Ideal interpolation: Mourrain’s condition vs D-invariance

C. de Boor

By definition (see [Bi]), ideal interpolation is provided by a linear projector whose
kernel is an ideal in the ring IT of polynomials (in d real (IF = IR) or complex (IF = C)
variables). The standard example is Lagrange interpolation; the most general example has

been called ‘Hermite interpolation’ (in [M] and [JitB05]]) since that is what it reduces to
in the univariate case.

Ideal projectors also occur in computer algebra, as the maps that associate a poly-
nomial with its normal form with respect to an ideal; see, e.g., [CLO]. It is in this latter
context that Mourrain [Mo] poses and solves the following problem. Among all linear
projectors N on

L(F) = 0;F

J=0

with range the linear space F', characterize those that are the restriction to IIy(F') of an
ideal projector with range F'. Here,

()j = ()Ej, g5 1= (5jk k= 1Zd), ] = Old,
with

d
O:F! - TF:z— 2% = Has(j)o‘(j)
j=1

a handy if nonstandard notation for the monomial with exponent a € Zi. I also use
the corresponding notation
D

for the derivative with respect to the jth argument, and
d
j d
D =[] D5, aeu.
j=1

To state Mourrain’s result, I also need the following, standard, notations. The (total)
degree of the polynomial p # 0 is the nonnegative integer

deg p := max{|al : p(a) # 0},

with

and



while
Mo, :={pell:degp <n}.

Theorem 1 ([Mo]). Let F' be a finite-dimensional linear subspace of Il satisfying Mour-
rain’s condition:

(2) feF = fe€ Hl(F N H<degf>,

and let N be a linear projector on I1; (F') with range F. Then, the following are equivalent:
(a) N is the restriction to IIy(F') of an ideal projector with range F'.
(b) The linear maps M; : ' — F : f+— N((),;f), j = 1:d, commute.

For a second proof of this theorem and some unexpected use of it in the setting of
ideal interpolation, see [JcitBO5]].

Mourrain’s condition (2) implies that, if F' contains an element of degree k, it must
also contain an element of degree kK — 1. In particular, if F' is nontrivial, then it must
contain a constant polynomial. This explains why Mourrain [Mo] calls a linear subspace
satisfying his condition connected to 1. Since the same argument can be made in case
F'is D-invariant, this raises the question what connection if any there might be between
these two properties.

In particular, for the special case d = 1, if F' is a linear subspace of dimension n and
either satisfying Mourrain’s condition or being D-invariant, then, necessarily, F' = II_,.
More generally, if F' is an n-dimensional subspace in the subring generated by

(y) B = Tz (wy) =) 2()y())

J=1

for some y # 0, then, either way,

n

F=ran[(-,y)! 1 :j=1mn] = {Z(-,y)j_la(j) ca€IF"}.

As a next example, assume that F' a monomial space (meaning that it is spanned by
monomials). If such F is D-invariant, then, with each () for which a —e; € Z%, it also
contains ()*~% and therefore evidently satisfies Mourrain’s condition.

Slightly more generally, assume that F' is dilation-invariant, meaning that it con-
tains f(h-) for every h > 0 if it contains f or, equivalently, F' is spanned by homogeneous
polynomials. Then every f € F' is of the form

f::fT+f07

with f1 the leading term of f, i.e., the unique homogeneous polynomial for which

deg(f — f1) < deg f,
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hence in F' by dilation-invariance, therefore also

fo € Feqeg f = FN1lcgeg f»

while, by the homogeneity of f1,

M-

0;D;(f1) = (deg f) f1

1

J

(this is Euler’s theorem for homogeneous functions; see, e.g., [Encycl: p281] which
gives the reference [E: §225 on p154]). If now F is also D-invariant, then D;(f1) € Fcdeg £
hence, altogether,

f€H1<F<degf)7 feF

In other words, if a dilation-invariant finite-dimensional subspace F of 1l is D-invariant,
then it also satisfies Mourrain’s condition.
On the other hand, the linear space

ran[()", 0", 0™']

fails to be D-invariant even though it satisfies Mourrain’s condition and is monomial, hence
dilation-invariant.

