*ag. Since (—1)*ag > 0 (by Corollary 2.6), it follows that there exists N > 0 such
that (2.9) holds for w > N. That zpk( ) > 0 for all w > 0 follows easily from Corollary
2.6, and since 9y, is continuous and wk( ) > 0, we see that (2.9) holds for 0 <w < N. We
finally conclude that (2.9) holds for all w € R since 1y, is an even function. [

We now show that the degree of 15 is minimal.

Theorem 2.10. If 1 is an even, compactly supported, piecewise polynomial satisfying
(2.9), then the degree of 1 is at least 2k.

Proof. Let 1 be an even, compactly supported piecewise polynomial satisfying (2.9) and let
the ¢-th derivative of ¥ be the first discontinuous derivative of ¢ (if v is itself discontinuous
then ¢ = 0). Then D*"'¢ can be written as

(2.11) D" p =g+ V2me;d,,,
j=1

where g € L;(R) and ¢; is the height (possibly 0) of the jump discontinuity at ;. We can
then express the Fourier transform of ¢ as

~

Y(w) = (w) ™7 (DY) W) = () THG(w) + O(w),

where O(w) = >_7_ ¢je”"%*. Since O is bounded and |g(w)| has limit 0 as |w| — oo (by
the Riemann-Lebesgue lemma), it follows that ’@(w)) = O(|lw|™*") as |w| — co. With

the left side of (2.9) in view, we conclude that ¢ + 1 < 2k. Since © is a non-trivial almost
periodic function (see [2, pp.9-14]), it follows that |O(w)| # o(1) as |w| — oo, and with the
right side of (2.9) in view, we see that £ + 1 > 2k. Therefore, £ + 1 = 2k and we conclude
that 1 is 2k — 2 times continuously differentiable. Since v is compactly supported (ie.
¥y, is not a polynomial), it follows that 1y, has degree at least 2k — 1 (see [1, pp. 96-120]).
In order to show that the degree of v is at least 2k, let us assume to the contrary that
the degree equals 2k — 1. In this case the ¢ = 2k — 1 derivative of v is piecewise constant
and hence g = 0 and P(w) = (—1)*w=2*@(w). Since 1 is continuous at 0, it follows that
©(0) = 0. Since O is an almost periodic function, there exist values w; < wy < --- such
that lim,, . w, = co and lim,,_,,, O(w,) = 0; but this contradicts the left side of (2.9).
Therefore, 1 has degree at least 2k. [J
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