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Abstract. Given points P1, P2, . . . , Pn in the plane, we are concerned with the problem

of finding a fair curve which interpolates the points. We assume that we have a method in
hand, called a basic curve method, for solving the geometric Hermite interpolation problem
of fitting a regular C∞ curve between two points with prescribed tangent directions at the

endpoints. We also assume that we have an energy functional which defines the energy of
any basic curve. Using this basic curve method repeatedly, we can then construct G1 curves
which interpolate the given points P1, P2, . . . , Pn. The tangent directions at the interpolation

points are variable and the idea is to choose them so that the energy of the resulting curve
(i.e., the sum of the energies of its pieces) is minimal. We give sufficient conditions on the

basic curve method, the energy functional, and the interpolation points for (a) existence, (b)
G2 regularity, and (c) uniqueness of minimal energy interpolating curves. We also identify
a one-parameter family of basic curve methods, based on parametric cubics, whose minimal

energy interpolating curves are unique and G2 under suitable conditions. One member of this
family looks very promising and we suggest its use in place of conventional C2 parametric
cubic splines.
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1. Introduction

Let P1, P2, . . . , Pn be a sequence of points in the complex plane C satisfying Pj 6= Pj+1,
and consider the problem of finding a ‘fair’ curve which passes sequentially (i.e., interpo-
lates) the points. Whereas there do not exist interpolating curves with minimal bending
energy (see [3] and also [10]), except when the points lie sequentially along a line, it was
shown recently [2] that they do exist if one imposes the additional constraint that each
piece of the interpolating curve be an s-curve (a curve which turns monotonically at most
180◦ in one direction and then turns monotonically at most 180◦ in the opposite direction).
Such interpolating curves with minimal bending energy are called elastic splines. While
work on [2] was in progress, the authors of the present article took up the numerical chal-
lenge of computing elastic splines. As in [7], the problem was formulated as an optimization
problem where the interpolation points P1, P2, . . . , Pn are given but corresponding tangent
directions d1, d2, . . . , dn are variable. An important sub-problem, which was extensively
addressed in [2], is that of finding an s-curve with minimal bending energy which solves the
first order geometric Hermite interpolation problem of constructing a curve which begins
at Pj with direction dj and ends at Pj+1 with direction dj+1. The s-curve condition places
feasibility restrictions on the directions dj and dj+1. In case Pj = 0 and Pj+1 lies on
the positive real axis (which can be obtained by a translation and rotation) and writing
dj = eiα and dj+1 = eiβ , these feasibility restrictions reduce to the inequalities |α| , |β| < π
and |α− β| ≤ π. The presence of these coupled restrictions on the directions {dj} gives rise
to a rather complicated feasible region in C

n and this in turn complicates the optimization
algorithm (see [9] for an alternative feasible region). After completing the numerics, it was
observed that the elastic splines were often fair, but could also be unsightly, particularly
when the interpolation points force abrupt changes in direction (see Fig. 1a).

Fig. 1a Fig. 1b
After much experimentation, we decided that the best way to eliminate the unsightly elas-
tic splines is to replace the s-curve feasibility inequalities |α| , |β| < π and |α− β| ≤ π with
the simple restriction |α| , |β| ≤ π/2 (see Fig. 1b). With these simple uncoupled restric-
tions on {dj}, the feasible region in C

n reduces to a Cartesian product and the optimization
algorithm simplifies to that of optimizing each direction individually while cycling through
the points. In addition to eliminating the unsightly elastic splines, the simplified restriction
|α| , |β| ≤ π/2 also makes the theoretic study of elastic splines much more tractable. More-
over, the basic theory can be developed in a general context where potentially any method
for solving the above-mentioned first order geometric Hermite interpolation problem can
be used in place of that for elastic splines.

We now describe the basic setup. A unit tangent vector u = (P, d) is an ordered pair
of complex numbers with |d| = 1 and can be visualized as a directed line segment with
base-point P and direction d. A C∞ regular curve is a C∞ function f : [a, b] → C

whose first derivative f ′ is non-vanishing. We say that f connects u1 = (P1, d1) to
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u2 = (P2, d2) if f(a) = P1, f
′(a) = |f ′(a)|d1, f(b) = P2 and f ′(b) = |f ′(b)|d2. We use

the term basic curve method to refer to a method for solving the first order geometric
Hermite interpolation problem mentioned above. Precisely, a basic curve method is
a mapping (α, β, L) 7→ cL(α, β), which is defined for angles α, β ∈ [−Ω,Ω] and lengths
L > 0 (Ω ∈ (0, π) is a given constant), whose image cL(α, β) is a C

∞ regular curve which
connects u = (0, eiα) to v = (L, eiβ) (see Fig. 2a). Associated with the basic curve
method is a functional EL, whereby the ‘energy’ of the curve cL(α, β) equals EL(α, β).

In practice, the energy of cL(α, β) is often its bending energy, defined by 1
2

∫ b

a
[κ(s)]2 dsdt dt

with κ denoting signed curvature and s arclength, or an approximation of bending energy,

such as 1
2

∫ b

a
|f ′′(t)|2 dt, but there is no theoretical requirement that energy have a physical

interpretation. It could just as well be the cosmic energy of the curve.

Fig. 2a Fig. 2b
The basic curve method is extended to other pairs of unit tangent vectors by the use of
translation and rotation (see Fig. 2b). Specifically, let u1 = (P1, d1) and u2 = (P2, d2) be
two unit tangent vectors with distinct base points, and set α = arg d1

P2−P1
, β = arg d2

P2−P1

and L = |P2 − P1|. Here arg is defined, as usual, by arg reiθ = θ when r > 0 and
θ ∈ (−π, π]. If the angles α and β belong to [−Ω,Ω], then the basic curve connecting u1
to u2 is defined by c(u1, u2) := T ◦ cL(α, β), where the transformation T (z) = a1z + a2
is determined by the requirements T (0) = P1 and T (L) = P2 (i.e., a1 = (P2 − P1)/L
and a2 = P1). The energy of c(u1, u2) is defined by Energy(c(u1, u2)) := EL(α, β). As a
consequence of these definitions, the extended basic curve method and its energy functional
are invariant under translations and rotations.

