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Abstract. Shift-invariant spaces play an increasingly important role
in various areas of mathematical analysis and its applications. They ap-
pear either implicitly or explicitly in studies of wavelets, splines, radial
basis function approximation, regular sampling, Gabor systems, uniform
subdivision schemes, and perhaps in some other areas. One must keep
in mind, however, that the shift-invariant system explored in one of the
above-mentioned areas might be very different from those investigated in
other areas. For example, in splines the shift-invariant system is gener-
ated by elements of compact support, while in the area of sampling the
shift-invariant system is generated by band-limited elements, i.e., elements
whose Fourier transform is compactly supported.
The theory of shift-invariant spaces attempts to provide a uniform plat-
form for all these different investigations of shift-invariant spaces. The two
main pillars of that theory are the study of the approximation properties
of such spaces, and the study of generating sets for these spaces. Another
survey article in this volume (A Survey on L2-Approximation Order From
Shift-invariant Spaces, by Kurt Jetter and Gerlind Plonka) provides ex-
cellent up-to-date information about the first topic. The present article is
devoted to the latter topic.
My goal in this article is to provide the reader with an easy and friendly
introduction to the basic principles of that topic. The core of the pre-
sentation is devoted to the study of local principal shift-invariant spaces,
while the more general cases are treated as extensions of that basic setup.

§1. Introduction

A shift-invariant (SI) space is a linear space S consisting of func-
tions (or distributions) defined on IRd (d ≥ 1), that is invariant under lattice
translations:

(1) f ∈ S =⇒ Ejf ∈ S, j ∈ L,

where Ej is the shift operator

(2) (Ejf)(x) = f(x− j).

The most common choice for L is the integer lattice L = ZZd. Here and
hereafter we use the notion of a shift as a synonym to integer translation
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and/or integer translate. Given a set Φ of functions defined on IRd, we say
that Φ generates the SI space S, if the collection

(3) E(Φ) := (Ejφ : φ ∈ Φ, j ∈ ZZd)

of shifts of Φ is fundamental in S, i.e., the span of E(Φ) is dense in S.
Of course, the definition just given assumes that S is endowed with some
topology, so we will give a more precise definition of this notion in the sequel.

Shift-invariant spaces are usually defined in terms of their generating set
Φ, and they are classified according to the properties of the generating set. For
example, a principal shift-invariant (PSI) space is generated by a single
function, i.e., Φ = {φ}, and a finitely generated shift-invariant (FSI)
space is generated by a finite Φ. In some sense, the PSI space is the simplest
type of SI space. Another possible classification is according to smoothness
or decay properties of the generating set Φ. For example, an SI space is
local if it is generated by a compactly supported Φ. Local PSI spaces are,
probably, the bread and butter of shift-invariant spaces. At the other end of
this classification are the band-limited SI spaces; their generators have their
Fourier transforms supported in some given compact domain.

Studies in several areas of analysis employ, explicitly or implicitly, SI
spaces, and the Theory of Shift-Invariant Spaces attempts to provide a uni-
form platform for all these studies. In certain areas, the SI space appears as
an approximation space. Precisely, in Spline Approximation, local PSI and
local FSI spaces are employed, the most notable examples of such spaces are
the box splines and the exponential box spline spaces (cf. [7], [9] and the refer-
ences therein). In contrast, in radial basis function approximation, PSI spaces
generated by functions of global support is typical; e.g., fundamental solutions
of elliptic operators are known to be useful generators there (cf. [10], [18] and
the references therein). In Uniform Sampling, band-limited SI spaces are the
rule (cf. e.g., [29]). Uniform Subdivision (cf. [16], [11]) is an example where SI
spaces appear in an implicit way: the SI spaces appear there in the analysis,
not in the setup. The SI spaces in this area are usually local PSI/FSI, and
possess the additional important property of refinability (that we define and
discuss in the body of this article).

In other areas, the shift-invariant space is the ‘building block’ of a larger
system, or, to put it differently, a multitude of SI spaces is employed simulta-
neously. In the area of Weyl-Heisenberg (WH, also known as Gabor) systems
(cf. [19]), the SI space S is PSI/FSI and is either local or ‘near-local’ (e.g.,
generated by functions that decay exponentially fast at ∞; the generators are
sometime referred to as ‘windows’). The complete system is then of the form
(Si)i∈I , with each Si a modulation of S, i.e., the multiplication product of S
by a suitable exponential function. Finally, in the area of Wavelets (cf. [31],
[15], [40]), SI spaces appear in two different ways. First, the wavelet system
is of the form (Si)i∈I where all the Si spaces obtained from a single SI space
(which, again, is a PSI/FSI space and is usually local), but this time dila-
tion replaces the modulation from the WH case. Second, refinable PSI/FSI
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spaces are crucial in the construction of wavelet systems via the vehicle of
Multiresolution Analysis.

