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Abstract. Given points P1, P2, . . . , Pm in the complex plane, we are concerned with the
problem of finding an interpolating curve with minimal bending energy (i.e., an optimal
interpolating curve). It was shown previously that existence is assured if one requires that

the pieces of the interpolating curve be s-curves. In the present article we also impose the
restriction that these s-curves have chord angles not exceeding π/2 in magnitude. With
this setup, we have identified a sufficient condition for the curvature continuity of optimal

interpolating curves. This sufficient condition relates to the stencil angles {ψj}, where ψj

is defined as the angular change in direction from segment [Pj−1, Pj ] to segment [Pj , Pj+1].
An angle Ψ (≈ 37◦) is identified, and we show that if the stencil angles satisfy |ψj | < Ψ,

then optimal interpolating curves are curvature continuous. We also prove that the angle Ψ
is sharp.

As with the previous article, much of our effort is concerned with the geometric Hermite

interpolation problem of finding an optimal s-curve c1(α, β) that connects 0 + i0 to 1 + i0
with prescribed chord angles (α, β). Whereas existence was previously shown, and sometimes
uniqueness, the present article begins by establishing uniqueness when |α|, |β| ≤ π/2 and

|α− β| < π. We also prove two fundamental identities involving the initial and terminal
signed curvatures of c1(α, β) and partial derivatives, with respect to α or β, of the bending

energy of c1(α, β).

1. Introduction

Given points P1, P2, . . . , Pm in the complex plane C with Pj 6= Pj+1, we are concerned
with the problem of finding a fair curve that interpolates the given points. The present
contribution is a continuation of [2] and so we adopt much of the notation used there. In
particular, an interpolating curve is an absolutely-continuously differentiable function
F : [a, b] → C, with F ′ non-vanishing, for which there exist times a = t1 < t2 < · · · < tm =
b such that F (tj) = Pj . We treat F as a curve consisting of m − 1 pieces; the j-th piece
of F , denoted F[tj ,tj+1], runs from Pj to Pj+1. It is known (see [1]) that there does not
exist an interpolating curve with minimal bending energy, except in the trivial case when
the interpolation points lie sequentially along a line. In [2], it was shown that existence is
assured if one imposes the additional condition that each piece of the interpolating curve
be an s-curve. Here, an s-curve is a curve that first turns monotonically at most 180◦

in one direction (either counter-clockwise or clockwise) and then turns monotonically at
most 180◦ in the opposite direction. Incidentally, a c-curve is an s-curve that turns in
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2 ELASTIC SPLINES II

only one direction, and a u-turn is a c-curve that turns a full 180◦. Associated with an
s-curve f : [a, b] → C (see Fig. 1) are its breadth L := |f(b)− f(a)| and chord angles
(α, β), defined by

α := arg
f ′(a)

f(b)− f(a)
, β := arg

f ′(b)

f(b)− f(a)
,

where arg is defined with the usual range (−π, π].

Fig. 1 (a) optimal s-curve of first form (b) optimal s-curve of second form
Note that although the chord angles are signed, our figures only indicate their magnitudes.
The chord angles (α, β) of an s-curve necessarily satisfy

(1.1) |α|, |β| < π and |α− β| ≤ π.

Defining
A(P1, P2, . . . , Pm)

to be the set of all interpolating curves whose pieces are s-curves, the main result of [2] is
that A(P1, P2, . . . , Pm) contains a curve (called an elastic spline) with minimal bending
energy. Most of the effort in [2] is devoted to proving the existence of optimal s-curves.
Specifically, it is shown that given distinct points P,Q and angles (α, β) satisfying (1.1),
the set of all s-curves from P to Q with chord angles (α, β) contains a curve with minimal
bending energy. Denoting the bending energy of such an optimal s-curve by 1

LE(α, β),
it is also shown that E(α, β) depends continuously on (α, β). In the constructive proof
of existence, all optimal s-curves are described, but uniqueness is only proved in the case
when the optimal curve is a c-curve, but not a u-turn. An optimal s-curve is of first
form (resp. second form) if it does not (resp. does) contain a u-turn. Optimal s-curves
of first form are either line segments or segments of rectangular elastica (see Fig. 1 (a))
while those of second form (see Fig. 1 (b)) contain a u-turn of rectangular elastica along
with, possibly, line segments and a c-curve of rectangular elastica (see Definition 5.6 for
the precise definitions). Here, ‘rectangular elastica’ refers to a planar curve whose signed

curvature κ satisfies the differential equation 2d2κ
ds2 + κ3 = 0 (see [2, pp. 190,193,205] for

more details).
Elastic splines were computed in a computer program Curve Ensemble, written in con-

junction with [7], and it was there observed that the fairness of elastic splines can be
significantly degraded when pieces of second form arise. As a remedy, it was suggested in
[7] that elastic splines be further restricted by requiring that chord angles of pieces satisfy

(1.2) |α|, |β| ≤ π

2
.

The reader is referred to [8] for a detailed description of the experiments that motivate this
suggestion. This additional restriction, which is stronger than (1.1), also greatly simplifies
the numerical computation and theoretical development, and for these reasons, we adopt
this restriction and so define

Aπ/2(P1, P2, . . . , Pm)
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to be the set of curves in A(P1, P2, . . . , Pm) whose pieces have chord angles satisfying
(1.2). Curves in Aπ/2(P1, P2, . . . , Pm) with minimal bending energy are called restricted
elastic splines.

In Section 5, we show that if (1.2) holds and (α, β) 6∈ {(π/2,−π/2), (−π/2, π/2)}, then
the optimal s-curve from P to Q, with chord angles (α, β), is unique and of first form. The
omitted cases correspond to u-turns (see Fig. 2 (a)) which fail to be unique only because one
can always extend a u-turn with line segments without affecting optimality. Nevertheless,
the u-turn of rectangular elastica (see Fig. 2 (b)) is the unique C∞ optimal s-curve when
(α, β) ∈ {(π/2,−π/2), (−π/2, π/2)}. We mention, belatedly, that the optimality of the
u-turn of rectangular elastica was first proved by Linnér and Jerome [10].

Fig. 2 (a) optimal u-turn (b) u-turns of rectangular elastica.
With unicity of optimal s-curves in hand, we can then appeal to the framework developed in
[7] for assistance in proving existence and curvature continuity of restricted elastic splines.
When discussing geometric curves, the notions of geometric regularity, G1 and G2, are
preferred over the more familiar notions of parametric regularity, C1 and C2. A curve F has
G1 regularity if its unit tangent direction changes continuously with respect to arclength
and it has G2 regularity if, additionally, its signed curvature changes continuously with
arclength. By our definition of interpolating curve (given at the outset), all interpolating
curves are G1, but not necessarily G2.

The following will be proved in Section 6.

Proposition 1.1. The set Aπ/2(P1, P2, . . . , Pm) contains a curve Fopt with minimal bend-
ing energy. Moreover, if F ∈ Aπ/2(P1, P2, . . . , Pm) has minimal bending energy, then each

piece of F (connecting one interpolation point to the next) is G2.

The main concern of the present contribution is to identify conditions under which a
restricted elastic spline Fopt will be globally G

2. This direction of inquiry is motivated by a
result of Lee & Forsyth [9] (see also Brunnett [3]) which says that if an interpolating curve F
has bending energy which is locally minimal (i.e., minimal among all ‘nearby’ interpolating
curves), then F is globally G2. The proofs in [9] and [3] employ variational calculus, but
we prefer the constructive approach of [7] for its clarity and generality. We now explain
our results on G2 regularity assuming that Fopt is a curve in Aπ/2(P1, P2, . . . , Pm) having
minimal bending energy. Note that it does not follow from Proposition 1.1 that Fopt is
globally G2 because it is possible for the signed curvature to have jump discontinuities
across the interior nodes P2, P3, . . . , Pm−1. The following is a consequence of Theorem
7.5.

Corollary 1.2. If the chord angles at interior nodes are all (strictly) less than π
2 in

magnitude, then Fopt is globally G2.

Proposition 1.1 and Corollary 1.2 are analogous to results of Jerome and Fisher [5, 6, 4]
in that first additional constraints are imposed in order to ensure existence of an optimal
curve, and then it is shown that if these additional constraints are inactive, the optimal
curve is globally G2 and its pieces are segments of rectangular elastica. These results are
a good start, but they are not entirely satisfying because they shed no light on whether
one can expect the added constraints to be inactive.
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Our experience using the program Curve Ensemble is that the hypothesis of Corollary
1.2 holds when the interpolation points {Pj} impose only mild changes in direction. This
vague idea can be quantified in terms of the stencil angles {ψj} (see Fig. 3), defined by

ψj := arg
Pj+1 − Pj

Pj − Pj−1
, j = 2, 3, . . . ,m− 1.

Fig. 3 the stencil angle ψj Fig. 4 a globally G2 restricted elastic spline
The following is a consequence of Corollary 8.2.

Corollary 1.3. Let Ψ (≈ 37◦) be the positive angle defined in (8.1). If the stencil angles
satisfy |ψj | < Ψ for j = 2, 3, . . . ,m − 1, then the hypothesis of Corollary 1.2 holds and
consequently Fopt is globally G2.

For example, the stencil angles in Fig. 4 are all less than Ψ and therefore it follows from
Corollary 1.3 that the shown restricted elastic spline is globally G2. In Section 9, we prove
the following theorem which shows that the angle Ψ is sharp.

Theorem 1.4. Let Ψ be the positive angle defined in (8.1). For all ε > 0, there exist
points P1, P2, . . . , Pm, with stencil angles satisfying |ψm−1| ≤ Ψ + ε and |ψj | < Ψ for
j = 2, 3, . . . ,m− 2, such that Fopt is not globally G2.

An outline of the remainder of the paper is as follows. In Section 2, we summarize
some notation from [2] that is needed here, and then in sections 3 and 4 we study the
relation between parameters (t1, t2) and the chord angles (α, β) of the segment R[t1,t2] of
rectangular elastica, defined in Section 2. In Section 5 we combine Theorem 4.1 (unicity of
(t1, t2)) with results from [2, Section 5] to prove the unicity of optimal s-curves mentioned
above. With unicity of optimal s-curves in hand, we explain in Section 6 how these optimal
s-curves constitute a basic curve method that fits into the framework of [7], and this
yields Proposition 1.1. Motivated by the framework of [7], in Section 7 we prove the first
fundamental identity (Theorem 7.3) and this leads to Theorem 7.5, mentioned above. The
second fundamental identity (Theorem 8.6) is proved in Section 8, and this yields Corollary
8.2, mentioned above. Finally, in Section 9 we prove that the angle Ψ is sharp, as explained
above.

2. Summary of Notation

The present contribution uses the same notation as in [2]; we summarize it here. A curve
is a function f : [a, b] → C whose derivative f ′ is absolutely continuous and non-vanishing.
The bending energy of f is defined by

‖f‖2 :=
1

4

∫ S

0

κ2 ds,

where S denotes the arclength of f and κ its signed curvature (the unusual factor 1
4

is used to simplify some formulae related to rectangular elastica). Let g : [c, d] → C
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be another curve. We say that f and g are equivalent if they have the same arclength
parametrizations. They are directly similar if there exists a linear transformation T (z) =
c1z+c2 (c1, c2 ∈ C) such that f and T ◦g are equivalent; if |c1| = 1, they are called directly
congruent. The notions of similar and congruent are the same except that T is allowed
to have the form T (z) = c1z + c2, where z denotes the complex conjugate of z.