Examples of basic curve methods pertaining to parametric cubics are given in [12] and
[7]; we’ll have more to say about these in Section 4. A basic curve method employing
A-splines is given in [1], and we mention that second order basic curve methods (where
curvature data is also interpolated) can be found in [5] and [11] and the references therein.

With a basic curve method in hand, one can construct G1 curves which interpolate the
points P1, P2, . . . , Pn (following [7]) by assigning ‘feasible’ directions d1, d2, . . . , dn, and
then use the resultant unit tangent vectors uj := (Pj , dj) to obtain an interpolating curve
c(u1, u2)⊔c(u2, u3)⊔· · ·⊔c(un−1, un), called an admissible curve, whose energy is defined
to be the sum of energies of its constituent pieces. Here, the directions d1, d2, . . . , dn are
deemed feasible if all of the basic curves c(uj , uj+1) are defined. The goal is then to
choose the feasible directions {dj} so that the energy of the corresponding admissible
curve is minimized.

Our primary purpose is to prove sufficient conditions (and occasionally necessary condi-
tions) for (a) existence, (b) G2 regularity, and (c) uniqueness of minimal energy admissible
curves. These sufficient conditions depend on the constant Ω, which limits the size of the
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chord angles α, β, and also on the size of the stencil angles {ψi}, where ψi := arg Pi+1−Pi

Pi−Pi−1

is the angle between Pi+1 − Pi and Pi − Pi−1.

It is interesting to compare our setup with that of Brunnett and Keifer [4]. They
introduce a basic curve method whose basic curves approximate pieces of rectangular
elastica (specifically, the signed curvature κ(s) of a basic curve is a polynomial function of
arclength s). Once feasible tangent directions at each node are specified, an admisssible
curve is constructed and then any jump discontinuities in the signed curvature across
interpolation nodes are tallied. The objective function is defined as the sum of squares of
these jumps in signed curvature and then their goal is to choose the tangent directions to
minimize the objective function. Their objective function does not fit into our framework
because it is not additive–one cannot express the objective function as the sum of energies of
its constituent basic curves (basic curves have continuous signed curvature so presumably
they have 0 energy). A more significant distinction, however, is that they attempt to
directly minimize G2 irregularity by defining the objective function in terms of the jump
discontinuities in signed curvature. In contrast, in our approach we hope to obtain G2

regularity as a by-product of minimized energy.

An outline of the remainder of the paper is as follows. Existence is quickly settled in
Section 2 by showing that a minimal energy admissible curve exists if and only if the stencil
angles satisfy |ψi| ≤ 2Ω (note that if Ω = π/2 then this condition is always satisfied). In
Section 3, we develop a preliminary notion called ‘conditional G2 regularity’ and then in
Section 4 we present a family, parameterized by λ ∈ (0, 3), of cubic basic curve methods
which have conditional G2 regularity. The choice λ = 1 is distinguished in that this basic
curve method best emulates Elastic Splines as (α, β) → (0, 0) (see Remark 4.5 for details
and also Fig. 7 at the end of Section 7). We believe that this method, defined below, is a
significant find, and we recommend it as a substitute for conventional C2 parametric cubic
splines (see [6] and [8]).

Example 1.1. For L > 0 and |α| , |β| ≤ π
2 , the basic curve cL(α, β) for the Quasi-Elastic

Cubic is given parametrically by
x(t) = L[t(1− t)2 cosα+ t2(3− 2t+(t− 1) cosβ)], y(t) = L[t(1− t)2 sinα+ t2(t− 1) sinβ],
0 ≤ t ≤ 1, with energy EL(α, β) =

1
L [5 + cos(α− β)− 3(cosα+ cosβ)].

In Section 3 we also give necessary conditions for conditional G2 regularity (Corollary
3.6) and use these in Section 4 to argue that the basic curve methods of [12] and [7]
do not have this property. In Section 5 we obtain sufficient conditions for G2-regularity;
when applied to Example 1.1, we find that if Ω = π/2 and the stencil angles satisfy

|ψi| ≤ tan−1
√
8 ≈ 70.5◦ for all i, then minimal energy admissible curves haveG2 regularity.

Sufficient conditions for uniqueness are obtained in Section 6. When applied to Example
1.1, we find that if Ω = cos−1 2

3 ≈ 48.2◦ and |ψi| ≤ 2Ω for all i, then the minimal energy

admissible curve is unique; moreover, if Ω = cos−1 2
3 and |ψi| ≤ Ω − tan−1

√
5
7 ≈ 30.5◦,

then the unique minimal energy admissible curve has G2 regularity. Lastly, in Section 7 we
describe a free open source C++ program, called Curve Ensemble, which enables the user
to construct minimal energy admissible curves using a variety of basic curve methods.
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2. Existence of Minimal Energy Interpolating Curves

Given points P1, P2, . . . , Pn in C, with Pi 6= Pi+1, a G
1 interpolating curve is deemed

admissible if each piece is a basic curve produced by the basic curve method. The en-

ergy of an admissible curve is defined to be the sum of the energies of its constituent basic
curves. Whereas the interpolation nodes P1, P2, . . . , Pn are given, the associated directions
d1, d2, . . . , dn are variable and the goal is to choose these directions so that the energy of
the resulting admissible curve is minimal (see Fig. 3).