There are two foci in the study of shift-invariant spaces. The first is the
study of their approximation properties (cf. [9], [4], [5], [6]). The second is the
study of the shift-invariant system E(Φ) as a basis for the SI space it spans.
The present article discusses the basics of that latter topic. In view of the
prevalence of local PSI spaces in the relevant application areas, we develop
first the theory for that case, §2, and then discuss various extensions of the
basic theory. Most of the theory presented in the present article was developed
in the early 90’s, but, to the best of my knowledge, has not been summarized
before in a self-contained manner.

The rest of this article is laid out as follows:
2. Bases for PSI Spaces

2.1. The Analysis and Synthesis Operators
2.2. Basic Theory: Linear Independence in Local PSI Spaces
2.3. Univariate Local PSI Spaces
2.4. The Space S2(φ)
2.5. Basic Theory: Stability and Frames in PSI Spaces

3. Beyond Local PSI Spaces
3.1. Lp-stability in PSI Spaces
3.2. Local FSI Spaces: Resolving Linear Dependence, Injectability
3.3. Local FSI Spaces: Linear Independence
3.4. L2-Stability and Frames in FSI Spaces, Fiberization

4. Refinable Shift-Invariant Spaces
4.1. Local Linear Independence in Univariate Refinable PSI Spaces
4.2. The Simplest Application of SI Theory to Refinable Functions

§2. Bases for PSI spaces

Let φ be a compactly supported function in L1(IRd), or, more generally, a
compactly supported distribution in D′(IRd). We analyse in detail the “basis”
properties of the set of shifts E(φ) (cf. (3)). The compact support assumption
simplifies some technical details in the analysis, and, more importantly, allows
the introduction and analysis of a fine scale of possible “basis” properties.

2.1. The Analysis and Synthesis Operators

The basic operators associated with a shift-invariant system are the anal-
ysis operator and the synthesis operator. There are several different variants
of these operators, due to different choices of the domain of the correspond-
ing map. It is then important to stress right from the beginning that these
differences are very significant. We illustrate this point in the sequel.

Let

(4) Q
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be the space of all complex valued functions defined on ZZd. More generally,
let Φ be some set of functions/distributions; letting the elements in Φ index
themselves, we set

(5) Q(Φ) := Q× Φ.

The space Q(Φ) is equipped with the topology of pointwise convergence (which
makes it into a Fréchet space). For the lion’s share of the study below, however,
it suffices to treat Q merely as a linear space.

Given a finite set Φ of compactly supported distributions, the synthesis
operator TΦ is defined by

TΦ : Q(Φ) → S?(Φ) : c 7→
∑
φ∈Φ

∑
j∈ZZd

c(j, φ) Ejφ.

The notation
S?(Φ)

that we have just used stands, by definition, for the range of TΦ . In this
section, we focus on the PSI case i.e., the case when Φ is a singleton {φ}.
Thus:

Tφ : Q → S?(φ) : c 7→
∑
j∈ZZd

c(j) Ejφ.

Example. If φ is the support function of the interval [0, 1] (in one di-
mension), then S?(φ) is the space of all piecewise-constants with (possible)
discontinuities at ZZ.

Note that, thanks to the compact support assumption on φ, the operator
Tφ is well-defined on the entire space Q. In the sequel, we either consider the
operator Tφ as above, or inspect its restriction to some subspace C ⊂ Q (and
usually equip that subspace with a stronger topology). The compact support
assumption on φ “buys” the largest possible domain, viz., Q, hence the full
range of subdomains to inspect. The properties of Tφ (or a restriction of it)
that are of immediate interest are the injectivity of the operator, its continuity,
and its invertibility. Of course, the two latter properties make sense only if we
rigorously define the target space, and equip the domain and the target space
with appropriate topologies.

Discussion. As mentioned before, the choice of the domain of Tφ is cru-
cial. Consider for example the injectivity property of Tφ : this property,
known as the linear independence of E(φ), is one of the most fundamental
properties of the shift-invariant system. On the other hand, the restriction
of Tφ to, say, `2(ZZd) is always injective (recall that φ is assumed to be com-
pactly supported), hence that restricted type of injectivity is void of any value.
Consequently, keeping the domain of Tφ ‘large’ allows us to get meaningful
definitions, hence is important for the development of the theory.
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An important alternative to the above is to study the formal adjoint T ∗
φ

of Tφ , known as the analysis operator and defined by

T ∗
φ : f 7→ (〈f, Ejφ〉)j∈ZZd .