As mentioned earlier, we call f an s-curve if it first turns monotonically at most 180◦

in one direction and then turns monotonically at most 180◦ in the opposite direction. An
s-curve that turns in only one direction is called a c-curve, and a c-curve that turns a
full 180◦ is called a u-turn. A non-degenerate s-curve is called a right-left s-curve if it
first turns clockwise and then turns counter-clockwise; otherwise it is called a left-right
s-curve. S-curves are often associated with a geometric Hermite interpolation problem,
and so to facilitate this we employ the unit tangent vectors u = (f(a), f ′(a)/|f ′(a)|) and
v = (f(b), f ′(b)/|f ′(b)|) to say that f connects u to v. If g : [c, d] → C is a curve
satisfying (g(c), g′(c)/|g′(c)|) = (f(b), f ′(b)/|f ′(b)|), then f ⊔ g denotes the concatenated
curve which, for the sake of clarity, is assumed to have the arclength parametrization.
Most of the s-curves that we will encounter are segments of rectangular elastica; our
preferred parametrization (see Fig. 6) is R(t) = sin t+ i ξ(t), where ξ is defined by ξ′(t) =

sin2 t√
1 + sin2 t

, ξ(0) = 0. One easily verifies that ξ is odd and satisfies ξ(t + π) = d + ξ(t),

where d := ξ(π). Since the sine function is odd and 2π-periodic, we conclude that R is
odd and satisfies R(t+ 2π) = i 2d+R(t). For later reference, we mention the following.

|R′(t)| = 1√
1 + sin2 t

,
R′(t)

|R′(t)| = cos t
√
1 + sin2 t+ i sin2 t, κ(t) = 2 sin t,

‖R[a,b]‖2 =
1

4

∫ b

a

κ(t)2|R′(t)| dt = ξ(b)− ξ(a),

where R[a,b] denotes the restriction of R to the interval [a, b].

3. The chord angles of R[t1,t2]

In this section and the next, we establish relations between the parameters (t1, t2),
with t1 < t2, and the chord angles (α, β) of the segment R[t1,t2] of rectangular elastica
(defined in Section 2). Our primary purpose in this section is to prove Theorem 3.3 and
Corollary 3.4.

Recall from Section 2 that the chord angles are given by α = α(t1, t2) := arg R′(t1)
R(t2)−R(t1)

and β = β(t1, t2) := arg R′(t2)
R(t2)−R(t1)

. We mention that since ξ(t) is increasing, it follows

that the chord angles α(t1, t2) and β(t1, t2) never equal π (i.e., the branch cut in the
definition of arg is never crossed).

Fig. 5 notation for R[t1,t2]
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Assuming t1 < t2, we introduce the following notation (see Fig. 5):

∆x := sin(t2)− sin(t1), ∆ξ := ξ(t2)− ξ(t1), l := |R(t2)−R(t1)|,

whereby l2 = (∆x)2 + (∆ξ)2 and ‖R[t1,t2]‖
2
= ∆ξ. We refer to the quantity l‖R[t1,t2]‖

2

as the normalized bending energy of R[t1,t2] because this is the bending energy of the

curve 1
lR[t1,t2], which has been normalized to have breadth 1.

Let Q denote the mapping (t1, t2) 7→ (α, β), i.e.,

(α, β) =: Q(t1, t2).

We leave it to the reader to verify the following formulae for partial derivatives (these are
valid for any sufficiently smooth curve):

(3.1)

∂α

∂t1
= |R′(t1)|

(
sinα

l
+ κ(t1)

)

∂β

∂t1
= |R′(t1)|

sinα

l

∂α

∂t2
= −|R′(t2)|

sinβ

l

∂β

∂t2
= |R′(t2)|

(− sinβ

l
+ κ(t2)

)

The determinant of DQ :=

[ ∂α
∂t1

∂α
∂t2

∂β
∂t1

∂β
∂t2

]
is therefore given by

(3.2) det(DQ) = |R′(t1)||R′(t2)|
(
κ(t1)κ(t2) + κ(t2)

sinα

l
− κ(t1)

sinβ

l

)
.

Let the cross product in C be defined by (u1 + iv1) × (u2 + iv2) := u1v2 − v1u2. Noting
that l|R′(t1)| sinα = (R(t2)−R(t1))×R′(t1) = − cos t1∆ξ+ ξ

′(t1)∆x and l|R′(t2)| sinβ =
(R(t2)− R(t1))× R′(t2) = − cos t2∆ξ + ξ′(t2)∆x, the generic formulation in (3.2) can be
written specifically as:

(3.3)

det(DQ) =
4 sin t1 sin t2√

1 + sin2 t1
√

1 + sin2 t2
+

2 sin t2

l2
√
1 + sin2 t2

(
− cos t1 ∆ξ + ξ′(t1)∆x

)

− 2 sin t1

l2
√

1 + sin2 t1

(
− cos t2 ∆ξ + ξ′(t2)∆x

)
.

Note that if both sin t1 = 0 and sin t2 = 0, then det(DQ) = 0.

Lemma 3.1. Suppose (t1, t2) belongs to the first or third set defined in Theorem 3.3. If
sin t1 sin t2 = 0, then det(DQ) < 0.

Proof. We prove the lemma assuming t1 = 0 < t2 < π since the proof in the other three
cases is similar. Since ξ′(0) = 0 and ∆ξ > 0, it follows from (3.3) that det(DQ) =

2 sin t2

l2
√
1 + sin2 t2

(−∆ξ) < 0. �

If sin t1 sin t2 6= 0, then (3.3) can be factored as

(3.4)

det(DQ) =
2∆ξ

l2
√
1 + sin2 t1

√
1 + sin2 t2

sin t1 sin t2W (t1, t2), where

W (t1, t2) := 2∆ξ +
(∆x)2

∆ξ
+

cos t2
√
1 + sin2 t2

sin t2
− cos t1

√
1 + sin2 t1

sin t1
.

Note that the sign of det(DQ) is the same as that of sin t1 sin t2W (t1, t2).
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Lemma 3.2. If sin t1 sin t2 6= 0, then

∂W

∂t1
=

√
1 + sin2 t1
(∆ξ)2

[
cos t1∆ξ

sin t1
− sin t1∆x√

1 + sin2 t1

]2
≥ 0, and

∂W

∂t2
= −

√
1 + sin2 t2
(∆ξ)2

[
cos t2∆ξ

sin t2
− sin t2∆x√

1 + sin2 t2

]2
≤ 0.

Proof. We only prove the result pertaining to ∂W
∂t1

since the proof of the other is the same,
mutatis mutandis. Direct differentiation yields

∂W

∂t1
= −2ξ′(t1)+

−2∆x∆ξ cos t1 + (∆x)2ξ′(t1)

(∆ξ)2

−
− sin2 t1

√
1 + sin2 t1 +

cos2 t1 sin2 t1√
1+sin2 t1

− cos2 t1
√
1 + sin2 t1

sin2 t1
,

which then simplifies to

∂W

∂t1
=

−2 cos t1∆x∆ξ +
sin2 t1√
1+sin2 t1

(∆x)2

(∆ξ)2
+

(√
1 + sin2 t1

sin2 t1
− 1 + sin2 t1√

1 + sin2 t1

)

=
−2 cos t1∆x∆ξ +

sin2 t1√
1+sin2 t1

(∆x)2

(∆ξ)2
+

cos2 t1
√
1 + sin2 t1

sin2 t1
.

A simple computation then shows that this last expression can be factored as stated in the
lemma. �

Theorem 3.3. There exists a unique t∗ ∈ (0, π) such that W (−t∗, t∗) = 0. Moreover
det(DQ) < 0 on the following sets:
(i) {(t1, t2) : −π ≤ t1 < t2 ≤ 0, (t1, t2) 6= (−π, 0)},
(ii) {(t1, t2) : −t∗ < t1 < 0 < t2 < t∗}
(iii) {(t1, t2) : 0 ≤ t1 < t2 ≤ π, (t1, t2) 6= (0, π)},
(iv) {(t1, t2) : π − t∗ < t1 < π < t2 < π + t∗}

Proof. For −π < t1 < 0 < t2 < π, the function W (t1, t2) is analytic in both t1 and t2, and
consequently, it follows from Lemma 3.2 thatW (t1, t2) is increasing in t1 and decreasing in
t2. Furthermore, the function W (−t, t) is analytic and decreasing for t ∈ (0, π). Note that
if −π

2 ≤ t1 < 0 < t2 ≤ π
2 , then sin t1 < 0 and it is clear (from (3.4)) that W (t1, t2) > 0. In

particular, W (−t, t) > 0 for all t ∈ (0, π2 ]. It is easy to verify (by inspection of (3.4)) that
limt→π− W (−t, t) = −∞, and so it follows that there exists a unique t∗ ∈ (0, π) such that
W (−t∗, t∗) = 0.

If (t1, t2) belongs to set (ii), then W (t1, t2) > W (−t∗, t2) > W (−t∗, t∗) = 0 and since
sin t1 sin t2 < 0, it follows that det(DQ) < 0. This proves that det(DQ) < 0 for all (t1, t2)
in set (ii).

We will show that det(DQ) < 0 for all (t1, t2) in set (i). This has already been proved
in Lemma 3.1 if 0 = t1 < t2 < π or 0 < t1 < t2 = π, so assume 0 < t1 < t2 < π. As
above, the function W (t, t2) is analytic and increasing for t ∈ (0, t2). It is easy to see (by
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inspection of (3.4)) that limt→t−
2

W (t, t2) = 0, and therefore W (t, t2) < 0 for all t ∈ (0, t2);

in particular, W (t1, t2) < 0. Since sin t1 sin t2 > 0, we have det(DQ) < 0. This completes
the proof that det(DQ) < 0 for all (t1, t2) in set (i).

Finally, if (t1, t2) belongs to set (iii) or set (iv), then (t1 − π, t2 − π) belongs to set (i)
or set (ii) and det(DQ(t1, t2)) = det(DQ(t1 − π, t2 − π)) < 0. �

Corollary 3.4. Let t∗ ∈ (0, π) be as defined in Theorem 3.3. Then t∗ > π
2 and β(0, t∗) >

π
2 . Moreover, β(0, t) is increasing for t ∈ (0, t∗] and decreasing for t ∈ [t∗, π].

Proof. Since W (−t, t) > 0 for t ∈ (0, π2 ], it is clear that t∗ > π
2 . Since W (−t∗, t∗) = 0, it

follows from (3.4) that det(DQ(−t∗, t∗)) = 0, and therefore, by (3.1), we must have

κ(−t∗)κ(t∗) + κ(t∗)
sin(α(−t∗, t∗))
l(−t∗, t∗) − κ(−t∗) sin(β(−t

∗, t∗))

l(−t∗, t∗) = 0.

From the definition of α and β it is clear that α(−t∗, t∗) = β(−t∗, t∗) > 0 and κ(t∗) =

−κ(−t∗) > 0, so the above equality reduces to κ(t∗) − 2 sin(β(−t∗, t∗))
l(−t∗, t∗) = 0. From the

symmetry of the curve R one has sin(β(−t∗, t∗)) = sin(β(0, t∗)) and l(−t∗, t∗) = 2l(0, t∗)

which yields κ(t∗)− sin(β(0,t∗))
l(0,t∗) = 0. It now follows from (3.1) that

∂β

∂t2
(0, t∗) = 0. Moreover,

the uniqueness of t∗ ∈ (0, π) shows (running the above argument backwards) that t = t∗

is the unique t ∈ (0, π) where
∂β

∂t2
(0, t) = 0. This implies that the function β(0, t) is

increasing on (0, t∗] and decreasing on [t∗, π]. Consequently, β(0, t∗) > β(0, π) = π
2 . �

Corollary 3.5. There exists a unique t ∈ (0, t∗) such that β(0, t) = π
2 . Moreover, we have

β(0, t) < π
2 for all 0 < t < t and β(0, t) > π

2 for all t < t < π.