Fig. 3 Fig. 4

Remark 2.1. As is customary, there are five different cases regarding conditions at the
endpoints of the interpolating curve:
(1) The curve is free at both P1 and Pn; i.e., both d1 and dn are variable (see Fig. 1b).
(2) The curve is clamped at P1 and free at Pn; i.e., d1 is prescribed, while dn is variable.
(3) The curve is free at P1 and clamped at Pn; i.e., d1 is variable, while dn is prescribed.
(4) The curve is clamped at both P1 and Pn; i.e., both d1 and dn are prescribed.
(5) The curve is periodic (see Fig. 3).
We will explicitly address the last case (periodic curve), where we also assume that Pn 6=
P1 and, for notational convenience, we extend the interpolation points and directions
periodically by the rules Pk+n = Pk and dk+n = dk, k ∈ Z. Results for the first four cases
will be explained by remarks following theorems.

The polygon obtained when the interpolation nodes are connected by directed line
segments [Pi, Pi+1] is called the stencil. In order to address the matter of existence, we
define the stencil angles {ψi} as the angular change in direction from one segment to the
next (see Fig. 5); precisely,

ψi := arg
Pi+1 − Pi
Pi − Pi−1

.

Fig. 5 Recall that each direction di is represented as
a complex unit (i.e., di ∈ C with |di| = 1) and thus ui := (Pi, di) is a unit tangent vector.
A list of directions d1, d2, . . . , dn is called feasible if the basic curve c(ui, ui+1) is defined
for all i. We note that any curve connecting ui to ui+1 has chord length Li := |Pi+1 − Pi|
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and chord angles (see Fig. 4)

(2.1) αi := arg
di

Pi+1 − Pi
, βi+1 := arg

di+1

Pi+1 − Pi
,

and therefore the list d1, d2, . . . , dn is feasible if and only if |αi| , |βi+1| ≤ Ω for all i.
The feasible range of direction di, denoted Di, is the set of all directions di such that

|αi| , |βi| ≤ Ω and can be written explicitly as the intersection Di = Dβ
i ∩ Dα

i , where Dβ
i

is the closed arc of arclength 2Ω and midpoint Pi−Pi−1

Li−1
and Dα

i is the same except with

midpoint Pi+1−Pi

Li

. Being the intersection of two compact subsets of C, Di is compact, but
possibly empty. We remind the reader that 0 < Ω < π. If Ω ≥ π

2 , then Di is obviously
non-empty; while if Ω < π

2 , then Di is non-empty if and only if the (shortest) arc-distance
between the two midpoints is less or equal to 2Ω. This latter condition is easily seen to be
equivalent to |ψi| ≤ 2Ω and we thus conclude the following.

Lemma 2.2. The feasible range Di is non-empty if and only if the stencil angle ψi satisfies
|ψi| ≤ 2Ω.

Assumption 1. For all L > 0, the energy functional EL is continuous on [−Ω,Ω]2.

Existence Theorem 2.3. Under Assumption 1, the following are equivalent.
(i) There exists a feasible list of directions d1, d2, . . . , dn.
(ii) There exists a feasible list of directions d1, d2, . . . , dn such that the energy of the cor-
responding admissible curve is minimal.
(iii) The stencil angles satisfy |ψi| ≤ 2Ω for i = 1, 2, . . . , n.

Proof. With Lemma 2.2 in view, it is clear that (i) and (iii) are equivalent since there
exists a feasible list of directions if and only if all the feasible ranges are non-empty. And
since (ii) implies (i), it suffices to show that (iii) implies (ii). So assume (iii). Note that
the list d1, d2, . . . , dn is feasible if and only if (d1, d2, . . . , dn) ∈ D := D1 ×D2 × · · · × Dn
and in this case the energy of the corresponding admissible curve is given by

(2.2) Energy(d1, d2, . . . , dn) =

n
∑

i=1

ELi
(αi, βi+1),

which defines Energy as a function from D into R. Under Assumption 1, and since αi
and βi depend continuously on di, it follows that Energy is a continuous function and we
obtain (ii) since D is compact. �

Remark 2.4. Although written specifically for case (5) of Remark 2.1, Existence Theorem
2.3 remains valid for cases (1)–(4) with the following modifications:
(a) Set ψ1 = ψn = 0.
(b) If the curve is clamped at P1, then assume additionally that the prescribed direction
d1 yields |α1| ≤ Ω.
(c) If the curve is clamped at Pn, then assume additionally that the prescribed direction
dn yields |βn| ≤ Ω.
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3. Conditional G2 regularity

It is often the case that an optimal element has better qualities than those commonly

held by the set of candidates. For example, with cubic splines one minimizes
∫ b

a
[s′′(x)]2 dx

over all functions s which interpolate the given data and are globally C1 and piecewise C2.
Whereas the candidates are only piecewise C2, the optimal solution (the cubic spline),
turns out to be globally C2. In the present context, the candidates are the admissible
curves and these have G1 regularity by construction. One naturally hopes that minimal
energy admissible curves would possess G2 regularity, but experience has shown that one
should not expect this improvement at nodes Pi where the restriction |αi| , |βi| ≤ Ω is active
(i.e., where |αi| or |βi| equals Ω). With this caveat, we make the following definition.

Definition 3.1. A minimal energy admissible curve has conditional G2 regularity if it
is G2 across node Pi whenever the direction di lies in the interior of its feasible range Di.

Let us assume for the remainder of this section that condition (iii) of Existence Theorem
2.3 holds, and it follows that Di (the feasible range of direction di) is non-empty for all

i. It follows from the observation Di = Dβ
i ∩ Dα

i , made above Lemma 2.2, that Di is
either a singleton, a closed arc, a doubleton, or the union of two disjoint closed arcs,
where the latter two are only possible when Ω ≥ π

2 . Let us assume that d1, d2, . . . , dn is
a feasible list of directions for which the energy of the corresponding admissible curve is
minimal. Although this curve has G1 regularity by construction, G2 regularity may fail at
interpolation nodes since the signed curvature may have jump discontinuities across the
nodes. Our sufficient conditions for conditional G2 regularity assume the following, which
is stronger than Assumption 1.