(Here and elsewhere, we write
〈f, λ〉

for the action of the linear functional λ on the function f .) We intentionally
avoided the task of defining the domain of this adjoint: it is defined on the
largest domain that can make sense! For example, if φ ∈ L2(IRd) (and is of
compact support), T ∗

φ is naturally defined on L2,loc(IRd). On the other hand,
if φ is merely a compactly supported distribution, f should be assumed to
be a C∞(IRd)-function. In any event, and unless the surjectivity of T ∗

φ is the
goal, the target space here can be taken to be Q.

The study of E(φ) via the analysis operator is done by considering pre-
images of certain sequences in the target space. For example, a non-empty
pre-image T ∗

φ
−1δ of the δ-sequence indicates that the shifts of φ can, at least

to some extent, be separated. A much finer analysis is obtained by studying
properties of the functions in T ∗

φ
−1δ; first and foremost decaying properties of

such functions. The desire is to find in T ∗
φ
−1δ a function that decays as fast

as possible, ideally a compactly supported function. Note that f ∈ T ∗
φ
−1δ if

and only if E(f) forms a dual basis to the shifts of φ in sense that

〈Ekf, Ejφ〉 = δj,k.

One of the advantages in this complementary approach is that certain func-
tions in T ∗

φ
−1δ can be represented explicitly in terms of φ, hence their decay

properties can be examined directly.

2.2. Basic Theory: Linear Independence in Local PSI Spaces

We say that the shifts of the compactly supported distribution φ are
(globally) linearly independent (=:gli) if Tφ is injective, i.e., if the con-
dition

(Tφ c = 0, for some c ∈ Q) =⇒ c = 0

holds. The discussion concerning this basic, important, property is two-fold:
first, we discuss characterizations of the linear independence property that
are useful for checking its validity. Then, we discuss other properties, that
are either equivalent to linear independence or are implied by it, and that are
useful for the construction of approximation maps into S?(φ).

We start with the first task: characterizing linear independence in terms
of more verifiable conditions. To this end, we recall that, since φ is compactly
supported, its Fourier transform extends to an entire function. We still denote
that extension by φ̂. The following fairly immediate observation is crucial:

Observation 6. ker Tφ is a closed shift-invariant subspace of Q.
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In [27], closed SI subspaces of Q are studied. It is proved there that
Q admits spectral analysis, and, moreover, admits spectral synthesis. The
latter property means that every closed SI subspace of Q contains a dense
exponential subspace (here ‘an exponential’ is a linear combination of the
restriction to ZZd of products of exponential functions by polynomials). More
details on Lefranc’s synthesis result, as well as complete details of its proof can
be found in [8]. We need here only the much weaker analysis part of Lefranc’s
theorem, which says the following:

Theorem 7. Every (nontrivial) closed SI subspace of Q contains an expo-
nential sequence

eθ : j 7→ eθ·j , θ ∈ Cd.

We sketch the proof below, and refer to [34] for the complete proof.
Proof (sketch): The continuous dual space of Q is the space Q0

of all finitely supported sequences, with 〈λ, c〉 :=
∑

j∈ZZd λ(j)c(j). Given a
closed non-zero SI subspace C ⊂ Q, its annihilator C⊥ in Q0 is a proper SI
subspace. The sequences C⊥

+ in C⊥ that are entirely supported on ZZd+ can
be viewed as polynomials via the association

Z : c 7→
∑
j∈ZZd

+

c(j)Xj,

withXj the standard monomial. Since C⊥ is SI, Z(C⊥
+ ) is an ideal in the space

of all d-variate polynomials. Since C⊥ is proper, Z(C⊥
+ ) cannot contain any

monomial. Hilbert’s (Weak) Nullstellensatz then implies that the polynomials
in Z(C⊥

+ ) all vanish at some point eθ := (eθ1 , . . . , eθd) ∈ (C\0)d. One then
concludes that the sequence

eθ : j 7→ eθ·j

vanishes on C⊥, hence, by Hahn-Banach, lies in C.
Being unaware of Lefranc’s work, Dahmen and Micchelli proved in [13]

that, assuming the compactly supported φ to be a continuous function, ker Tφ ,
if non-trivial, must contain an exponential eθ. Their argument is essentially
the same as Lefranc’s, save some simplifications that are available due to their
additional assumptions on φ.

The following characterization of linear independence appears first in [34]:

Theorem 8. The shifts of the compactly supported distribution φ are linearly
independent if and only if φ̂ does not have any 2π-periodic zero (in Cd).

Proof (sketch): Poisson’s summation formula implies that, for any
θ ∈ Cd,

(9) Tφ eθ = 0 ⇐⇒ (φ̂ vanishes on −iθ + 2πZZd).