Proof. Since limt→0+ β(0, t) = 0, β(0, t∗) > π
2 , and β(0, π) =

π
2 , the result follows immedi-

ately from Corollary 3.4. �

Fig. 6 R(t) shown with t and t∗. Fig. 7 [R(t1), R(t2)] intersects negative real axis.

4. Unicity of Parameters

Recall from the previous section that the chord angles of R[t1,t2] are written as
(α(t1, t2), β(t1, t2)) = Q(t1, t2).

The rectangular elastic curve R is periodic in the sense that R(t+ 2π) = i2d+ R(t), and
it follows that R[t1+2kπ,t2+2kπ] is directly congruent to R[t1,t2] for all integers k. With
the identification (t1 + 2kπ, t2 + 2kπ) ≡ (t1, t2), the half-plane Y := {(t1, t2) : t1 < t2}
becomes a cylinder and we adopt the view that the chord angles α(t1, t2) and β(t1, t2) are
C∞ functions defined on Y . It will be convenient, notationally, to define the subset

(4.1) Y2π := {(t1, t2) ∈ Y : t1 < t2 < t1 + 2π}.
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Note that the restriction t2 − t1 < 2π removes pairs like (t1, t2) = (−π, π), where both
R[−π,π] and R[−t, t ] have chord angles (π2 ,

π
2 ).

Our purpose in this section is to prove the following.

Theorem 4.1. For all (α, β) ∈ [−π
2 ,

π
2 ]

2\{(0, 0)}, there exists a unique (t1, t2) in the
cylinder Y2π such that R[t1,t2] is an s-curve with chord angles (α, β).

Remark 4.2. Since, for t1 < t2,
(a) R[t1+π,t2+π] is directly congruent to reflections of R[t1,t2] (and hence Q(t1+π, t2+π) =
(−α,−β) if and only if Q(t1, t2) = (α, β)), and
(b) R[−t2,−t1] is directly congruent to the reversal of R[t1,t2] (and hence Q(−t2,−t1) =
(β, α) if and only if Q(t1, t2) = (α, β)), when proving Theorem 4.1, we can assume, without
loss of generality, that α ≥ |β|.

Before proving Theorem 4.1, we first address two special cases (Propositions 4.7 and 4.10
below), which themselves require several lemmata. To avoid confusion with the functions

α(t1, t2) and β(t1, t2), we will write the chord angles in Theorem 4.1 as (α̂, β̂), and we will
assume that

(4.2)
π

2
≥ α̂ ≥ |β̂|, α̂ > 0.

The first proposition will be stated assuming that the parameters (t1, t2) satisfy

(4.3) −π ≤ t1 < t2 ≤ π and t2 − t1 < 2π.

The following is proved in [2, Lemma 6.3].

Lemma 4.3. For 0 < t < π, |α(0, t)| < β(0, t).

In the following lemma, the marker t is as defined in Corollary 3.5.

Lemma 4.4. Assume (4.2), (4.3) and that Q(t1, t2) = (α̂, β̂). The following hold.
(i) t1 < 0.
(ii) If t2 > 0, then −t ≤ t1 < 0 < t2 ≤ t.

Proof. If t1 ≥ 0, then R[t1,t2] is a left c-curve, which contradicts α̂ > 0; hence (i). Assume
t2 > 0. We can assume that t2 ≥ −t1, since the proof in the remaining case t2 < −t1 is
similar. Assume, by way of contradiction, that t2 > t. We will show that β(t1, t2) >

π
2

(which contradicts (4.2)). If t2 = −t1, then we must have t < t2 < π (since t2 − t1 < 2π)
and, by symmetry, β(t1, t2) = β(0, t2) >

π
2 by Corollary 3.5. So assume t2 > −t1, whereby

−π ≤ −t2 < t1 < 0 and t < t2 ≤ π. The chord [R(t1), R(t2)] must intersect the negative
real axis (see Fig. 7), and therefore β(t1, t2) > β(0, t2) ≥ π

2 . �

Let θ : R → [0, π] be defined by

θ(t) := arg
R′(t)

|R′(t)| = arg[cos t
√
1 + sin2 t+ i sin2 t],

where 0 ≤ sin2 t ≤ 1 ensures that θ(t) ∈ [0, π]. Several salient properties of θ are
1. θ(−t) = θ(t) = θ(2π + t) = θ(2π − t) for all t ∈ R;
2. θ(0) = 0, θ(π2 ) =

π
2 , θ(π) = π;

We can write θ explicitly as θ(t) = cos−1(cos t
√
1 + sin2 t), and also as

(4.4) θ(t) =

∫ t

0

κ(τ)|R′(t)| dτ =

∫ t

0

2 sin τ√
1 + sin2 τ

dτ.

It follows from (4.4) that θ is C∞ on R and θ′ > 0 on (0, π). Let θ−1 : [0, π] → [0, π] be
the inverse of the restriction of θ to [0, π]. Then θ−1 is increasing and continuous on [0, π]
and C∞ on (0, π).



10 ELASTIC SPLINES II

Lemma 4.5. If t1 < t2, then θ(t1)− θ(t2) = α(t1, t2)− β(t1, t2).

Proof. Since ξ(t1) < ξ(t2), it follows that γ := arg(R(t2) − R(t1)) ∈ (0, π) and hence
α(t1, t2)− β(t1, t2) = (θ(t1)− γ)− (θ(t2)− γ) = θ(t1)− θ(t2). �

Lemma 4.6. Assume (4.2) and (4.3), and define b0 := θ−1(π + β̂ − α̂). If Q(t1, t2) =

(α̂, β̂), then |t2| ≤ b0.

Proof. By Lemma 4.5, θ(t1)−θ(t2) = α̂−β̂. If |t2| > b0, then θ(t1)−θ(t2) = θ(t1)−θ(|t2|) <
π − θ(b0) = π − (π + β̂ − α̂) = α̂− β̂, which is a contradiction. �

Proposition 4.7. Assume (4.2). Then there exists a unique (t1, t2), satisfying (4.3), such

that Q(t1, t2) = (α̂, β̂).

Note that if (4.2) holds, then 0 ≤ α̂− β̂ ≤ π.

Proof of Proposition 4.7 in case α̂− β̂ = π. It follows from (4.2) that α̂ = π
2 and β̂ = −π

2 ,

and hence (t1, t2) = (−π, 0) satisfies Q(t1, t2) = (α̂, β̂). Conversely, if (t1, t2) satisfies (4.3)

and Q(t1, t2) = (α̂, β̂), then it follows from Lemma 4.5 that θ(t1) = π and θ(t2) = 0; hence
t1 = −π and t2 = 0. �

Proof of Proposition 4.7 in case 0 = α̂ − β̂. Since 0 = α̂ − β̂, we have 0 < α̂ = β̂ ≤ π
2 . It

follows from Corollary 3.5 that there exists a unique t2 ∈ (0, t ] such that β(0, t2) = α̂. By
symmetry, we have Q(−t2, t2) = (α̂, α̂), which establishes existence. To see uniqueness,
assume (t′1, t

′
2) satisfies (4.3) and Q(t′1, t

′
2) = (α̂, α̂). It follows from Lemma 4.5 that

θ(t′1) = θ(t′2), and therefore we have t′1 = −t′2. This forces t′2 > 0 and hence 0 < t′2 ≤ t,
by Lemma 4.4. Since α̂ = β(−t′2, t′2) = β(0, t′2), it follows that t′2 = t2, which implies
(t′1, t

′
2) = (−t2, t2). �

Lemma 4.8. Assume (4.2) holds with 0 < α̂ − β̂ < π, and define T1 : [−b0, b0] → R by

T1(t2) := −θ−1[θ(t2) + α̂− β̂], where b0 is as defined in Lemma 4.6. The following hold.
(i) T1 is continuous on [−b0, b0] and C∞ on (−b0, b0).
(ii) −π ≤ T1(t2) < −|t2| for all t2 ∈ [−b0, b0].
(iii) α(T1(t2), t2)− β(T1(t2), t2) = α̂− β̂ for all t2 ∈ [−b0, b0].
(iv) T1 is decreasing on [0, b0].

(v) If (t1, t2) satisfies (4.3) and Q(t1, t2) = (α̂, β̂), then |t2| ≤ b0 and t1 = T1(t2).

Proof. Since θ(t2) + α̂ − β̂ ∈ [α̂ − β̂, π) for all t2 ∈ (−b0, b0), (i) is a consequence of θ−1

being continuous on [0, π] and C∞ on (0, π).
The first inequality, −π ≤ T1(t2), in (ii) is clear since the range of θ−1 equals [0, π]. For

the latter inequality, we note that θ(t2) + α̂ − β̂ = θ(|t2|) + α̂ − β̂ > θ(|t2|). Since θ−1 is

increasing, we have −T1(t2) = θ−1[θ(t2) + α̂− β̂] > |t2|, which completes (ii).
We readily obtain (iii) as a consequence of (ii) and Lemma 4.5.
Now assume 0 ≤ τ < t ≤ b0. Since θ is increasing on [0, π], we have θ(−T1(τ)) =

θ(τ) + α̂− β̂ < θ(t) + α̂− β̂ = θ(−T1(t)). Since −T1(τ),−T1(t) ∈ (0, π] (by (ii)), we have
−T1(τ) < −T1(t), and therefore T1(τ) > T1(t), which proves (iv).

Finally, assume (4.3) holds and Q(t1, t2) = (α̂, β̂). Then |t2| ≤ b0, by Lemma 4.6. Fur-

thermore, θ(−T1(t2)) = θ(t2) + α̂ − β̂, while θ(−t1) = θ(t1) = θ(t2) + α̂ − β̂, by Lemma
4.5. Since θ is increasing on [0, π] and −t1,−T1(t2) ∈ (0, π], we have t1 = T1(t2). �

Proof of Proposition 4.7 in case 0 < α̂ − β̂ < π. Since α(t1, t2) is C∞ on Y , it follows
from Lemma 4.8 (i) and (ii) that the function a(t) := α(T1(t), t) is continuous on [−b0, b0]
and C∞ on (−b0, b0). We will show that a(−b0) < α̂ and a(b0) > α̂. Note that T1(−b0) =
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T1(b0) = −π. By Lemma 4.3, and symmetry, we have α(−π,−b0) < −β(−π,−b0), and
hence α(−π,−b0) + β(−π,−b0) < 0. Since α(−π,−b0)− β(−π,−b0) = α̂− β̂, by Lemma
4.8 (iii), it follows that

2α(−π,−b0) = [α(−π,−b0) − β(−π,−b0)] + [α(−π,−b0) + β(−π,−b0)] < α̂ − β̂ ≤ 2α̂,
by (4.2). Therefore a(−b0) = α(−π,−b0) < α̂. Since b0 ∈ (0, π), it is clear that γ :=
arg(R(b0) − R(−π)) ∈ (0, π2 ), and hence a(b0) = α(−π, b0) = θ(−π) − γ = π − γ > π

2 .
Since α̂ ≤ π

2 , this proves that a(b0) > α̂. Having established a(−b0) < α̂ < a(b0), it now
follows, by the Intermediate Value Theorem, that there exists t2 ∈ (−b0, b0) such that

a(t2) = α̂; that is, α(T1(t2), t2) = α̂. By Lemma 4.8 (iii), we also have β(T1(t2), t2) = β̂

and therefore, with t1 := T1(t2), we have Q(t1, t2) = (α̂, β̂). Note that (t1, t2) satisfies
(4.3), by Lemma 4.8 (ii). This establishes existence.