Assumption 2. For all L > 0, the energy functional EL is continuous on [−Ω,Ω]2 and
the partial derivatives ∂

∂αEL(α, β) and
∂
∂βEL(α, β) exist for all (α, β) ∈ [−Ω,Ω]2 (with the

understanding that when (α, β) lies on the boundary of [−Ω,Ω]2, these partial derivatives
are one-sided, as appropriate).

Definition 3.2. Let κa(c(u, v)) and κb(c(u, v)) denote the initial and terminal signed cur-
vature of the basic curve c(u, v), respectively. We say that the energy functional EL(α, β)
is consistent with end curvatures if there exists an odd function ρ : R → R such
that −κa(cL(α, β)) = ρ( ∂∂αEL(α, β)) and κb(cL(α, β)) = ρ( ∂∂βEL(α, β)) for all L > 0 and

(α, β) ∈ [−Ω,Ω]2.

Theorem 3.3. Under Assumption 2, if the energy functional EL(α, β) is consistent with
end curvatures, then minimal energy admissible curves have conditional G2 regularity.

Proof. Let d1, d2, . . . , dn be a feasible list of directions for which the energy of the cor-
responding admissible curve is minimal, and let the chord lengths {Li} and chord angles
{αi}, {βi+1} be as defined in (2.1). Fix i and assume that di belongs to the interior of
Di. We will show that the curve is G2 at node Pi. By applying a translation and rotation
if necessary we can assume, without loss of generality, that Pi−1 = −Li−1, Pi = 0, and
Pi+1 = Lie

iψi . Note that di = eiβi . Since di lies in the interior of its feasible range, there
exists ε > 0 such that the list d1, d2, . . . , dn remains feasible when di is replaced by die

iδ,
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|δ| < ε. With this replacement, the energy of the resultant curve can be written as

Energy(δ) := C + ELi−1
(αi−1, βi + δ) + ELi

(αi + δ, βi+1),

where C denotes the sum of energies of the other n−2 basic curves which are unaffected by
δ. It follows from Assumption 2 that Energy(δ) is differentiable, and since it is minimized
at δ = 0, it follows that ∂

∂δEnergy(δ) vanishes at δ = 0. Hence,

∂

∂β
ELi−1

(αi−1, βi) +
∂

∂α
ELi

(αi, βi+1) = 0.

Since EL(α, β) is consistent with end curvatures (and ρ is odd), it follows that

κb(cLi−1
(αi−1, βi)) = ρ

(

∂

∂β
ELi−1

(αi−1, βi)

)

= −ρ
(

∂

∂α
ELi

(αi, βi+1)

)

= κa(cLi
(αi, βi+1)),

and therefore the minimal energy admissible curve is G2 at node Pi. �

Remark. Although we are specifically addressing case (5) of Remark 2.1, Theorem 3.3 also
holds in cases (1)–(4). Note that in these cases, admissible curves are always G2 at the
endpoints P1 and Pn.

Theorem 3.3 can be made more specific if one makes precise assumptions on how the
basic curve cL(α, β) and its energy EL(α, β) depend on the parameter L. The following
definitions are tailored to the case when energy equals or emulates bending energy.

Definition 3.4. The basic curve method cL(α, β) is scale invariant if cL(α, β) = Lc1(α, β)
for all L > 0 and (α, β) ∈ [−Ω,Ω]2. The energy functional EL(α, β) is inversely propor-

tional to scale if EL(α, β) =
1
LE1(α, β) for all L > 0 and (α, β) ∈ [−Ω,Ω]2.

Theorem 3.5. Assume that cL(α, β) is scale invariant and EL(α, β) is inversely propor-
tional to scale. Then, under Assumption 2, EL(α, β) is consistent with end curvatures if
and only if there exists µ ∈ R such that for all (α, β) ∈ [−Ω,Ω]2,

(3.1) −κa(c1(α, β)) = µ
∂

∂α
E1(α, β) and κb(c1(α, β)) = µ

∂

∂β
E1(α, β).

Proof. Since cL(α, β) is scale invariant, we have κa(cL(α, β)) =
1
Lκa(c1(α, β)) and κb(cL(α, β)) =

1
Lκb(c1(α, β)). It is now clear that if (3.1) holds, then EL(α, β) satisfies Definition 3.2 with
ρ(t) = µt. For the converse, assume that EL(α, β) is consistent with end curvatures. If
κa(c1(α, β)) = κb(c1(α, β)) = 0 for all (α, β), then (3.1) holds with µ = 0; so assume there
exists (α0, β0) such that at least one of κa(c1(α0, β0)), κb(c1(α0, β0)) is non-zero. We will
address only the case when ρ0 := κb(c1(α0, β0)) 6= 0, since the latter case is similar. Set
t0 := ∂

∂βE1(α0, β0) and note that ρ0 = ρ(t0) since EL(α, β) is consistent with end curva-

tures. Since ρ0 6= 0 and ρ is odd, it must be the case that t0 6= 0. Now, for L > 0, we
have

ρ

(

1

L
t0

)

= ρ

(

∂

∂β
EL(α0, β0)

)

= κb(cL(α0, β0)) =
1

L
κb(c1(α0, β0)) =

1

L
ρ(t0),
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and it now follows (since ρ is odd) that ρ(t) = µt, t ∈ R, for some µ ∈ R; hence (3.1). �

Remark 3.6. Theorem 3.5 demonstrates that the assumptions that the basic curve method
is scale invariant and the energy functional is inversely proportional to scale have greatly
simplified the system of equations in Definition 3.2. Firstly, we only have L = 1 in Theorem
3.5, so the variable L has been eliminated. And secondly, if one strengthens Assumption
2 to assuming that partial derivatives are continuous, then the energy functional has been
eliminated from the equations because condition (3.1) is equivalent to the vector field
F(α, β) := −κa(c1(α, β))i + κb(c1(α, β))j being conservative, a condition involving only
the basic curve method. Consequently, if one has a scale invariant basic curve method in
hand and is seeking an energy functional which is both inversely proportional to scale and
consistent with end curvatures, then it suffices to check whether F is conservative. If it is,
then E1(α, β) should be chosen so that µE1(α, β) is a potential function for F; if it is not,
then no such energy functional exists.