The final example, of a space that is D-invariant but does not satisfy Mourrain’s
condition, is slightly more complicated. In its discussion, I find it convenient to refer to

supp p

as the ‘support’ of the polynomial p = > _()*p(c), with the quotation marks indicating
that it isn’t actually the support of p but, rather, the support of its coefficient sequence,
p. The example is provided by the D-invariant space F' generated by the polynomial

p=0""+0%+0"
hence the ‘support’ of p is
suppp = {(1,7),(3,3),(5,0)}
(see (4) below). Here are a first few elements of F":

Dip=()""+30>*+50"" Dop=7("%+3()*?,

hence
D1Dop =7()"%+9()>%, Dip=42()"° +6()>",

also
Dip=06()""+20>°, DyD3p=42()"° +18()*",
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etc. This shows (see (4) below) that any ¢ € II1(F<qegp) having some ‘support’ in supp p
is necessarily a weighted sum of ()1 D1p and ()2 D2p (and, perhaps, others not having any
‘support’ in supp p), yvet (p, ()1D1p, ()2D2p) is linearly independent ‘on’ suppp, as the
matrix

=
Ot L =
O W

(of their coefficients indexed by a € supp p) is evidently 1-1. Consequently, p & II1 (Fcdeg p),
i.e., this F' does not satisfy Mourrain’s condition.

This space also provides the proof that, in Theorem 1, one may not, in general, replace
Mourrain’s condition by D-invariance.

Proposition 3. Let F' be the D-invariant space spanned by
p= 0" +0% + 0%

Then there exists a linear projector, N, on I1;(F') with range F' for which (b) but not (a)
of Theorem 1 is satisfied.

Proof: For a, 3 € ZZ%, set

la..0] == {yeZt a<y<pl,
with
a<y=Vji a(j) <)

With this, we determine a basis for F' as follows.
Since D%%p is a positive scalar multiple of ()13, we know, by the D-invariance of F,
that

{0°:¢el(0,0)..(1,3)}C F.
This implies, considering D*%p, that ()3°, hence also ()29, is in F. Hence, altogether,

F =Tg, ®ran[D : a € [(0,0) .. (1, 3)]],

with
Iy :=ran[()” : v € T

and
=0 :=1[(0,0)..(1,3)]U{(2,0),(3,0)}.

This provides the convenient basis
b= = [bg:fEE]

for F', indexed by
1:=1[(0,4)..(1,7)],
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namely
be = ()67 f S EO;
T DAy ez,

The following schema indicates the sets supp p, =g, and Z4, as well as the sets 0=
and 0= defined below:

X X ®: suppp

1 & x 0: Zo

1 1 x 1: =

1 1 X + E.()
(4) 1 1 x X 0=

0 0 + ®

0 0 +

0 0 + +

0O 0 0 0 + ®

Now, let N be the linear projector on II; (F) with range F' and kernel ran[bz], with
bz obtained by thinning

(b=, ()1b=, ()2b=]

to a basis [bz, bz] for II; (F'). This keeps the maps M; : F — F : f — N(();f) very simple
since, as we shall see, for many of the £ € =, ();b¢ is an element of the extended basis
[b=, bz], hence N either reproduces it or annihilates it.

Specifically, it is evident that the following are in F', hence not part of byz:

O1be, € €(0,0)..(0,2)],

O2be, € €[(0,0)..(1,3)].

Further, for each
¢ € 029 U 0=y,

with
020 = {(2,3),(2,2),(2,1),(3,1),(4,0)}, 0= ={[(2,4)..(2,7)],(1,8),(0,8)},

there is £ € = so that, for some 7,

C—§=€j3={

Set, correspondingly,
b¢ == ();be.

Then, none of these is in F', and, among them, each b; is the only one having some ‘support’
at ¢, hence they form a linearly independent sequence. Therefore, each such b¢ is in bz.
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The remaining candidates for membership in by require a more detailed analysis. We
start from the ‘top’, showing also along the way that (b) of Theorem 1 holds for this F’
and N by verifying that

(5) M1M2 = M2M1 on bé‘

for every & € =.

¢ = (1,7): As already pointed out, both ()1b1,7 and ()2b1 7 are in by, hence (5) holds
trivially for £ = (1, 7).