Therefore, ker Tφ contains an exponential eθ iff φ̂ has a 2π-periodic zero. Since
ker Tφ is SI and closed, Theorem 7 completes the proof.
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Example. Let φ be a univariate exponential B-spline, [17]. The Fourier
transform of such a spline is of the form

ω 7→
n∏
j=1

∫ 1

0

e(µj−iω)t dt,

with (µj)j ⊂ C. One observes that φ̂ vanishes exactly on the set

∪j(−iµj + 2π(ZZ\0)).

From Theorem 8 it then follows that E(φ) are linearly dependent iff there
exist j and k such that µj − µk ∈ 2π(ZZ\0).

Example. Let φ be the k-fold convolution of a compactly supported distri-
bution φ0. It is fairly obvious that Tφ cannot be injective in case Tφ0

is not.
Since the zero sets φ̂ and φ̂0 are identical, Theorem 8 proves that the converse
is valid, too: linear independence of E(φ0) implies that of E(φ)!

Among the many applications of Theorem 8, we mention [34] where the
theorem is applied to exponential box splines, [24], [44] and [37] where the
theorem is used for the study of box splines with rational directions, [20]
where discrete box splines are studied, and [12] where convolution products
of box splines and compactly supported distributions are considered.

We now turn our attention to the second subject: useful properties of
E(φ) that are implied or equivalent to linear independence. We work initially
in a slightly more general setup: instead of studying E(φ), we treat any count-
able set F of distributions with locally finite supports: given any bounded
set Ω, the supports of almost all the elements of F are disjoint of Ω. For con-
venience, we index F by ZZd: F = (fj)j∈ZZd . The relevant synthesis operator
is:

T : Q → D′(IRd) : c 7→
∑
j∈ZZd

c(j)fj,

and is well-defined, thanks to the local finiteness assumption. The notion of
linear independence remains unchanged: it is the injectivity of the map T .

We start with the following result of [1]. The proof given follows [49].

Theorem 10. Let F = (fj)j∈ZZd be a collection of compactly supported
distributions with locally finite supports. Then the following conditions are
equivalent:
(a) F is linearly independent.
(b) There exists a dual basis to F in D(IRd), i.e., a sequence G := (gj)j∈ZZd ⊂

D(IRd) such that
〈gk, fj〉 = δj,k.

(c) For every j ∈ ZZd, there exists a bounded Aj ⊂ IRd such that, if T c
vanishes on Aj , we must have c(j) = 0.

Proof (sketch): Condition (c) clearly implies (a). Also, (b) implies
(c): with G ⊂ D(IRd) the basis dual to F , we have that 〈gj, T c〉 = c(j), hence
we may take Aj to be any bounded open set that contains supp gj.
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(a)=⇒(b): Recall that Q0 is the collection of finitely supported sequences
in Q. It is equipped with the inductive-limit topology, a discrete analog of
the D(IRd)-topology. The only facts required on this topological space Q0 are
that (a) Q and Q0 are each the continuous dual space of the other, and (b)
Q0 does not contain proper dense subspaces (cf. [48] for details). From that
and the definition of T , one concludes that T is continuous, that its adjoint
is the operator

T ∗ : D(IRd) → Q0 : g 7→ (〈g, fj〉j∈ZZd),

and that T ∗∗ = T . Thus, if T is injective, then T ∗ has a dense range, hence
must be surjective. This surjectivity implies, in particular, that all sequences
supported at one point are in the range of T ∗, and (b) follows.

For the choice F = E(φ), the sets (Aj)j are obtained by shifting A0, and
a dual basis G can be chosen to have the form E(g0). Moreover, if F = E(Φ),
Φ finite, the sets (Aj)j are still obtained as the shifts of some finitely many
compact sets (viz., with E(G) the dual basis of E(Φ) which is guaranteed to
exist by Theorem 10, the finitely many compact sets are the supports of the
functions in G). Thus, for this case the sets (Aj)j are locally finite. With this
in hand, [22] concluded the following from Theorem 10:

Corollary 11. Let Φ be a finite set of compactly supported distributions.
If E(Φ), the set of shifts of Φ, is linearly independent, then every compactly
supported f ∈ S?(Φ) is a finite linear combination of E(Φ).

Proof: Let E(G) ⊂ D(IRd) be the basis dual to E(Φ) from Theorem
10. Given a compactly supported f , we have for every g ∈ G, and for almost
every j ∈ ZZd, that the function Ejg has its support disjoint from supp f .
This finishes the proof since, if f = T c =

∑
φ∈Φ

∑
j∈ZZd c(j, φ)Ejφ, then

〈f, Ejg〉 = c(j, φ).
Theorem 10 allows us, in the presence of linear independence, to con-

struct projectors into S?(φ) of the form Tφ T ∗
g that are based on compactly

supported functions. In fact, the theorem also shows that nothing less than
linear independence suffices for such construction.