The following Corollary is a consequence of the above remark and the well-known nec-
essary condition for a vector field to be conservative.

Corollary 3.7. Let cL(α, β) be a basic curve method which is scale invariant, but suppose
that an energy functional has yet to be defined. Assume that κa(c1(α, β)), κb(c1(α, β)),
∂
∂βκa(c1(α, β)) and

∂
∂ακb(c1(α, β)) are continuous for (α, β) ∈ (−Ω,Ω)2. If there exists an

energy functional EL(α, β) such that the following hold:
(i) EL(α, β) is inversely proportional to scale,
(ii) EL(α, β) satisfies Assumption 2, and
(iii) EL(α, β) is consistent with end curvatures,
then

(3.2) Q(α, β) :=
∂

∂β
κa(c1(α, β)) +

∂

∂α
κb(c1(α, β)) = 0, for all (α, β) ∈ (−Ω,Ω)2.

Proof. If (i),(ii) and (iii) hold, then (3.1) holds and we have

∂

∂β
κa(c1(α, β)) = −µ ∂2

∂β∂α
E1(α, β) = −µ ∂2

∂α∂β
E1(α, β) = − ∂

∂α
κb(c1(α, β)).

�

4. Parametric Cubic Basic Curve Methods

In this section, we seek parametric cubic scale invariant basic curve methods and energy
functionals which satisfy conditions (i), (ii) and (iii) of Corollary 3.7.

Following [12], we first write c1(α, β) as the parametric cubic curve

(4.1)
x(t) = t2(3− 2t) + s0(t

3 − 2t2 + t) cosα+ s1(t
3 − t2) cosβ,

y(t) = s0(t
3 − 2t2 + t) sinα+ s1(t

3 − t2) sinβ, 0 ≤ t ≤ 1,
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where s0 = s0(α, β) > 0 and s1 = s1(α, β) > 0 denote, respectively, the initial and
terminal speeds of the parametric curve. The signed curvature at time t is given by
κ = (x′(t)y′′(t)− y′(t)x′′(t))/[(x′(t))2 + (y′(t))2]3/2 from which we arrive at

κa(c1(α, β)) =
2s1 sin(α− β)− 6 sinα

s20
, κb(c1(α, β)) =

2s0 sin(α− β) + 6 sinβ

s21
.

Example 4.1. Yong and Cheng [12] propose choosing the speeds s0 and s1 in order to

minimize
∫ 1

0
(x′′(t)2+y′′(t)2) dt. They have shown that if 3 cosα > cos(α−2β) and 3 cosβ >

cos(β− 2α), then the choice s0(α, β) :=
6 cosα−3 cos β cos(α−β)

4−cos2(α−β) , s1(α, β) := s0(β, α) achieves

this minimum, and furthermore, if cosα, cosβ > 1/3, then the resulting curve c1(α, β) is
regular. Scott Kersey (private communication) has shown that all the above inequalities
hold if |α| , |β| ≤ π/3 and therefore suggests using Ω = π/3. It is easy to verify numerically
that Q(α, 0) < 0 whenever 0 < α ≤ π/3 and we therefore conclude that there does not
exist an energy functional EL(α, β) satisfying conditions (i), (ii) and (iii) of Corollary 3.7.

With no better alternative in sight, we define EL(α, β) :=
1
L

∫ 1

0
(x′′(t)2 + y′′(t)2) dt.

Example 4.2. Instead of minimizing
∫ 1

0
(x′′(t)2 + y′′(t)2) dt, Jaklič and Žagar [7] propose

that s0 and s1 be chosen to minimize the functional (1−s0 cosα)2+(s0 sinα)
2+(s1 cosβ−

1)2 + (s1 sinβ)
2 (an approximation to the bending energy of c1(α, β)). They have shown

that if |α| , |β| < π/2, then the choice s0 = cosα, s1 = cosβ achieves the minimum value
sin2 α + sin2 β, and furthermore, the resulting curve c1(α, β) is regular, loop-, cusp- and
fold-free. Again, it is easy to verify numerically that Q(α, 0) < 0 whenever 0 < α < π/2
and we therefore conclude that there does not exist an energy functional EL(α, β) satisfying
conditions (i), (ii) and (iii) of Corollary 3.7. With no better alternative in sight, we define
EL(α, β) :=

1
L (sin

2 α+ sin2 β).

The only choice of s0(α, β) and s1(α, β), known to the authors, which yields (3.2)
is s0(α, β) := s1(α, β) := λ, where λ > 0 is a constant. It follows (see Remark 3.6)
that the vector field F(α, β) = (− 2

λ sin(α − β) + 6
λ2 sinα)i + ( 2λ sin(α − β) + 6

λ2 sinα)j is

conservative, and one easily verifies that p(α, β) := 2
λ cos(α − β) − 6

λ2 (cosα + cosβ) is a
potential function for F. In order that µE1(α, β) also be a potential function, we must
choose E1 in the form E1(α, β) = ap(α, β) + b for some constants a 6= 0 and b. It so

happens that 1
2

∫ 1

0
(x′′(t)2 + y′′(t)2) dt = λ3p(α, β) + 4λ2 + 6, which motivates the choice

a = λ3 and b = 4λ2 + 6. We therefore define

E1(α, β) :=
1

2

∫ 1

0

(x′′(t)2 + y′′(t)2) dt = 2λ2 cos(α− β)− 6λ(cosα+ cosβ) + 4λ2 + 6

and note that (3.1) holds with µ = λ−3. By Theorem 3.5, EL(α, β) is consistent with end
curvatures.

Lemma 4.3. Let c1(α, β) be as defined in (4.1), with s0 := s1 := λ, and assume 0 < λ < 3
and |α| , |β| ≤ π

2 . Then x′(t) > 0 for all 0 < t < 1.