In order to prove uniqueness, assume, by way of contradiction, that Q(t′1, t
′
2) = (α̂, β̂)

for some (t′1, t
′
2) satisfying (4.3), with (t′1, t

′
2) 6= (t1, t2). By Lemma 4.8 (v), we have

|t′2| ≤ b0 and t′1 = T1(t
′
2), and therefore a(t′2) = α̂. We must have t′2 6= t2, since otherwise

it would follow that (t′1, t
′
2) = (t1, t2). We can assume, without loss of generality, that

t2 > t′2. It follows by Rolle’s Theorem that there exists τ ∈ (t′2, t2) such that a′(τ) = 0;
that is, d

dtα(T1(t), t) = 0 at t = τ . It follows from Lemma 4.8 (iii) that we also have

d
dtβ(T1(t), t) = 0 at t = τ . Therefore DQ(T1(τ), τ)

[
T ′
1(τ)
1

]
=

[
0
0

]
, where DQ is the 2×2

matrix defined just after (3.1), and we conclude that DQ(T1(τ), τ) is singular.

If τ ≤ 0, then we have −π ≤ T1(τ) < τ ≤ 0, with (T1(τ), τ) 6= (−π, 0) (since α̂ − β̂ < π).
Hence, DQ(T1(τ), τ) being singular contradicts Theorem 3.3 (i).
On the other hand, if τ > 0, then t2 > 0 and it follows from Lemma 4.4 that −t ≤
T1(t2) < 0 < t2 ≤ t. By Lemma 4.8 (iv), T1(τ) > T1(t2), and now DQ(T1(τ), τ) being
singular contradicts Theorem 3.3 (ii), since −t ≤ T1(t2) < T1(τ) < 0 < τ < t2 ≤ t < t∗. �

Remark 4.9. When (4.2) holds with α̂ = −β̂, then the unique (t1, t2) mentioned in Propo-
sition 4.7 can be found explicitly. With τ := θ−1(π2 − α̂), it is easy to verify that
Q(−π + τ,−τ) = (α̂,−α̂).

Proposition 4.10. Assume (4.2) holds with β̂ < 0. If 0 ≤ t1 < π < t2 ≤ 2π and

t2 − t1 < 2π, then Q(t1, t2) 6= (α̂, β̂).

Proof. Assume, by way of contradiction, that 0 ≤ t1 < π < t2 ≤ 2π, t2 − t1 < 2π, and

Q(t1, t2) = (α̂, β̂).

Case 1: α̂ = −β̂.
Define t′1 := π−t2 and t′2 := π−t1. Then −π ≤ t′1 < 0 < t′2 ≤ π and t′2−t′1 < 2π. Applying

the transformation rules mentioned in Remark 4.2, we find that Q(t′1, t
′
2) = (−β̂,−α̂). Note

that (α′, β′) := (−β̂,−α̂) satisfies (4.2) with α′ = −β′. By Proposition 4.7 and Remark
4.9, it follows that (t′1, t

′
2) = (−π + τ,−τ), where τ := θ−1(π2 − α̂) ∈ [0, π2 ). Hence

−π ≤ t′1 < t′2 ≤ 0, which is a contradiction.

Case 2: α̂ > −β̂.
By Lemma 4.5, θ(t1) − θ(t2) = α̂ − β̂. Set a := θ−1(α̂ − β̂). If t1 < a, then θ(t1) −
θ(t2) < α̂ − β̂ − θ(t2) ≤ α̂ − β̂; hence a ≤ t1 < π. Furthermore, since π < t2 ≤ 2π and

θ(t2) = θ(t1) − α̂ + β̂, it follows that t2 = T2(t1), where T2 : [a, π] → [π, 2π] is defined by

T2(t) := 2π−θ−1(θ(t)− α̂+ β̂). Note that T2 is continuous on [a, π]. Since θ(2π− t) = θ(t)

for all t, it follows from Lemma 4.5 that α(t, T2(t))−β(t, T2(t)) = α̂−β̂ for all t ∈ [a, π]. By
Lemma 4.3, and symmetry, we have α(π, T2(π)) < −β(π, T2(π)), while α(t1, T2(t1)) = α̂ >

−β̂ = −β(t1, T2(t1)). By the Intermediate Value Theorem, there exists t̃1 ∈ (t1, π) such
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that α̃ := α(t̃1, T2(t̃1)) = −β(t̃1, T2(t̃1)). Since 2α̃ = α(t̃1, T2(t̃1))−β(t̃1, T2(t̃1)) = α̂− β̂ >
0, we have α̃ > 0. With t̃2 := T2(t̃1), we conclude that a < t̃1 < π < t̃2 < 2π satisfies

Q(t̃1, t̃2) = (α̃,−α̃), and now following down Case 1 we arrive at a contradiction. �

Proof of Theorem 4.1. As explained in Remark 4.2, we can assume, without loss of gen-
erality, that (4.2) holds. Existence is established in Proposition 4.7. In order to see that

(t1, t2) is unique, assume that (t1, t2), (t
′
1, t

′
2) ∈ Y2π satisfy Q(t1, t2) = Q(t′1, t

′
2) = (α̂, β̂).

Since α̂ > 0, R[t1,t2] cannot be a left c-curve. We claim that it cannot be a left-right s-curve
either. If R[t1,t2] is a left-right s-curve, then we can assume, without loss of generality, that

0 ≤ t1 < π < t2 ≤ 2π. It then follows from Proposition 4.10 that Q(t1, t2) 6= (α̂, β̂), which
is a contradiction. Hence R[t1,t2] cannot be a left-right s-curve, as claimed. By elimina-
tion, R[t1,t2] is either a right c-curve or a right-left s-curve, and the same holds for R[t′

1
,t′

2
].

We can therefore assume, without loss of generality, that (4.3) holds for both (t1, t2) and
(t′1, t

′
2), and it then follows, by Proposition 4.7, that (t1, t2) = (t′1, t

′
2). �

5. Unicity of optimal s-curves

Let α, β ∈ (−π, π] and set u = (0, eiα) and v = (1, eiβ). The set S(α, β), defined to
be the set of all s-curves connecting u to v, was intensely studied in [2], and it is easy to
verify that S(α, β) is non-empty if and only if (α, β) ∈ F , where

F := {(α, β) : |α|, |β| < π and |α− β| ≤ π}.

It is proved in [2] that S(α, β) contains a curve fopt with minimal bending energy, i.e.,

satisfying ‖fopt‖2 ≤ ‖f‖2 for all f ∈ S(α, β). The bending energy of fopt is denoted

(5.1) E(α, β) := ‖fopt‖2, (α, β) ∈ F .

Curves in S(α, β) with minimal bending energy are called optimal curves.

Definition 5.1. For (α, β) ∈ [−π
2 ,

π
2 ]

2\{(0, 0)}, let (t1, t2) ∈ Y2π be as described in The-
orem 4.1, and define the curve c1(α, β) by

c1(α, β; t) :=
R(t1 + t)−R(t1)

R(t2)−R(t1)
, 0 ≤ t ≤ t2 − t1.

For (α, β) = (0, 0), we define c1(0, 0) to be the line segment [0, 1] (i.e., c1(0, 0, t) := t+ i0,
0 ≤ t ≤ 1).

Note that every curve in S(0, 0) is equivalent to c1(0, 0), since the line segment is the
only s-curve with chord angles (0, 0). For (α, β) ∈ [−π

2 ,
π
2 ]

2\{(0, 0)}, since c1(α, β) is
directly similar to R[t1,t2] and c1(α, β; 0) = 0, c1(α, β; t2 − t1) = 1, it follows that c1(α, β)
belongs to S(α, β). An immediate consequence of Definition 5.1 and Theorem 4.1 is the
following.

Proposition 5.2. Let (α, β) ∈ [−π
2 ,

π
2 ]

2\{(0, 0)}. If (t1, t2) ∈ Y2π is such that R[t1,t2] is
an s-curve with chord angles (α, β), then c1(α, β) is directly similar to R[t1,t2].

Remark 5.3. When an s-curve f contains a u-turn, the u-turn can be elongated, as de-
scribed in [2, Remark 5.5], without affecting the bending energy. We will use the notational
device ⌊f⌋ to refer to the curve obtained from f by removing any elongation(s) in the u-
turn(s). If f does not contain any u-turns then ⌊f⌋ is simply f .

Our main purpose in this section is to prove the following.
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Theorem 5.4. For (α, β) ∈ [−π
2 ,

π
2 ]

2\{(0, 0)}, the following hold.
(i) c1(α, β) is an optimal curve in S(α, β).
(ii) If |α− β| < π, then c1(α, β) does not contain a u-turn and every optimal curve in
S(α, β) is equivalent to c1(α, β).
(iii) If |α− β| = π, then c1(α, β) is a u-turn and for all optimal curves f ∈ S(α, β), ⌊f⌋
is equivalent to c1(α, β).

Remark 5.5. Since
(a) the bending energy of a curve is invariant under translations, rotations, reflections and
reversals (of orientation),
(b) c1(β, α) is directly congruent to the reversal of c1(α, β),
(c) c1(−α,−β) equals the reflection of c1(α, β) about the real axis,
when proving Theorem 5.4 we can assume, without loss of generality, that α ≥ |β|.

Note that this reduction to ‘canonical form’ was first employed in [2]. The following
definition is taken from [2, Def. 5.2].

Definition 5.6. A curve f is of
(i) first form if there exist −π < t1 < t2 < π such that f is directly similar to R[t1,t2],
(ii) second form if there exists a ≥ 0 and t2 ∈ [0, π] such that f is directly similar to

R[−π,0] ⊔ [0, a] ⊔ (a+R[0,t2]).

The following is proved in [2, Sections 5,6].

Theorem 5.7. Assume (α, β) ∈ F satisfies α > 0 and α ≥ |β|. The following hold.
(i) There exists a curve fopt ∈ S(α, β) with minimal bending energy.
(ii) If fopt ∈ S(α, β) has minimal bending energy, then either fopt is of first form or ⌊fopt⌋
is of second form.

In the course of proving Theorem 5.7 in [2], every optimal curve in S(α, β) is ‘described’,
but uniqueness is only established when the optimal curve is a c-curve of first form.

Lemma 5.8. Assume π
2 ≥ α ≥ |β|, and let f belong to S(α, β). If f is of second form,

then exactly one of the following hold.
(i) (α, β) = (π2 ,−π

2 ) and f is directly similar to R[−π,0].
(ii) (α, β) = (π2 ,

π
2 ) and f is directly similar to R[−π,π].

Proof. Assume f is of second form. Then there exist a ≥ 0 and t2 ∈ [0, π] such that f
is directly similar to g := R[−π,0] ⊔ [0, a] ⊔ (a + R[0,t2]). Recall that R(−π) = 0 − id lies
on the negative imaginary axis. It is clear that if a > 0 or 0 < t2 < π, then arg(a +
R(t2)−R(−π)) ∈ (0, π2 ) and hence α = π− arg(a+R(t2)−R(−π)) > π

2 , a contradiction.
Therefore a = 0 and t2 ∈ {0, π}. If t2 = 0, we have (i), and if t2 = π, we have (ii). �

Lemma 5.9. Let f, g ∈ S(π2 ,
π
2 ) and suppose that f is directly similar to R[−π,π] and g is

directly similar to R[−t,t ]. Then the bending energy of f is greater than that of g.