£ =1(0,7),(1,6): Both ()1bg7 = O"+3()>2+5()>% and ()2b1,6 = 7()>7 +3()>2 have
their ‘support’ in that of p = by 7 = ()17 + ()*3 + ()>°, while, as pointed out and used
earlier, the three are independent. Hence ()1bo,7, ()2b1,6 € bz, while we already pointed
out that ()2b07,()1b1,6 € bz, therefore (5) holds trivially.

£ =1(0,6),(1,5): Both ()1bo6 = 7()1¢ +9()>? and ()2b1 5 = 42()*° + 6()>? have their
‘support’ in that of by ¢ = 7()1'¢ 4 3()%2, but neither is a scalar multiple of b; . Hence, one
is in bz and the other is not. Which is which depends on the ordering of the columns of
[b=, ()1b=, ()2b=]. Assume the ordering such that ()21 5 € bz. Then, since we already know
that ()1b1,5 € bz, (5) holds trivially for £ = (1,5). Further, ()1bo,6 = 4b1,6 — (1/2)()2b1 5,
hence M;by ¢ = 4b; 6, while we already know that ()2b1,6 € by therefore, MyMiby ¢ = 0. On
the other hand, ()2bo ¢ = 7()%"+3()>3 has its ‘support’ in that of by 7 = ()®7+3()>3+5()*°
but is not a scalar multiple of it, hence is in bz, and therefore already Msbg e = 0. Thus,
(5) also holds for & = (0, 6).

¢ =1(0,5),(1,4): Both ()1bo5 = 42()1® +18()>! and ()2b1 4 = 210()1° + 6()>! have
their ‘support’ in that of by 5 = 42()° + 6()>! but ()>! = b3 ; was already identified
as an element of bz, hence neither ()1bg 5 nor ()2by14 is in bz. But, since ()>! € by,
and so b1’5 = Nbl’5 = N(42()1’5), we have M1b0’5 = b1’5 and M2b1’4 = 5[)1’5. Since we
already know that ()1b15 € bz, it follows that M;Mab; 4 = 0 while we already know that
()1b1,4 € bz, hence already M;b; 4 = 0. Therefore, (5) holds for £ = (1,4). Further, we
already know that ()2b1 5 € bz, hence MaMibg 5 = 0, while ()2bg 5 = 42()%6 + 18()%2 has
the same ‘support’ as by g = 7()%6 +9()%? but is not a scalar multiple of it, hence is in by
and, therefore, already Mabg 5 = 0, showing that (5) holds for £ = (0, 5).

f = (0,4): ()2b074 = 210()0’5 + 18()2’1 = 5b075 — 721)2,1, with b271 € bz, hence ()2b074 is
not in bz and Mabg 4 = 5bg 5, therefore My Mabg 4 = 5M1bg 5 = 5by 5, the last equation from
the preceding paragraph. On the other hand, ()1bg4 = 210()1* + 18()3° = by 4 + 12b3 0,
with both by 4 and bs o in F', hence ()1bo 4 is not in bz, and M;by 4 = by 4+12b3 o, therefore,
since ()2b3,0 = b3 1 € by, MaMiby 4 = Maby 4 = 5by 5, the last equation from the preceding
paragraph. Thus, (5) holds for £ = (0,4).

¢ = (1,3): We already know that ()1b1 3 = ba 3 € bz and therefore already M;b; 3 =0,
while ()le’g = ()1’4 = (b1’4 — 6b3’0)/210 c F, therefore 210M1M2b1’3 = M1b1’4 = 0, thus
(5) holds for £ = (1,3).

For the remaining { € E, each be is a monomial, hence ();b¢ is again a monomial, and
either in F' or not and, if not, then its exponent is in

=0 = {(2,3),(2,2),(2,1),(3,1), (4,0)}.
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Moreover, ()1()2b¢ is in F iff ()2()1b¢ is. Hence, (5) also holds for the remaining ¢ € =.
This finishes the proof that, for this F' and N, (b) of Theorem 1 holds.

It remains to show that, nevertheless, (a) of Theorem 1 does not hold. For this,

observe that ()2! and ()0 are in ker N, as is, e.g., ()ab16 = 7()*7 + 3()>3, hence p =
O%" + ()32 + ()>° is in the ideal generated by ker N, making it impossible for N to be
the restriction to II; (F") of an ideal projector P with range F since this would place the

nontrivial p in both ker P and ran P. O
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