Proof. Note that q := x′(0) = λ cosα ≥ 0, r := x′(1) = λ cosβ ≥ 0 and x′(t) = At2+Bt+q,
where A = −6 + 3q + 3r, B = 6 − 4q − 2r. Since x′ is a parabola with x′(0), x′(1) ≥ 0
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and
∫ 1

0
x′(t) dt = 1, it is easy to see that the lemma’s conclusion holds in all cases except

possibly in the case when x′′(0) < 0 and x′′(1) > 0; that is, when B < 0 and 2A+B > 0.
In this exceptional case, the minimum of x′ occurs at t∗ = −A/(2B), where x′(t∗) =
r −B2/(4A). So, in order to complete the proof, it suffices to show that if 2A > −B > 0,
then Ar−B2/4 > 0; that is, if 2q+4r > 6 and 4q+2r > 6, then 6q+6r−q2−qr−r2−9 > 0.
In order to pursue this, we define the set F := {(q, r) ∈ [0, 3]2 : 2q + 4r ≥ 6, 4q + 2r ≥ 6}
and the function f(q, r) := 6q + 6r − q2 − qr − r2 − 9, (q, r) ∈ F . It is easy to verify
that F is the convex hull of the four points (1, 1), (3, 0), (0, 3), and (3, 3). Since f is
strictly concave and vanishes at the four corners of F , it follows that f is positive at all
other points of F . Now, suppose 2q + 4r > 6 and 4q + 2r > 6. Then (q, r) belongs to
F and it is easy to verify that (q, r) cannot equal any of the four corners of F ; therefore,
6q + 6r − q2 − qr − r2 − 9 = f(q, r) > 0, which completes the proof. �

Theorem 4.4. Let s0 := s1 := λ ∈ (0, 3), and let the basic curve cL(α, β) be defined,
for |α| , |β| ≤ π

2 and L > 0, by cL(α, β) := Lc1(α, β) (scale invariant), where c1(α, β) is

defined parametrically by (4.1). Define EL(α, β) :=
1
LE1(α, β) (inversely proportional to

scale), where E1 is as defined above Lemma 4.3. Then cL(α, β) is a regular C∞ curve and
conditions (i), (ii) and (iii) of Corollary 3.7 hold.

Proof. Conditions (i) and (ii) of Corollary 3.7 clearly hold, while condition (iii) is proved
just above Lemma 4.3. It is also clear that cL(α, β) is a C∞ curve. Since the initial and
terminal speeds of cL(α, β) are both λL > 0 it follows from Lemma 4.3 that cL(α, β) is
regular. �

Remark 4.5. We refer to the basic curve method described in Theorem 4.4 as the Condi-
tionally G2 Cubic with shape parameter λ ∈ (0, 3). As mentioned in the introduction, we
claim that the choice λ = 1 (the Quasi-Elastic Cubic of Example 1.1) is distinguished by its
affinity with Elastic Splines as (α, β) → (0, 0). To see this, let E1(α, β) denote the energy
functional associated with Conditionally G2 Cubics and let E1(α, β) be the bending energy
of Elastic Splines. It is known that E1(0, 0) = 0 with gradient ∇E1(0, 0) = (0, 0) (this fol-
lows from [2, Prop. 7.6] and its proof). Although we do not yet have a complete proof, we

have observed numerically that the Hessian of E1 at (0, 0) is H1(0, 0) = 2

[

2 1
1 2

]

. Turning

now to E1, we see that E1(0, 0) = 6(λ − 1)2 and ∇E1(0, 0) = (0, 0). That E1(0, 0) 6= 0
when λ 6= 1 is a minor discrepancy because one can always subtract a constant from the
energy functional without losing the property of being conditionally G2. The Hessian of
E1 is

H1(α, β) = 2λ

[

−λ cos(α− β) + 3 cosα λ cos(α− β)
λ cos(α− β) −λ cos(α− β) + 3 cosβ

]

,

so we have H1(0, 0) = 2λ

[

3− λ λ
λ 3− λ

]

. Note that if λ = 1, then H1(0, 0) = H1(0, 0)

while if λ 6= 1, then H1(0, 0) is not even parallel to H1(0, 0) (i.e., H1(0, 0) 6= νH1(0, 0) for
all ν ∈ R).
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5. G2 regularity

Let cL(α, β) be a basic curve method, defined for |α| , |β| ≤ Ω, and assume that Assump-
tion 2 holds and that the energy functional EL(α, β) is consistent with end curvatures. We
know from previous sections that if the stencil angles satisfy |ψi| ≤ 2Ω, then there exists
an admissible curve with minimal energy and all such curves are conditionally G2. Being
conditionally G2, the curve will be G2 at points Pi where the direction di lies in the in-
terior of its feasible range Di. It is natural then to seek sufficient conditions which will
ensure that di lies in the interior of Di, and in this section we pursue this in terms of the
stencil angle ψi. Specifically, we seek an angle Ψ > 0 such that di lies in the interior of Di
whenever |ψi| ≤ Ψ.

Theorem 5.1. Suppose there exists Ψ ∈ (0,Ω) such that:
(i) For all α ∈ [−Ω,Ω], there exists β∗

α, with |β∗
α| ≤ Ω−Ψ, such that

sign( ∂∂βEL(α, β)) = sign(β − β∗
α), for all β ∈ [−Ω,Ω], and

(ii) For all β ∈ [−Ω,Ω], there exists α∗
β, with |α∗

β | ≤ Ω−Ψ, such that

sign( ∂∂αEL(α, β)) = sign(α− α∗
β), for all α ∈ [−Ω,Ω].

Then minimal energy admissible curves have G2-regularity at all points Pi where |ψi| ≤ Ψ.

Proof. Let Pi be a point where the stencil angle satisfies |ψi| ≤ Ψ. We will show that di
lies in the interior of Di. Without loss of generality, we can assume that i = 2, P1 = −L1,
P2 = 0 and P3 = L2e

iψ2 . Note that β2 = arg d2. We will address only the case ψ2 ≥ 0,
since the other case ψ2 < 0 is similar. This case is shown in Fig. 6, where the label (α)
indicates that the labeled direction is eiα.