Proof. Numerically we have ‖f‖2 = |R(π)−R(−π)|(ξ(π) − ξ(−π)) ≈ 5.74216008836904

and ‖g‖2 = |R(t)−R(−t)|(ξ(t) − ξ(−t)) ≈ 5.29016586074592; nevertheless, a mathemat-
ical proof can be extracted from [2, Section 5] as follows. Let Γ, σ and G be as defined
in [2, Def. 5.3]. In [2, Summary 5.4], the chord angles (α, β) = (π2 ,

π
2 ) fall into Case B

and the curve f corresponds to γ being the left endpoint of Γ, namely γ = −π
2 ; moreover,

‖f‖2 = G(−π
2 ). It follows from Theorem 4.1, that there exists a unique γ0 in the interior

of Γ such that σ(γ0) = 0 and g corresponds to γ0 with ‖g‖2 = G(γ0). As explained in [2,
Summary 5.4], the function G has a minimum value Gmin and, in the present situation,

Gmin = min{G(−π
2 ), G(γ0)}. So, in order to prove that ‖f‖2 > ‖g‖2, it suffices to show
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that G(−π
2 ) > Gmin. Although G′(−π

2 ) = 0, using [2, Lemma 5.11], one can show that
there exists ε > 0 such that G′ < 0 on the interval (−π

2 ,−π
2 + ε], and it follows that

G(−π
2 ) > Gmin. �

Proof of Theorem 5.4. By Theorem 5.7 (i), there exists an optimal curve fopt in S(α, β).
Case I: (α, β) 6= (π2 ,−π

2 )
We will first show that fopt is of first form. Assume, by way of contradiction, that fopt is
not of first form. Then, by Theorem 5.7 (ii), ⌊fopt⌋ is of second form and it follows from
Lemma 5.8 that (α, β) = (π2 ,

π
2 ) and ⌊fopt⌋ is directly similar to R[−π,π]. By Proposition

5.2, c1(
π
2 ,

π
2 ) is directly similar to R[−t,t ]. By Lemma 5.9, ‖fopt‖2 > ‖c1(π2 , π2 )‖

2
, which

contradicts the optimality of fopt. Therefore, fopt is of first form. By Definition 5.6, there
exist −π < t1 < t2 < π such that fopt is directly similar to R[t1,t2]. By Proposition 5.2,
c1(α, β) is directly similar to R[t1,t2], and it follows that fopt is equivalent to c1(α, β) and
c1(α, β) is optimal in S(α, β). Hence (i) and (ii).
Case II: (α, β) = (π2 ,−π

2 )
It follows from the definition of s-curve that all curves in S(π2 ,−π

2 ) are right u-turns, and
hence fopt cannot be of first form. By Theorem 5.7 (ii), ⌊fopt⌋ is of second form and
hence, by Lemma 5.8, ⌊fopt⌋ is directly similar to R[−π,0]. By Proposition 5.2, c1(

π
2 ,−π

2 )
is directly similar to R[−π,0], and it follows that ⌊fopt⌋ is directly similar to c1(

π
2 ,−π

2 ) and
c1(

π
2 ,−π

2 ) is optimal in S(π2 ,−π
2 ). Hence (i) and (iii). �

6. Restricted Elastic Splines and Proof of Existence

Although written specifically for s-curves that connect u = (0, eiα) to v = (1, eiβ),
Theorem 5.4 easily extends to general configurations (u, v). To see this, let u := (P1, d1)
and v := (P2, d2) be two unit tangent vectors with distinct base points P1 6= P2. The chord
angles (α, β) determined by (u, v) are α = arg d1

P2−P1
and β = arg d2

P2−P1
. With S(u, v)

denoting the set of s-curves that connect u to v, and defining T (z) := (P2 −P1)z+P1, we
see that S(α, β) is in one-to-one correspondence with S(u, v):

f ∈ S(α, β) if and only if T ◦ f ∈ S(u, v).

Moreover, with L := |P2 − P1|, we have ‖f‖2 = 1
L‖T ◦ f‖2. Now, assume α, β ∈ [−π

2 ,
π
2 ]

2

and let c1(α, β) be the optimal curve defined in Definition 5.1. Then

c(u, v) := T ◦ c1(α, β)

is an optimal curve in S(u, v), and Theorem 5.4 translates immediately into the following.

Corollary 6.1. Let (u, v) be a configuration with chord angles (α, β) ∈ [−π
2 ,

π
2 ]

2\{(0, 0)}.
The following hold.
(i) c(u, v) is an optimal curve in S(u, v).
(ii) If |α− β| < π, then c(u, v) does not contain a u-turn and every optimal curve in
S(u, v) is equivalent to c(u, v).
(iii) If |α− β| = π, then c(u, v) is a u-turn and for all optimal curves f ∈ S(u, v), ⌊f⌋ is
equivalent to c(u, v) (see Remark 5.3 for the definition of ⌊f⌋).

In the framework of [7], the curves {c(u, v)} are called basic curves and the mapping
(u, v) 7→ c(u, v) is called a basic curve method. We define the energy of basic curves
to be the bending energy. In [7], it is assumed that the basic curve method and energy
are translation and rotation invariant, and this allows one’s attention to be focused on the
(canonical) case where u = (0, eiα) and v = (L, eiβ), L > 0. The resulting basic curve
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and energy functional are denoted cL(α, β) and EL(α, β). In our setup, we have the two
additional properties that cL(α, β) is equivalent to Lc1(α, β) and EL(α, β) =

1
LE1(α, β),

where the latter holds because

EL(α, β) := ‖cL(α, β)‖2 = ‖Lc1(α, β)‖2 =
1

L
‖c1(α, β)‖2 =

1

L
E1(α, β).

In the language of [7], we would say that the basic curve method is scale invariant and the
energy functional is inversely proportional to scale. This special case is addressed in detail
in [7, Section 3], and it allows us to focus our attention on the case L = 1 where we have,

for (α, β) ∈ [−π
2 ,

π
2 ]

2, the optimal curve c1(α, β) and its energy E1(α, β) := ‖c1(α, β)‖2.
Note that E1(α, β) = E(α, β) for (α, β) ∈ [−π

2 ,
π
2 ]

2, where E(α, β) is defined in (5.1). The

distinction between E1 and E is that the domain of E1 is [−π
2 ,

π
2 ]

2, while the domain of
E is the larger set F (defined just above (5.1)). In [2, Section 7], it is shown that E is
continuous on F and it therefore follows that E1 is continuous on [−π

2 ,
π
2 ]

2.

The framework of [7] is concerned with the set Âπ/2(P1, P2, . . . , Pm) consisting of all
interpolating curves whose pieces are basic curves, and the energy of such an interpolating

curve F̂ = c(u1, u2)⊔ c(u2, u3)⊔ · · · ⊔ c(um−1, um) is defined to be the sum of the energies
of its constituent basic curves:

Energy(F̂ ) :=
∑m−1

j=1 ‖c(uj , uj+1)‖2 = ‖F̂‖2.
Note that Âπ/2(P1, P2, . . . , Pm) is a subset of Aπ/2(P1, P2, . . . , Pm) and energy in both

sets is defined to be bending energy. Since E1 is continuous on [−π
2 ,

π
2 ]

2, it follows from

[7, Theorem 2.3] that there exists a curve in Âπ/2(P1, P2, . . . , Pm) with minimal bending
energy. The following lemma will be needed in our proof of Proposition 1.1.

Lemma 6.2. Given F ∈ Aπ/2(P1, P2, . . . , Pm), let u1, u2, . . . , um be the unit tangent
vectors, with base-points P1, P2, . . . , Pm, determined by F , and define

F̂ := c(u1, u2) ⊔ c(u2, u3) ⊔ · · · ⊔ c(um−1, um) ∈ Âπ/2(P1, P2, . . . , Pm).

Then ‖F‖2 ≥ ‖F̂‖2.
The proof of the lemma is simply that fj , the j-th piece of F , has bending energy at

least ‖c(uj , uj+1)‖2 because it belongs to S(uj , uj+1).

Proof of Proposition 1.1. Since Âπ/2(P1, P2, . . . , Pm) is a subset of Aπ/2(P1, P2, . . . , Pm)
and the former contains a curve with minimal bending energy, it follows immediately from
Lemma 6.2 that the latter contains a curve with minimal bending energy. Now, assume

F ∈ Aπ/2(P1, P2, . . . , Pm) has minimal bending energy, and let F̂ be as in Lemma 6.2.

Then ‖F‖2 = ‖F̂‖2 and we must have ‖fj‖2 = ‖c(uj , uj+1)‖2 for j = 1, 2, . . . ,m−1, where
fj denotes the j-th piece of F . Hence fj is an optimal curve in S(uj , uj+1), and we can
appeal to Corollary 6.1. Since c(uj , uj+1) is directly similar to a line segment or a segment
of R, it is clear that c(uj , uj+1) is G2. If c(uj , uj+1) does not contain a u-turn, then fj
is equivalent to c(uj , uj+1), and hence fj is G2. On the other hand, if c(uj , uj+1) equals
a u-turn, then ⌊fj⌋ is equivalent to c(uj , uj+1), and now it is not obvious that fj is G2.
However, in this case, c(uj , uj+1) is directly similar to R[−π,0] or R[0,π] and so its curvature
is 0 at the endpoints. Since fj is equivalent to an elongation of the u-turn c(uj , uj+1) (see
Fig. 2 (a)), it follows that fj is G2. �

Remark 6.3. We see in the above proof that the distinction between minimal energy curves

in Aπ/2(P1, P2, . . . , Pm) and those in Âπ/2(P1, P2, . . . , Pm) is fairly minor:
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If F = f1⊔f2⊔· · ·⊔fm−1 has minimal bending energy in Aπ/2(P1, P2, . . . , Pm), then F̂ :=

⌊f1⌋⊔⌊f2⌋⊔ · · ·⊔ ⌊fm−1⌋ has minimal bending energy in Âπ/2(P1, P2, . . . , Pm). Moreover,
⌊fj⌋ differs from fj only when they are u-turns (i.e., when (αj , βj+1) = ±(π2 ,−π

2 )).

7. Conditional G2 Regularity

The following definition is taken from [7, Section 3].

Definition 7.1. Let F ∈ Âπ/2(P1, P2, . . . , Pm) have minimal bending energy and let
(αj , βj+1) be the chord angles of the the j-th piece of F . We say that F is conditionally
G2 if F is G2 across Pj whenever the two chord angles associated with node Pj satisfy
|βj |, |αj | < π/2.

Let κa(f) and κb(f) denote, respectively, the initial and terminal signed curvatures of
a curve f . The following result is an amalgam of [7, Theorems 3.3 and 3.5].

Theorem 7.2. If there exists a constant µ ∈ R such that

(7.1) −κa(c1(α, β)) = µ
∂

∂α
E1(α, β) and κb(c1(α, β)) = µ

∂

∂β
E1(α, β)

for all (α, β) ∈ [−π
2 ,

π
2 ]

2 with |α− β| < π, then minimal energy curves in

Âπ/2(P1, P2, . . . , Pm) are conditionally G2.

Although [7, Theorem 3.3] is stated assuming that (7.1) holds for all (α, β) ∈ [−π
2 ,

π
2 ]

2,
the given proof remains valid under the weaker assumption that (7.1) holds for all (α, β) ∈
[−π

2 ,
π
2 ]

2 with |α− β| < π. The following result shows that condition (7.1) holds with
µ = 2.

Theorem 7.3. For all (α, β) ∈ [−π
2 ,

π
2 ]

2\{(−π
2 ,

π
2 ), (

π
2 ,−π

2 )},

(7.2) −κa(c1(α, β)) = 2
∂E1

∂α
(α, β) and κb(c1(α, β)) = 2

∂E1

∂β
(α, β)

Proof. Fix (α̂, β̂) ∈ [−π
2 ,

π
2 ]

2\{(−π
2 ,

π
2 ), (

π
2 ,−π

2 )}. We will show that (7.2) holds at (α̂, β̂).

We first address the easy case (α̂, β̂) = (0, 0), where c1(0, 0) is a line segment. In the proof
of [2, Prop. 7.6], it is shown that there exists a constant C such that E1(α, β) = E(α, β) ≤
C(tan2 α + tanα tanβ + tan2 β) for all (α, β) ∈ [−π/3, π/3]2. From this it easily follows
that ∇E1(0, 0) = [0, 0], and since the line segment c1(0, 0) has 0 curvature, we obtain (7.2)

for the case (α̂, β̂) = (0, 0).