Corollary 12. Let φ ∈ L2(IRd) be compactly supported, and assume E(φ)
to be orthonormal. Then E(φ) is linearly independent.

The next theorem summarizes some of the observations made above, and
adds a few more:

Theorem 13. Let φ be a compactly supported distribution. Consider the
following conditions:
(gli) global linear independence: Tφ is injective.

(ldb) local dual basis: E(φ) has a dual basis E(g), g ∈ D(IRd).
(ls) local spanning: all compactly supported elements of S?(φ) are finitely

spanned by E(φ).
(ms) minimal support: for every compactly supported f ∈ S?(φ), there ex-

ists some j ∈ ZZd such that suppφ lies in the convex hull of suppEjf .
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Equality can happen only if f = cEjφ, for some constant c, and some
j ∈ ZZd.

Then (gli) ⇐⇒ (ldb)=⇒ (ls)=⇒ (ms). Also, if S?(φ) is known to contain a
linearly independent SI basis E(φ0), then all the above conditions are equiva-
lent. In particular, a linearly independent generator of S?(φ) is unique, up to
shifts and multiplication by constants.

Proof (sketch): The fact that (ls) =⇒ (ms) follows from basic ge-
ometric observations. In view of previous results, it remains only to show
that, if S?(φ) contains a linear independent E(φ0), then (ms) implies (gli).
That, however, is simple: since E(φ0) is linearly independent, φ0 has minimal
support among all compactly supported elements of S?(φ). If φ also has that
minimal support property, then, since it is finitely spanned by E(φ0), it must
be a constant multiple of a shift of φ0, hence E(φ0) is linearly independent,
too.

The uniqueness of the linearly independent generator follows now from
the analogous uniqueness property of the minimally supported generator.

Until now, we have retained the compact support assumption on φ. This
allowed us to strive for the superior property of linear independence. However,
PSI spaces that contain no non-trivial compactly supported functions are of
interest, too. How to analyse the set E(φ) if φ is not of compact support?
One way, the customary one, is to apply a cruder analysis: one should define
the synthesis operator on whatever domain that operator may make sense,
and study then this restricted operator. A major effort in this direction is
presented in the next subsection, where the notions of stability and frames
are introduced and studied. There, only mild decay assumptions on φ are
imposed, e.g., that φ ∈ L2(IRd). On the other hand, if φ decays at ∞ in a
more substantial way, more can be said. For example, if φ decays rapidly
(i.e., faster than any fixed rational polynomial) then the following is true [34].
Recall that a sequence c is said to have polynomial growth if there exists a
polynomial p such that |c(j)| ≤ |p(j)| for all j ∈ ZZd.

Proposition 14. Assume that φ decays rapidly, and let Tφ,T be the restric-
tion of the synthesis operator to sequences of (at most) polynomial growth.
Then the following conditions are equivalent:
(a) Tφ,T is injective.

(b) The restriction of Tφ,T to `∞(ZZd) is injective.

(c) φ̂ (that is defined now on IRd only) does not have a (real) 2π-periodic
zero.

(d) There is a basis E(g) dual to E(φ), with g a rapidly decaying, C∞(IRd)-
function.

Proof (sketch): (a) trivially implies (b). If φ̂ vanishes identically on
θ + 2πZZd, θ real, then, by Poisson’s summation formula, eiθ ∈ kerTφ,T (with
eϑ : j 7→ eϑ·j). This exponential is bounded (since θ is real), hence (b) implies
(c). The fact that (d) implies (a) follows from the relation 〈Tφ,T c, Ejg〉 = c(j),
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a relation that holds for any polynomially growing sequence, thanks to the
rapid decay assumptions on φ and g.

We prove the missing implication “(c) implies (d)” in the next section
(after the proof of Theorem 32), under the assumption that φ is a function.
If one likes to stick with a distribution φ, then, instead of proving the missing
implication directly, (a) can be proved from (c) as in [34], (see also the proof
of the implication (c)=⇒(b) of Theorem 29), and the equivalence of (a) and
(d) can be proven by an argument similar to that used in Theorem 10.

Thus, if φ is not of compact support, we settle for notions weaker than
linear independence. This approach is not entirely satisfactory, as illustrated
in the following example.