Fig. 6
Since π > Ω > Ψ ≥ ψ2 ≥ 0, it is easy to verify that argD2 = [ψ2 − Ω,Ω] and d2 lies in
the interior of D2 if and only if ψ2 −Ω < β2 < Ω. Since our admissible curve has minimal
energy, and noting that α2 = β2 − ψ2, it follows that

(5.1) f(β2) ≤ f(β) for all β ∈ [ψ2 − Ω,Ω],

where f(β) := EL1
(α1, β) + EL2

(β − ψ2, β3). It follows from (i) that ∂
∂βEL1

(α, β) > 0

at (α, β) = (α1,Ω) and from (ii) that ∂
∂αEL2

(α, β) ≥ 0 at (α, β) = (Ω − ψ2, β3); hence
f ′(Ω) > 0. We therefore have β2 < Ω, since equality would contradict (5.1). In a similar
manner, we see that ∂

∂βEL1
(α, β) ≤ 0 at (α, β) = (α1, ψ2 − Ω) and ∂

∂αEL2
(α, β) < 0 at

(α, β) = (−Ω, β3); hence f
′(ψ2 − Ω) < 0. We therefore have β2 > ψ2 − Ω, since again

equality would contradict (5.1). Having established ψ2 − Ω < β2 < Ω, it follows that di
lies in the interior of Di. �

Remark. Although we are specifically addressing case (5) of Remark 2.1, Theorem 5.1 also
holds in cases (1)–(4). We again note that in these cases, admissible curves are always G2

at the endpoints P1 and Pn.
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Example 5.2. Consider the Conditionally G2 Cubic basic curve method described in
Theorem 4.4 with 0 < λ < 3 and Ω = π/2. We will show that conditions (i) and (ii) of

Theorem 5.1 hold when Ψ = tan−1
√
9−λ2

λ .

Since the energy functional is inversely proportional to scale and E1(α, β) = 2λ2 cos(α −
β)−6λ(cosα+cosβ)+4λ2+6 = E1(β, α), it suffices to establish condition (i) when L = 1.
Differentiating yields

∂

∂β
E1(α, β) = 2λ2 sin(α− β) + 6λ sinβ = 2λ2[sinα cosβ − sinβ(cosα− 3/λ)].

Note that ∂
∂βE1(α, π/2) = 2λ2( 3λ − cosα) > 0 and ∂

∂βE1(α,−π/2) = −2λ2( 3λ − cosα) < 0,

since 0 < λ < 3. Moreover, ∂
∂βE1(α, β) = 0 if and only if sinα cosβ = sinβ(cosα − 3/λ);

that is, if and only if β = β∗
α := − tan−1 sinα

3/λ−cosα . Therefore sign( ∂∂βE1(α, β)) = sign(β −
β∗
α) for all |α| , |β| ≤ π/2. In order to obtain condition (i), let Ψ be defined by π

2 − Ψ =
maxα |β∗

α|. As an exercise in Differential Calculus, we leave it to the reader to verify that
the odd function f(α) := sinα

3/λ−cosα , |α| ≤ π/2, is uniquely maximized at α = cos−1 λ
3 ,

where f(cos−1 λ
3 ) =

λ√
9−λ2

. Therefore, Ψ = π
2 − tan−1 λ√

9−λ2
= tan−1

√
9−λ2

λ .

Remark. For the Quasi-Elastic Cubic (i.e., λ = 1) discussed in Remark 4.5, the angle Ψ is

Ψ = tan−1
√
8 ≈ 70.5◦.

6. Uniqueness

Let cL(α, β) be a basic curve method, defined for L > 0 and |α| , |β| ≤ Ω, with energy
functional EL(α, β), and assume Ω < π

2 .

Assumption 3. For all L > 0, the energy functional EL is continuous and strictly convex
on [−Ω,Ω]2.

Theorem 6.1. Under Assumption 3, if the stencil angles satisfy |ψi| ≤ 2Ω for all i, then
there exists a unique minimal energy admissible curve.

Proof. Assume that the stencil angles satisfy |ψi| ≤ 2Ω for all i, and let the chord lengths
{Li} be as defined in Section 3. Define f : [−Ω,Ω]2n → R by

f(a1, b2, a2, b3, . . . , an, bn+1) :=
n
∑

i=1

ELi
(ai, bi+1),

and note that it follows from Assumption 3 that f is strictly convex. We recall from
Section 3 that the set of admissible curves is parametrized by D := D1 × D2 × · · · × Dn
via the correspondence between a feasible list (d1, d2, · · · , dn) ∈ D and the correspond-
ing admissible curve whose energy (see (2.2)) equals f(α1, β2, α2, β3, . . . , αn, βn+1), where
the chord angles {αi} and {βi+1} are defined (periodically) in (2.1). The assumption
0 < Ω < π

2 ensures that each feasible range Di is connected (a closed arc or a sin-
gleton) and also allows us to write αi+1 = βi − ψi+1 for all i. Now, let L denote
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the set of all lists (a1, b1, a2, b2, . . . , an, bn) in [−Ω,Ω]2n such that ai+1 = bi − ψi+1

for i = 1, 2, . . . , n, where an+1 := a1. It is easy to verify that L is a compact, con-
vex subset of [−Ω,Ω]2n. Note that if (d1, d2, . . . , dn) belongs to D, then the associ-
ated list of chord angles (α1, β1, α2, β2, . . . , αn, βn) belongs to L; in particular L is non-
empty. On the other hand, if (a1, b1, a2, b2, . . . , an, bn) ∈ L, then there exists a unique list
(d1, d2, . . . , dn) ∈ D, given by di = arg(Pi+1 − Pi)e

iai , whose associated list of chord an-
gles equals (a1, b1, a2, b2, . . . , an, bn). We have thus described a one-to-one correspondence
between D and L and we further note that the energy of the admissible curve determined
by a list (d1, d2, . . . , dn) ∈ D equals f(α1, β1, α2, β2, . . . , αn, βn). Consequently, in order
prove the theorem, it suffices to show there exists a unique list in L which minimizes the
restriction of f to L. But this is a simple consequence of the fact that f is continuous and
strictly convex on the compact, convex set L. �

Remark. Although written specifically for case (5) of Remark 2.1, Theorem 6.1 remains
valid for cases (1)–(4) with the same modifications (a),(b),(c) described in Remark 2.4.