We proceed assuming (α̂, β̂) ∈ [−π
2 ,

π
2 ]

2\{(−π
2 ,

π
2 ), (

π
2 ,−π

2 ), (0, 0)}. Let (t̂1, t̂2) ∈ Y2π be as

described in Definition 5.1, whereby c1(α̂, β̂) is directly similar to R[t̂1,t̂2]
and Q(t̂1, t̂2) =

(α̂, β̂). Keeping in mind that Y2π (defined in (4.1)) is an open cylinder, the restriction

(α̂, β̂) 6∈ {(−π
2 ,

π
2 ), (

π
2 ,−π

2 )} ensures that (t̂1, t̂2) does not identify with either (−π, 0)
or (0, π). It thus follows from Lemma 4.4, and symmetry, that (t̂1, t̂2) identifies with
a pair (τ1, τ2) that belongs to one of the four sets listed in Theorem 3.3, and therefore

det(DQ(t̂1, t̂2)) < 0. Since Q is C∞ on Y2π, it follows that there exists an open neighbor-

hood N ⊂ Y2π of (t̂1, t̂2) such that Q is injective on N , det(DQ) < 0 on N , Q(N) is an

open neighborhood of (α̂, β̂), and Q−1 is C∞ on Q(N).
We mention that it is possible that N contains pairs (t1, t2) for which R[t1,t2] is not an
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s-curve or Q(t1, t2) 6∈ [−π
2 ,

π
2 ]

2. This is a minor difficulty.
We define E∗ : Q(N) → [0,∞) as follows. For (α, β) ∈ Q(N),

E∗(α, β) := l‖R[t1,t2]‖
2
, where (t1, t2) := Q−1(α, β) and l := |R(t1)−R(t2)|.

Claim. If (α, β) ∈ Q(N) ∩ [−π
2 ,

π
2 ]

2, then E∗(α, β) = E1(α, β) and c1(α, β) is directly

congruent to 1
lR[t1,t2].

proof. Assume (α, β) ∈ Q(N) ∩ [−π
2 ,

π
2 ]

2. Since (t1, t2) ∈ Y2π and Q(t1, t2) = (α, β), it
follows from Theorem 4.1 and Definition 5.1 that c1(α, β) is directly similar to R[t1,t2].

Consequently, c1(α, β) is directly congruent to 1
lR[t1,t2] and E1(α, β) := ‖c1(α, β)‖2 =

E∗(α, β), as claimed.

We recall, from Section 2, that the curvature of R is given by κ(t) = 2 sin t, and hence
κa(c1(α, β)) = 2l sin t1 and κb(c1(α, β)) = 2l sin t2. So with the claim in view, in order to

establish (7.2) at (α̂, β̂), it suffices to show that

(7.3) [−l sin t1, l sin t2] = ∇E∗(α, β), for all (α, β) ∈ Q(N).

The bending energy of R[t1,t2] (see Section 2) is given by ‖R[t1,t2])‖
2
= ξ(t2)− ξ(t1) =: ∆ξ,

and hence E∗(α, β) = l∆ξ. Defining Ẽ : N → [0,∞) by Ẽ(t1, t2) := l∆ξ, we have

Ẽ = E∗ ◦Q, and therefore, since DQ is nonsingular on N , (7.3) is equivalent to

[−l sin t1, l sin t2]DQ = ∇Ẽ(t1, t2), for all (t1, t2) ∈ N.

This can be written explicitly as

−l sin t1
∂α

∂t1
+ l sin t2

∂β

∂t1
=

∂

∂t1
(l∆ξ)

−l sin t1
∂α

∂t2
+ l sin t2

∂β

∂t2
=

∂

∂t2
(l∆ξ)

Using (3.1) and the formulae above (3.3) the first equality is proved as follows.

−l sin t1
∂α

∂t1
+ l sin t2

∂β

∂t1
= |R′(t1)| sinα∆x− l sin t1|R′(t1)|κ(t1)

= (− cos t1∆ξ + ξ′(t1)∆x)
∆x

l
− 2lξ′(t1)

= (− cos t1∆ξ + ξ′(t1)∆x)
∆x

l
− ∆x2 +∆ξ2

l
ξ′(t1)− lξ′(t1)

= −− cos t1∆x− ξ′(t1)∆ξ

l
∆ξ − lξ′(t1) =

∂

∂t1
(l∆ξ).

We omit the proof of the second equality since it is very similar. �

Corollary 7.4. E1 is C∞ on [−π
2 ,

π
2 ]

2\{(−π
2 ,

π
2 ), (

π
2 ,−π

2 ), (0, 0)}

Proof. Fix (α̂, β̂) ∈ [−π
2 ,

π
2 ]

2\{(−π
2 ,

π
2 ), (

π
2 ,−π

2 ), (0, 0)} and let N and E∗ be as in the proof

above. Then E∗ is C∞ on Q(N), an open neighborhood of (α̂, β̂). The desired conclusion
is now a consequence of the Claim in the above proof. �

Together, Theorem 7.2 and Theorem 7.2 imply that minimal energy curves in

Âπ/2(P1, P2, . . . , Pm) are conditionally G2; we can now prove that this also holds for the
larger set Aπ/2(P1, P2, . . . , Pm).
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Theorem 7.5. Let F = f1 ⊔ f2 ⊔ · · · ⊔ fm−1 have minimal bending energy in
Aπ/2(P1, P2, . . . , Pm). Then F is G2 across Pj (i.e., κb(fj−1) = κa(fj)) whenever the two
chord angles associated with node Pj satisfy |βj |, |αj | < π/2.

Proof. Let F̂ ∈ Âπ/2(P1, P2, . . . , Pm) be as in Lemma 6.2. As explained in Remark 6.3,

F̂ = ⌊f1⌋ ⊔ ⌊f2⌋ ⊔ · · · ⊔ ⌊fm−1⌋. Let j ∈ {2, 3, . . . ,m− 1} be such that |βj |, |αj | < π/2. By

Theorem 7.2 and Theorem 7.2, F̂ is G2 across Pj , and hence κb(⌊fj−1⌋) = κa(⌊fj⌋). Since
|αj | < π/2, the piece fj cannot be a u-turn and it follows that ⌊fj⌋ = fj . Similarly, since
|βj | < π/2, we have ⌊fj−1⌋ = fj−1, and therefore κb(fj−1) = κa(fj). �

8. G2 Regularity

With t as described in Corollary 3.5, let Ψ (see Fig. 8) denote the positive angle defined
by

(8.1) Ψ :=
π

2
− |α(0, t)|. Fig. 8

Our purpose in this section is to prove the following theorem and corollary.

Theorem 8.1. Let F̂ ∈ Âπ/2(P1, P2, . . . , Pm) have minimal bending energy. If the stencil
angle at node Pj satisfies |ψj | < Ψ, then the two chord angles at Pj satisfy |βj |, |αj | < π

2 .

Corollary 8.2. Let F ∈ Aπ/2(P1, P2, . . . , Pm) have minimal bending energy. If the stencil
angle at node Pj satisfies |ψj | < Ψ, then the two chord angles at Pj satisfy |βj |, |αj | < π

2

and consequently F is G2 across node Pj.

Our proof of Theorem 8.1 employs the following result which is essentially [7, Theorem
5.1] but specialized to the present context.

Theorem 8.3. Suppose that for every α ∈ [−π
2 ,

π
2 ] there exists β∗(α),

with |β∗(α)| ≤ π
2 −Ψ, such that

(8.2) sign

(
∂E1

∂β
(α, β)

)
= sign(β − β∗(α)) for all β satisfying |β| ≤ π

2
and |β − α| < π.

Let F̂ ∈ Âπ/2(P1, P2, . . . , Pm) be a curve with minimal bending energy. If Pj is a point
where the stencil angle ψj satisfies |ψj | < Ψ, then the two chord angles associated with
node Pj satisfy |βj |, |αj | < π

2 .

Proof. Employing the symmetry E1(α, β) = E1(β, α), conditions (i) and (ii) in the hy-
pothesis of [7, Theorem 5.1] reduce simply to the single condition

(8.3) sign

(
∂E1

∂β
(α, β)

)
= sign(β − β∗(α)) for all |β| ≤ π

2
.
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Therefore Theorem 8.3, with (8.2) replaced by (8.3), is an immediate consequence of [7,
Theorem 5.1]. Note that the only distinction between (8.2) and (8.3) is that (8.2) is moot
when (α, β) equals (π/2,−π/2) or (−π/2, π/2). With a slight modification (specifically:
rather than showing that f ′(Ω) > 0 and f ′(ψ2−Ω) < 0, one instead shows that there exists
ε > 0 such that f ′(β) > 0 for Ω− ε < β < Ω and f ′(β) < 0 for ψ2 −Ω < β < ψ2 −Ω+ ε),
the proof of [7, Theorem 5.1] also proves Theorem 8.3. �

The appearance of (8.2), rather than (8.3), in Theorem 8.3 is simply a consequence of
the (unproven) fact that ∂E1

∂β (α, β) = 0 when (α, β) equals (π/2,−π/2) or (−π/2, π/2).
This distinction is not without consequence. In [7, Theorem 5.1], the conclusion is obtained
when ψi ≤ Ψ, while in Theorem 8.3 we require ψi < Ψ.

Definition 8.4. One easily verifies that β(0, 0) := limt→0+ β(0, t) = 0 and α(0, 0) :=
limt→0+ α(0, t) = 0. Let φ : [0, π] → [0,∞) be defined by φ(t) := β(0, t). Then φ is
continuous and, by Corollary 3.4, φ is increasing on [0, t∗] and decreasing on [t∗, π]. Let
φ−1 denote the inverse of φ restricted to [0, t∗]. We define β∗ : [−φ(t∗), φ(t∗)] → R by

β∗(α) := sign(α)α(0, φ−1(|α|)) (see Fig. 9 below where α > 0 and tα := φ−1(α)).

Lemma 8.5. The function β∗ is continuous, odd, and decreasing. Moreover, the following
hold.
(i) |β∗(α)| ≤ π

2 −Ψ for all α ∈ [−π
2 ,

π
2 ].

(ii) On [0, π2 ], the function γ 7→ Ψ− β∗(γ) increases continuously from Ψ to π
2 .

(iii) On [0, π2 ], the function γ 7→ γ + β∗(γ) increases continuously from 0 to Ψ.

Proof. The function t 7→ α(0, t) is continuous and, by (3.1), decreasing on [0, π]. Since
α(0, 0) = 0 and φ−1 is continuous and increasing, it follows that β∗ is continuous, odd,
and decreasing. Consequently, for α ∈ [−π

2 ,
π
2 ], |β∗(α)| ≤ |β∗(π2 )| = |α(0, t)| = π

2 − Ψ,
which proves (i). Noting that β∗(0) = 0 and β∗(π2 ) = Ψ − π

2 , (ii) follows from β∗ being
continuous and decreasing.
In pursuit of (iii), define g(t) := φ(t) + α(0, t), 0 ≤ t ≤ π. Then g is continuous on
[0, π] and C∞ on (0, π] and, by (3.1), we have g′(t) = 2|R′(t)|(sin t − 1

ℓ sinφ(t)), where
ℓ := ℓ(t) := |R(t)|. Using the identity ℓ|R′(t)| sinφ(t) = −ξ(t) cos t + ξ′(t) sin t (see the
discussion just below (3.2)), we find that

g′(t) = 2
ℓ2 |R′(t)|ξ(t)

(
cos t

√
1 + sin2 t+ ξ(t) sin t

)
, 0 < t ≤ π.