Example. Assume that φ is compactly supported and univariate. Then, by
Theorem 15 below , there is, up to shifting and multiplication by scalars, ex-
actly one linearly independent generator for S?(φ), and one may wish to select
this, and only this generator. In contrast, there are many other compactly
supported generators of S?(φ) that satisfy all the properties of Proposition
14. Unfortunately, the supports of these seemingly ‘good’ generators may be
as large as one wishes.

The example indicates that properties weaker than linear independence
may fail to distinguish between ‘good’ generators and ‘better’ generators.
Therefore, an alternative approach to the above (i.e., to the idea of restricting
the synthesis operator to a smaller domain) is desired: extending the notion
of “linear independence” beyond local PSI spaces. For that, we note first that
both Theorem 10 and Proposition 14 characterize injectivity properties of Tφ
in terms of surjectivity properties of T ∗

φ , or, more precisely, in terms of the
existence of the “nicely decaying” dual basis. Thus, I suggest the following
extension of the linear independence notion.

Definition: linear independence. Let φ be any distribution. We say that
E(φ) is linearly independent if there exists g ∈ D(IRd) whose shift set E(g)
is linearly independent and is a dual basis to E(φ).

In view of Theorem 10, this definition is, indeed, an extension of the
previous linear independence definition.

Open Problem. Find an effective characterization of the above general
notion of linear independence, similar to Theorem 8.

Proposition 14 deals with the synthesis operator of a rapidly decaying
E(φ). There are cases where φ decays faster than rapidly: for example at a
certain exponential rate ρ ∈ IRd+. Roughly speaking, it means that

|φ(x)| ≤ ceρ(x), ρ(x) :=
∑
j

ρj |xj|,

In this case, the synthesis operator is well-defined on all sequences that grow
(at most) at that exponential rate. The injectivity of the synthesis operator
on this extended domain can be shown, once again, to be equivalent to the
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lack of 2π-periodic zeros of φ̂, with φ̂ the analytic extension of the Fourier
transform. This analytic extension is well-defined in the multistrip

{z ∈ Cd : |=zj | ≤ ρj, j = 1, . . . , d}.

The above strip can be shown to be the spectrum of a suitably chosen commu-
tative Banach algebra (with the Gelfand transform being the Fourier trans-
form), and those basic observations yield the above-mentioned injectivity re-
sult, [39].

2.3. Univariate Local PSI Spaces

There are three properties of local PSI spaces that, while not valid in
general, are always valid in case the spatial dimension is 1. The first, and
possibly the most important one, is the existence of a ‘canonical’ generator
(Theorem 15). The second is the equivalence of the linear independence prop-
erty to another, seemingly stronger, notion of linear independence, termed
here “weak local linear independence”. A third fact is discussed in §4.1 .

The following result can be found in [35] (it was already stated with-
out proof in [46]). The result is invalid in two variables: the space gener-
ated by the shifts of the characteristic function of the square with vertices
(0, 0), (1, 1), (0, 2), (−1, 1) is a simple counter-example.

Theorem 15. Let S be a univariate local PSI space. Then S contains a
generator φ whose shifts E(φ) are linearly independent.

Proof: Let φ0 be a generator of S with support in [a, b]. If E(φ0) is
linearly independent, we are done. Otherwise, kerTφ0

is non-zero, hence, by
Theorem 7, contains an exponential eθ : j 7→ eθj . We define two distributions

φ1 :=
∞∑
j=0

eθ(j)Ejφ0,

and

−
−1∑

j=−∞
eθ(j)Ejφ0.

Obviously, φ1 is supported on [a,∞), and the second distribution is supported
on (−∞, b− 1]. However, since eθ ∈ kerTφ0

, the two distributions are equal,
and hence φ1 is supported on [a, b − 1]. Also, φ0 is spanned by {φ1, E

1φ1},
and one concludes that S?(φ0) = S?(φ1). Since [a, b] is of finite length, we
may proceed by induction until arriving at the desired linearly independent
φ.

Combining Theorem 15 and Theorem 13, we conclude that the properties
(gli), (ldb), (ls), and (ms) (that appear in Theorem 13) are all equivalent for
univariate local PSI spaces. In fact, there is another, seemingly stronger,
property that is equivalent here to linear independence.
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Definition: local linear independence . Let F be a countable, locally
finite, family of distributions/functions. Let A ⊂ IRd be an open set. We say
that F is locally linearly independent on A if, for every c ∈ Q (and with
T the synthesis operator of F ) the condition

T c = 0 on A

implies that c(f) f = 0 on A, for every f ∈ F . The set F is weakly locally
linearly independent =: (wlli) if F is locally linearly independent on some
open, bounded set A. These distributions are strongly locally linearly
independent :=(slli) is they are locally linearly independent on any open
set A.