We will now determine to what extent Theorem 6.1 applies to the Conditionally G2

Cubic basic curve method defined in Theorem 4.4. Recall from Remark 4.5 that the Hessian

of E1(α, β) is given by H1(α, β) = 2λ

[

−λ cos(α− β) + 3 cosα λ cos(α− β)
λ cos(α− β) −λ cos(α− β) + 3 cosβ

]

and in particular H1(0, 0) = 2λ

[

3− λ 1
1 3− λ

]

. The eigenvalues of H1(0, 0) are µ1 =

6 − 4λ and µ2 = 6, and therefore H1(0, 0) is positive definite if and only if 0 < λ < 3
2 .

Assuming 0 < λ < 3
2 , it follows that there exists Ωconv > 0 such that E1 is strictly convex

on [−Ωconv,Ωconv]
2. Fortunately, the largest value of Ωconv can be determined.

Proposition 6.2. Let E1(α, β) be the energy functional associated with the Conditionally
G2 Cubic basic curve method described in Theorem 4.4, and assume 0 < λ < 3

2 . Set

Ωconv := cos−1 2λ
3 . Then E1 is strictly convex on [−Ωconv,Ωconv]

2.

Proof. We have seen above that the Hessian H1(0, 0) is positive definite. In order to
complete the proof, it suffices to show that the determinant of H1(α, β) is positive for all
non-corner points (α, β) of the square [−Ωconv,Ωconv]

2.
Define f(q, r) := qr − λ(q + r) for (q, r) ∈ [2λ, 3]2. Since ∂

∂rf(q, r) = q − λ > 0, it follows

that f(q, r) > f(q, 2λ) whenever r > 2λ. Now, f(q, 2λ) = λq − 2λ2 > 0 whenever q > 2λ.
It therefore follows that f(q, r) > 0 for all (q, r) ∈ [2λ, 3]2\{(2λ, 2λ)}. Now let (α, β) be a
non-corner point of the square [−Ωconv,Ωconv]

2 and set q = 3 cosα and r = 3 cosβ. Note
that (q, r) ∈ [2λ, 3]2\{(2λ, 2λ)}. One easily verifies that detH1(α, β) = 4λ2[9 cosα cosβ −
3λ cos(α − β)(cosα + cosβ)], and therefore detH1(α, β) ≥ 4λ2[9 cosα cosβ − 3λ(cosα +
cosβ)] = 4λ2f(q, r) > 0. �

Remark. For the Quasi-Elastic Cubic (i.e., λ = 1) discussed in Remark 4.5, the critical
angle is Ωconv = cos−1 2

3 ≈ 48.2◦.

We playfully refer to choices of Ω and Ψ which ensure existence, uniqueness and G2

regularity of the minimal energy admissible curve as the Green Zone. For the Conditionally
G2 Cubic basic curve method, we have the following:
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Proposition 6.3. Consider the Conditionally G2 Cubic basic curve method described in

Theorem 4.4 with 0 < λ < 3
2 , and set Ω = cos−1 2λ

3 and Ψ = Ω − tan−1
√
9−4λ2

9−2λ . If the

stencil angles satisfy |ψi| ≤ Ψ, then the unique minimal energy admissible curve has G2

regularity.

Proof. Assume |ψi| ≤ Ψ for all i. Since Ψ ≤ 2Ω, it follows from Proposition 6.2 and
Theorem 6.1 that there exists a unique minimal energy admissible curve. In order to show
that this optimal curve has G2 regularity, it suffices to show that conditions (i) and (ii)
of Theorem 5.1 hold. For this, as explained in Example 5.2, it suffices to establish (i) for
the case L = 1. Recall from Example 5.2 that sign( ∂∂βE1(α, β)) = sign(β − βα) holds for

|β| ≤ π
2 , where βα = − tan−1 f(α) and f(α) := sinα

3/λ−cosα . We also recall that the odd

function f is increasing on the interval [− cos−1 λ
3 , cos

−1 λ
3 ]. Since Ω = cos−1 2λ

3 belongs to

this interval, it follows that |βα| ≤ tan−1 f(Ω) for all α ∈ [−Ω,Ω], and we therefore obtain
condition (i) of Theorem 5.1 with Ψ = Ω− tan−1 f(Ω). �

7. Curve Ensemble

Here, we briefly mention a free open source C++ computer program, called Curve En-
semble, that we are developing for the purpose of testing and comparing a variety of basic
curve methods. Curve Ensemble began as a program written specifically for elastic splines
in tandem with [2], but it was gradually realized that a great deal of the code (eg. opti-
mization, plotting, inputting/editing nodes, painting, saving and exporting) could be used
regardless of the particular basic curve method employed. At present, Curve Ensemble
‘brings to life’ six basic curve methods and is available at

http://sourceforge.net/projects/curve-ensemble .
As an illustration, Fig. 7 shows five different parametric cubic splines interpolating the
same points. The first three are conventional C2 parametric cubic splines with parameter
intervals chosen as (a) uniform, (b) centripetal, and (c) chordal (see [6]). The last two are
minimal energy curves where the basic curve method is (d) Jaklič-Žagar Cubic (Example
4.2) with Ω = 80◦ and (e) Quasi-Elastic Cubic (Example 1.1) with Ω = 90◦.

Fig. 7 (a) (b) (c) (d) (e)
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