Using the ‘dot product’ in C (defined by (x+ iy) · (u+ iv) := xu+ yv), we have

ℓ cosφ(t) = R(t) · R
′(t)

|R′(t)|
= (sin t+ iξ(t)) ·

(
cos t

√
1 + sin2 t+ i sin2 t

)
= sin t

(
cos t

√
1 + sin2 t+ ξ(t) sin t

)
,

and therefore g′(t) =
2

ℓ sin t
|R′(t)|ξ(t) cosφ(t), 0 < t ≤ π. It follows from Corollary 3.5

that 0 < φ(t) < π
2 for t ∈ (0, t) and hence g′ > 0 on (0, t). Therefore, g is increasing

on [0, t ]. Recall that on [0, π2 ], φ
−1 increases continuously from 0 to t. Since the function

γ 7→ γ+β∗(γ) equals g◦φ−1, it follows that it increases continuously on [0, π2 ] from g(0) = 0

to g(t) = π
2 + (Ψ− π

2 ) = Ψ, which proves (iii). �
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Theorem 8.6. With β∗ as defined in Definition 8.4, (8.2) holds for all α ∈ [−π
2 ,

π
2 ].

Proof. Fix α ∈ [−π
2 ,

π
2 ].

Case 1: 0 < α ≤ π
2 .

Set B = [−π
2 ,

π
2 ]\{α− π}. It follows from Corollary 7.4 that the function β 7→ E1(α, β)

is C∞ on B, and, from Theorem 7.3, we have that ∂E1

∂β (α, β) = 1
2κb(c1(α, β)) for β ∈

B. Note that if (t1, t2) ∈ Y2π is such that c1(α, β) is directly similar to R[t1,t2], then

sign
(

∂E1

∂β (α, β)
)
= sign(sin t2) since the signed curvature of R(t) is κ(t) = 2 sin t.

Fig. 9 the parameter −tα Fig. 10 the parameter −t2
Set tα := φ−1(α). Then R[−tα,0] (see Fig. 9) has chord angles (α, β∗(α)) and hence

sign
(

∂E1

∂β (α, β∗(α))
)
= sign(sin 0) = 0.

Claim: If β ∈ B is such that ∂E1

∂β (α, β) = 0, then β = β∗(α).

Proof. Assume β ∈ B is such that ∂E1

∂β (α, β) = 0. Let (t1, t2) ∈ Y2π be as described in

Definition 5.1, whereby c1(α, β) is directly similar to R[t1,t2]. Then sin(t2) = 0. Since
R[t1,t2] is an s-curve, we can assume, without loss of generality, that −π ≤ t1 < t2 ≤ π or
0 ≤ t1 < π < t2 ≤ 2π, and it follows that t2 ∈ {0, π, 2π}. We will show, by elimination,
that t2 = 0. Recall that t2 − t1 < 2π by definition of Y2π. If t2 = 2π, then 0 < t1 < π
and it follows that R[t1,2π] contains a u-turn, contradicting Theorem 5.4 (ii). If t2 = π and
0 ≤ t1 < π, then α < 0, a contradiction. Finally, if t2 = π and −π < t1 < 0, then R[t1,π]

contains a u-turn, contradicting Theorem 5.4 (ii). Therefore, we must have t2 = 0. The
definition of B ensures that (α, β) 6= (π2 ,−π

2 ), and therefore −π < t1 < 0. By symmetry,
we have β(0,−t1) = α. By Corollaries 3.4 and 3.5, we must have −t1 = tα, and it follows
that β = β∗(α); hence the claim.

Note that R[−tα,tα] has chord angles (α, α) and hence sign
(

∂E1

∂β (α, α)
)
= sign(sin tα) >

0. Since α > 0 > β∗(α), it follows from continuity that sign
(

∂E1

∂β (α, β)
)
> 0 for β ∈ B

with β > β∗(α).
Now, in order to complete the proof (of Case I), it suffices to show that there exists β ∈ B

such that sign
(

∂E1

∂β (α, β)
)
< 0. Since α(−t∗, 0) = β(0, t∗) > π

2 ≥ α, it follows that there

exists −t2 ∈ (−t∗, 0) such that α(−t∗,−t2) = α. Set β := β(−t∗,−t2) < 0 (see Fig. 10).

It is easy to verify that |β| < π
2 and therefore β ∈ B. Note that sign

(
∂E1

∂β (α, β)
)

=

sign(sin(−t2)) < 0. This completes the proof for Case I.
Case II: −π

2 ≤ α < 0.
This case follows from Case I and the symmetries

E1(−α,−β) = E1(α, β) and β
∗(−α) = −β∗(α).

Case III: α = 0.
Note that β∗(0) = 0 and, by Theorem 7.3, ∂E1

∂β (0, 0) = 0.

Claim: If β ∈ [−π
2 ,

π
2 ] is such that ∂E1

∂β (0, β) = 0, then β = 0.
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Proof. By way of contradiction, assume β ∈ [−π
2 ,

π
2 ]\{0} is such that ∂E1

∂β (0, β) = 0.

Let (t1, t2) ∈ Y2π be such that c1(0, β) is directly similar to R[t1,t2]. As before, we have
sin(t2) = 0 and we can assume, without loss of generality, that −π ≤ t1 < t2 ≤ π or
0 ≤ t1 < π < t2 ≤ 2π; hence t2 ∈ {0, π, 2π}. But now, since α = 0, R[t1,t2] must be a non-
degenerate s-curve, and it follows that R[t1,t2] contains a u-turn, contradicting Theorem
5.4 (ii); hence the claim.

The symmetry E1(0, β) = E1(0,−β) ensures that ∂E1

∂β (0,−β) = −∂E1

∂β (0, β) and there-

fore it suffices to show that ∂E1

∂β (0, β) > 0 for all β ∈ (0, π2 ]. Define g(β) := E1(0, β),

β ∈ [0, π2 ] so that g′(β) = ∂E1

∂β (0, β). Then g is continuous on [0, π2 ] and is C∞ on (0, π2 ].

It follows from the claim that sign (g′) is nonzero and constant on (0, π2 ]. If sign (g
′) = −1

on (0, π2 ], then we would have E1(0,
π
2 ) < E1(0, 0) = 0, which is a contradiction; therefore

sign (g′) = 1 on (0, π2 ] and this completes the proof of the final case. �

We note that Theorem 8.1 is now a consequence of Lemma 8.5 (i), Theorem 8.3, and
Theorem 8.6.

Proof of Corollary 8.2. Let F̂ ∈ Âπ/2(P1, P2, . . . , Pm) be as in Lemma 6.2, and recall

(see Remark 6.3) that F̂ has minimal bending energy in Âπ/2(P1, P2, . . . , Pm). Let j ∈
{2, 3, . . . ,m − 1} be such that |ψj | < Ψ. It follows from Theorem 8.1 that the two chord
angles at node Pj satisfy |βj |, |αj | < π

2 , and therefore, by Theorem 7.5, F is G2 across
node Pj . �

9. Proof of Theorem 1.4

As in previous sections, let interpolation points P1, P2, . . . , Pm, with Pj 6= Pj+1, be

given and we continue with the notation ψj := arg
Pj+1−Pj

Pj−Pj−1
for the stencil angle at node

Pj , j = 2, 3, . . . , n − 1. Furthermore, for an interpolating curve F , let the chord angles
of the j-th piece (connecting Pj to Pj+1) be denoted by (αj , βj+1) and its breadth by
Lj := |Pj − Pj+1|. Our main results, Theorem 7.5, Theorem 8.1, and Corollary 8.2, are
actually valid in more general situations than stated, specifically, the five possible scenarios
described in [7, Remark 2.1]. We have been addressing the first scenario where the interpo-
lating curve is free at both ends P1 and Pn. Scenarios 2,3,4 involve possible clamps at the
end points, while the last scenario only considers interpolating curves that are closed (i.e.,
periodic). Our main results are easily adapted to these other scenarios by simply assuming
that when interpolating curves are clamped at nodes P1 or Pm, then the resulting chord
angles, α1 or βm, belong to the interval [−π

2 ,
π
2 ]. These generalizations are valid because

the proofs are obtained by holding all directions (of an optimal interpolating curve) fixed
except the direction at the interior node Pj being examined. In this section, we will employ
the second and third scenarios of [7, Remark 2.1], where the first direction or the last, but

not both, is clamped. For this let Aπ/2(α̂;P1, P2, . . . , Pm) (resp. Aπ/2(P1, P2, . . . , Pm; β̂))

denote the subset of curves F ∈ Aπ/2(P1, P2, . . . , Pm) satisfying α1 = α̂ (resp. βm = β̂).
With this notation, Corollary 8.2 becomes the following.

Corollary 9.1. Let α̂, β̂ ∈ [−π
2 ,

π
2 ] and let F be an interpolating curve that has minimal

bending energy in Aπ/2(α̂;P1, P2, . . . , Pm) or in Aπ/2(P1, P2, . . . , Pm; β̂). If the stencil
angle at node Pj satisfies |ψj | < Ψ, then the two chord angles at Pj satisfy |βj |, |αj | < π

2

and consequently F is G2 across node Pj.
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Our main purpose in this section is to prove Theorem 1.4 and thereby demonstrate that
the angle Ψ is sharp in Corollary 8.2. We will begin, however, with easier prey, namely
showing that Ψ is sharp in Corollary 9.1.

Proposition 9.2. Set P1 := −1 + i0 and P2 := 0 + i0. For all ε ∈ (0, π
180 ), there exist

δ > 0 and a point P3 6= P2, with ψ2 = Ψ + ε, such that for all α̂ ∈ [π2 − δ, π2 ] and for all

minimal energy curves F ∈ Aπ/2(α̂;P1, P2, P3), F is not G2 across P2.

Lemma 9.3. In the notation of Section 6, let u := (P1, d1) and v := (P2, d2) be two unit
tangent vectors with L := |P1 − P2| > 0, and let S(u, v) be the set of s-curves that connect
u to v. Assume that the chord angles determined by u, v satisfy (α, β) ∈ [−π

2 ,
π
2 ]

2. If
f : [a, b] → C is an optimal curve in S(u, v), then κ, the signed curvature of f , satisfies
|κ(t)| < 4π

L , t ∈ [a, b].

Proof. If (α, β) = (0, 0), then f is a line segment and the claim is clear; so assume (α, β) 6=
(0, 0). We first address the case when f = ⌊f⌋ (see Remark 5.3). Then f is directly
congruent to Lc1(α, β) and, by Definition 5.1, there exists (t1, t2) ∈ Y2π such that c1(α, β)
is directly congruent to 1

ℓR[t1,t2], where ℓ := |R(t2)−R(t1)|. Since t2 − t1 < 2π and the
speed of R is at most 1, it follows that ℓ < 2π. Since the signed curvature of R ranges
from −2 to 2, it follows that the signed curvature of f ranges from −2 ℓ

L to 2 ℓ
L ; hence

|κ(t)| < 4π
L , t ∈ [a, b].

The remaining case, f 6= ⌊f⌋, arises when |α− β| = π and f is obtained by elongating the
u-turn ⌊f⌋. The desired inequality, |κ(t)| < 4π

L , applies to ⌊f⌋ (by the first case) and so it
also applies to f since the extending line segments have curvature 0. �

Lemma 9.4. Let 0 < a1 ≤ a2 ≤ π
2 and −π

2 < b1 ≤ b2 ≤ π
2 and define

ν := inf{|κb(c1(α, β))| : a1 ≤ α ≤ a2 and b1 ≤ β ≤ b2}.
If β∗(a1) < b1, then ν > 0.