Note that in the case supp f ∩A = ∅, we trivially obtain that c(f) f = 0
on A. So, the non-trivial part of the definition is that c(f) = 0 whenever
supp f intersects A.

Trivially, weak local linear independence implies linear independence.
The converse fails to hold already in the PSI space setup: in [1], there is
an example of a bivariate φ whose shifts are globally linearly independent,
but are not weakly locally independent. However, as claimed in [1], these two
different notions of independence do coincide in the univariate case. The proof
provided here is taken from [36]. Another proof is given in [45].

Proposition 16. Let φ be a univariate distribution supported in [0, N ] with
E(φ) globally linearly independent. Then E(φ) is weakly locally independent.
More precisely, E(φ) is locally linearly independent on any interval A whose
length is greater than N − 1.

Proof: To avoid technical “end-point” problems, we assume herein
that φ is a function supported in [0, N ], and prove that E(φ) is locally linearly
independent over [0, N −1]. For that, we assume that some sequence c ∈ Q\0
satisfies Tφ c = 0 on [0, N − 1]. We will show that this implies the existence
of a non-zero sequence, say b, such that Tφ b = 0 a.e.

For j = 1, ..., N , let fj be the periodic extension of φ|[j−1,j]. Note that

(17) (Tφ b)|[j,j+1] = 0 ⇐⇒
N∑
i=1

b(j −N + i)fN−i+1 = 0.

Suppose that we are given some b ∈ Q, and would like to check whether
Tφ b = 0. To that end, let B be the matrix indexed by {1, . . . , N} × ZZ whose
(i, j)-entry is b(j − N + i). Then, as (17) shows, the condition Tφ b = 0 is
equivalent to FB = 0, with F the row vector [fN , fN−1, ..., f1]. Our aim is to
construct such B. Initially, we select b := c, and then know that FB(·, j) = 0,
j = 0, 1, ..., N − 2, since Tφ c = 0 on [0, N − 1].

Let C = B(1:N − 1, 0:N − 1) be the submatrix of B made up from the
first N − 1 rows and from columns 0, . . . , N − 1 of B. Since C has more
columns than rows, there is a first column that is in the span of the columns
to its left. In other words, C(·, r) =

∑r−1
j=0 a(j)C(·, j) for some r > 0 and
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some a(0), . . . , a(r− 1). In other words, the sequence b(−N + 1), . . . , b(r− 1)
satisfies the constant-coefficient difference equation

b(i) =
r−1∑
j=0

a(j)b(i− r + j), i = r + 1 −N, . . . , r − 1.

Now use this very equation to define b(i) inductively for i = r, r+1, . . .. Then
the corresponding columns of our matrix B satisfy the equation

B(·, i) =
r−1∑
j=0

a(j)B(·, i− r + j), i = r, r + 1, . . . ,

and, since FB(·, j) = 0 for j = 0, . . . , r − 1, this now also holds for j =
r, r + 1, . . .. In other words, Tφ b = 0 on [0,∞). The corresponding further
modification of b to also achieve Tφ b = 0 on (∞, 0] is now obvious.

2.4. The Space S2(φ)

The notion of the ‘linear independence of E(φ)’ is the ‘right one’ for local
PSI spaces. While we were able to extend this notion to PSI (and other)
spaces that are not necessarily local, there do not exist at present effective
methods for checking this more general notion.

This means that, in case the generator φ of the PSI space S(φ) is not com-
pactly supported, we need other, weaker, notions of ‘independence’. We have
already described some possible notions of this type that apply to generators
φ that decay exponentially fast or at least decay rapidly.

However, generators φ that decay at ∞ at slower rates are also of interest.
Two pertinent univariate examples of this type are the sinc function

sinc : x 7→ sin(πx)
πx

,

and the inverse multiquadric

x 7→ 1√
1 + x2

.

While these functions decay very slowly at ∞, they both still lie in L2, as well
as in any Lp, p > 1. It is thus natural to seek a theory that will only assume
φ to lie in L2, or more generally, in some Lp space. The two basic notions
in that development are the notions of stability and a frame. For p = 2, the
notion of stability is also known as the Riesz basis property.

In what follows, we assume φ to lie in L2(IRd). Under this assumption,
the PSI space S?(φ) is not well-defined any more, nor is there any hope to
define meaningfully the synthesis operator Tφ . We replace S?(φ) by the PSI
space variant

S2(φ),
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which is defined as the L2-closure of the finite span of E(φ). We also replace
the domain Q of Tφ by `2(ZZd), and denote this restriction by

Tφ,2.

Note that, since we are only assuming here that φ ∈ L2(IRd), we do not know
a priori that Tφ,2 is well-defined.