Proof. Assume β∗(a1) < b1 and set X := {(α, β) : a1 ≤ α ≤ a2 and b1 ≤ β ≤ b2}.
By Theorem 7.3, κb(c1(α, β)) = 2∂E1

∂β (α, β) for all (α, β) ∈ X, and so by Corollary 7.4,

κb(c1(α, β)) is a continuous function of (α, β) ∈ X. We will show that if ν = 0, then
β∗(a1) ≥ b1. Assume that ν = 0. Then, since X is compact, there exists (α, β) ∈ X
such that κb(c1(α, β)) = 0, and it follows by Theorem 8.6 that β = β∗(α). Since β∗ is
decreasing, we have b1 ≤ β = β∗(α) ≤ β∗(a1). �

Proof of Proposition 9.2. Fix ε ∈ (0, π
180 ) and set P3 := L exp(iψ2), where ψ2 := Ψ + ε

and L > 0 is yet to be determined. Recall that β∗(π2 ) = −(π2 − Ψ), and let δ ∈ (0, π2 )
be determined by β∗(π2 − δ) = −(π2 − Ψ − ε

2 ). Let ν be as defined in Lemma 9.4 with
[a1, a2] := [π2 − δ, π2 ] and [b1, b2] := [ψ2− π

2 ,
π
2 ]. Since β

∗(π2 − δ) = Ψ+ ε
2 − π

2 < Ψ+ε− π
2 =

ψ2 − π
2 , it follows by Lemma 9.4 that ν > 0.

Now, assume L > 4π
ν and fix α̂ ∈ [π2 − δ, π2 ]. Let F = f1 ⊔ f2 have minimal bending

energy in Aπ/2(α̂;P1, P2, P3). Note that the feasible range of β2 is [ψ2 − π
2 ,

π
2 ], and it

follows, by Theorem 5.4, that f1 is directly congruent to c1(α̂, β2). On one side we have
|κb(f1)| = |κb(c1(α̂, β2))| ≥ ν, while on the other side we have, by Lemma 9.3, ν > |κa(f2)|.
Hence F is not G2 across P2. �

Our proof of Theorem 1.4 mimics that of Proposition 9.2, except that we are not allowed
to employ clamps. In order to get around this, we introduce the notion of a soft clamp.

Definition 9.5. Let I ⊂ [−π
2 ,

π
2 ] be an interval. A sequence of points P1, P2, . . . , Pm

imposes a soft clamp on αm−1 with range I if the following hold:
(i) For j = 2, 3, . . . ,m− 1, |ψj | < Ψ.
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(ii) For all β̂ ∈ [−π
2 ,

π
2 ], if F has minimal bending energy in Aπ/2(P1, P2, . . . , Pm; β̂), then

αm−1 ∈ I.

We leave it to the reader to verify that the property of imposing a soft clamp on
αm−1 with range I is invariant under translations, rotations and scalings of the points
P1, P2, . . . , Pm, while reflecting the points about a line changes the range to −I. An
example of a soft clamp is given in the following.

Lemma 9.6. Let ε ∈ (0, π
180 ) and set P1 := −1 + i0, P2 := 0 + i0, and P3 := L exp(iψ2),

where ψ2 := Ψ − ε
2 . If L is sufficiently large, then P1, P2, P3 imposes a soft clamp on α2

with range [−π
2 , ε−Ψ].

Proof. Set ν := inf{|κb(c1(β∗(β), β))| : β ∈ [ ε2 ,
π
2 ]}. We claim that ν > 0. Suppose,

to the contrary, that ν = 0. By Theorem 7.3 and Corollary 7.4, the function β 7→
κb(c1(β

∗(β), β)) is continuous on [ ε2 ,
π
2 ], and it follows that there exists β0 ∈ [ ε2 ,

π
2 ] such

that κb(c1(β
∗(β0), β0)) = 0. It follows from Theorem 8.6 that κb(c1(β0, β

∗(β0))) = 0 and
therefore, by symmetry, κa(c1(β

∗(β0), β0)) = 0. Hence c1(β
∗(β0), β0) begins and ends with

0 curvature. From this it follows that c1(β
∗(β0), β0) is either a line segment or a u-turn,

but since β0 6∈ {−π
2 , 0}, we must have (β∗(β0), β0) = (−π

2 ,
π
2 ), which contradicts Lemma

8.5 (iii). Therefore, ν > 0 as claimed.

Fix L > 4π
ν , and let β̂ ∈ [−π

2 ,
π
2 ] be arbitrary. Assume F = f1 ⊔ f2 has minimal bend-

ing energy in Aπ/2(P1, P2, P3; β̂). By Corollary 9.1, F is G2 across P2, so κb(f1) =
κa(f2). By Lemma 9.3, we have ν > |κa(f2)|. Since F has minimal bending energy

in Aπ/2(P1, P2, P3; β̂), it follows that f1 has minimal bending energy in Aπ/2(P1, P2;β2)
and therefore, by Theorem 8.6 (and symmetry), α1 = β∗(β2); hence, f1 is equivalent to
c1(β

∗(β2), β2). The feasible range of β2 is β2 ∈ [ψ2 − π
2 ,

π
2 ]. If β2 ∈ [ ε2 ,

π
2 ], then |κb(f1)| =

|κb(c1(β∗(β2), β2))| ≥ ν, which contradicts κb(f1) = κa(f2). Therefore, β2 ∈ [ψ2 − π
2 ,

ε
2 )

and it follows that α2 = β2 − ψ2 < ε−Ψ; hence α2 ∈ [−π
2 , ε−Ψ]. �

Note that if we reflect the three points in Lemma 9.6 about the real axis, we obtain
points Q1 := 1 + i0, Q2 := 0 + i0, Q3 := L exp(−ψ2) which impose a soft clamp on α2

with range [Ψ− ε, π2 ]. Starting with this initial soft clamp, we can build up inductively to
construct soft clamps with ranges closer to {π

2 }.
Proposition 9.7. Let γ ∈ (0, π2 ) and suppose that P1, P2, . . . , Pm imposes a soft clamp
on αm−1 with range [γ, π2 ]. Then for all ε > 0, there exists Pm+1 6= Pm such that
P1, P2, . . . , Pm, Pm+1 imposes a soft clamp on αm with range [−π

2 ,−(Ψ− β∗(γ)− ε)].

Proof. We can assume, without loss of generality, that Pm−1 = −1+i0 and Pm = 0+i0. Fix
ε ∈ (0, π

180 ) and set Pm+1 := L exp(iψm), where ψm := Ψ− ε
2 and L > 0 is yet to be deter-

mined. Let ν be as defined in Lemma 9.4 with [a1, a2] := [γ, π2 ] and [b1, b2] := [β∗(γ)+ ε
2 ,

π
2 ].

Since β∗(a1) < b1, it follows from Lemma 9.4 that ν > 0.

Fix L > 4π
ν , and let β̂ ∈ [−π

2 ,
π
2 ]. Assume F = f1 ⊔ f2 ⊔ · · · ⊔ fm−1 ⊔ fm has mini-

mal bending energy in Aπ/2(P1, P2, . . . , Pm, Pm+1; β̂). Note that fm−1 is directly con-
gruent to c1(αm−1, βm). Since f1 ⊔ f2 ⊔ · · · ⊔ fm−1 has minimal bending energy in
Aπ/2(P1, P2, . . . , Pm;βm), it follows from the soft clamp property that αm−1 ∈ [γ, π2 ].
The feasible range of βm is [ψm − π

2 ,
π
2 ], but we will show that βm < β∗(γ) + ε

2 . As-
sume, to the contrary, that βm ∈ [β∗(γ) + ε

2 ,
π
2 ]. By Lemma 9.3, |κa(fm)| < ν, while

|κb(fm−1)| = |κb(c1(αm−1, βm))| ≥ ν; hence F is not G2 across Pm, contradicting Corol-
lary 9.1. Therefore, βm < β∗(γ) + ε

2 . It now follows that −π
2 ≤ αm = βm − ψm <

β∗(γ) + ε
2 − ψm = β∗(γ)−Ψ+ ε. �

We again note that reflecting the points P1, P2, . . . , Pm+1 about the real axis yields
points that impose a soft clamp on αm with range [Ψ − β∗(γ) − ε, π2 ]. With Lemma 9.6
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and Proposition 9.7 in hand, the question which remains is whether we can construct soft
clamps with range [π2 − δ, π2 ] for arbitrarily small δ > 0. Let the sequence {γj} be defined
by γ1 := Ψ and γj+1 := Ψ − β∗(γj), j = 1, 2, 3, . . . . It follows from Lemma 8.5 (ii) that
{γj} is well-defined, increasing, and bounded from above by π

2 . Set γ := limj→∞ γj , and
note that γ ∈ (Ψ, π2 ] must satisfy γ = Ψ − β∗(γ); that is, γ + β∗(γ) = Ψ. By Lemma 8.5
(iii), γ = π

2 .

Theorem 9.8. For all δ > 0, there exists a sequence P1, P2, . . . , Pm that imposes a soft
clamp on αm−1 with range [π2 − δ, π2 ].

Proof. Let k be the first index such that γk >
π
2 − δ. Define g(γ) := Ψ− β∗(γ), γ ∈ [0, π2 ],

and note that γj+1 := g(γj). Since g is continuous and 0 < γ1 < γ2 < · · · < γk <
π
2 , it

follows that there exists ε > 0 sufficiently small such that the finite sequence {γ̂j}, defined
by γ̂1 := Ψ − ε and γ̂j+1 := g(γ̂j) − ε, j = 1, 2, . . . , k − 1, is well-defined and satisfies
γ̂k > π

2 − δ. By Lemma 9.6, there exist points P1, P2, P3 that impose a soft clamp on
α2 with range [γ̂1,

π
2 ], and then repeated applications of Proposition 9.7 yield a sequence

P1, P2, . . . , Pk+2 that imposes a soft clamp on αk+1 with range [γ̂k,
π
2 ]. �

Proof of Theorem 1.4. Fix ε ∈ (0, π
180 ) and let δ > 0 and P1, P2, P3 be as in Proposition

9.2, but let us name them Q1, Q2, Q3 instead. By Theorem 9.8, there exists a sequence
P1, P2, . . . , Pm that imposes a soft clamp on αm−1 with range [π2 − δ, π2 ]. We can assume,
without loss of generality, that Pm−1 = Q1 and Pm = Q2. Set Pm+1 := Q3, and note that
|ψj | < Ψ for j = 2, 3, . . . ,m−1, while ψm = Ψ+ε. Let Fopt ∈ Aπ/2(P1, P2, . . . , Pm, Pm+1)
have minimal bending energy, say Fopt = f1 ⊔ f2 ⊔ · · · ⊔ fm−1 ⊔ fm. We will show that
Fopt is not G

2 across Pm. The chord angles of fm−1 are (αm−1, βm). Since f1 ⊔ f2 ⊔ · · · ⊔
fm−1 has minimal bending energy in Aπ/2(P1, P2, . . . , Pm;βm), it follows from the soft
clamp property that αm−1 ∈ [π2 − δ, π2 ]. Since fm−1 ⊔ fm has minimal bending energy in

Aπ/2(αm−1;Q1, Q2, Q3), it follows from Proposition 9.2 that fm−1 ⊔ fm is not G2 across

Q2; therefore Fopt is not G
2 across Pm. �

Remark 9.9. The quantity ρ := max
1≤j<m

max{Lj+1

Lj
,

Lj

Lj+1
} serves as a mesh ratio, and our

main results, Corollary 1.3 and Theorem 1.4, are obtained without any constraints on ρ.
Indeed, it is clear in the proof of Proposition 9.7 that ρ → ∞ as ε → 0. We expect that
the critical angle Ψ will increase if one constrains the mesh ratio.
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