Very useful in this context is the bracket product: given f, g ∈ L2(IRd),
the bracket product [f, g] is defined as follows:

[f, g] :=
∑

α∈2πZZd

Eαf Eαg.

It is easy to see that [f, g] ∈ L1(TTd). We assign also a special notation for
the squareroot of [f̂ , f̂ ]:

(18) f̃ :=
√

[f̂ , f̂ ].

Note that the map f 7→ f̃ is a unitary map from L2(IRd) into L2(TTd).
We collect below a few of the basic facts about the space S2(φ), which

are taken from [4].

Theorem 19. Let φ ∈ L2(IRd). Then:
(a) The orthogonal projection Pf of f ∈ L2(IRd) onto S2(φ) is given by

P̂ f =
[f̂ , φ̂]

[φ̂, φ̂]
φ̂.

(b) A function f ∈ L2(IRd) lies in the PSI space S2(φ) if and only if f̂ = τ φ̂
for some measurable 2π-periodic τ .

(c) The set supp φ̃ ⊂ TTd is independent of the choice of φ: if S2(φ) = S2(ψ),
then, up to a null set, supp φ̃ = supp ψ̃.

We call supp φ̃ the spectrum of the PSI space S2 := S2(φ), and denote
it by

σ(S2).

Note that the spectrum is defined up to a null set. A PSI space S2 is regular
if σ(S2) = TTd (up to a null set). Note that a local PSI space S2(φ) is always
regular.

The bracket product was introduced in [22] (in a slightly different form),
and in [4] in the present form. A key fact concerning the bracket product is the
following identity, which is valid for any φ, ψ ∈ L2(IRd), and every c ∈ `2(ZZd),
provided, say, that the operators Tφ,2 and Tψ,2 are bounded:

(20) (T ∗
φ Tψ c)̂ = [ψ̂, φ̂] ĉ.
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Lemma 21. Let φ, ψ ∈ L2(IRd), and assume that the operators Tφ,2 and Tψ,2
are bounded.
(a) The kernel kerT ∗

φ,2Tψ,2 ⊂ `2(ZZd) is the space

Kφ,ψ := {c ∈ `2(ZZd) : supp ĉ ⊂ TTd\(supp[ψ̂, φ̂])}.

(b) The operator T ∗
φ,2Tψ,2 is a projector if and only if [ψ̂, φ̂] = 1 on its support.

Proof (sketch): (a) follows from (20), since the latter implies that
T ∗
φ,2Tψ,2c = 0 if and only if supp ĉ is disjoint from

σ := supp[ψ̂, φ̂].

For (b), note that (20) implies that the range of T ∗
φ,2Tψ,2 is K⊥

φ,ψ = {c ∈
`2(ZZd) : supp ĉ ⊂ σ}. Thus T ∗

φ,2Tψ,2 is a projector if and only if it is the
identity on (Kφ,ψ)⊥. The result now easily follows from (20).

2.5. Basic Theory: Stability and Frames in PSI Spaces

We need here to make our setup a bit more general. Thus, we assume F
to be any countable subset of L2(IRd), and define a corresponding synthesis
map TF,2 as follows:

TF,2 : `2(F ) → L2(IRd) : c 7→
∑
f∈F

c(f)f.

The choice F := E(φ) is of immediate interest here, but other choices will be
considered in the sequel.

Definition: Bessel systems, stable bases and frames. Let F ⊂ L2(IRd)
be countable.
(a) We say that F forms a Bessel system if TF,2 is a well-defined bounded

map.
(b) A Bessel system F is a frame if the range of TF,2 is closed (in L2(IRd)).
(c) A frame F is a stable basis if TF,2 is injective.

Discussion. The notion of stability effectively says that TF,2 is a continuous
injective open, hence invertible, map, i.e., that there exist constants C1, C2 > 0
such that

(22) C1‖c‖`2(F ) ≤ ‖TF,2c‖L2(IRd) ≤ C2‖c‖`2(F ), ∀c ∈ `2(F ),

for every finitely supported c defined on F (hence for every c ∈ `2(F )).
The frame condition is weaker. It does not assume (22) to hold for all

c ∈ `2(F ), but only for c in the orthogonal complement of kerTF,2. In general,
it is hard to compute that orthogonal complement, hence it is non-trivial to
implement the definition of a frame via the synthesis operator. However, for
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the case of interest here, i.e., the PSI system F = E(φ), computing kerTF,2 is
quite simple (cf. Lemma 21).

There is an alternative definition of the frame property, which is more
common in the literature. Assume that F is a Bessel system, and let T ∗

F,2 be
its analysis operator:

T ∗
F,2 : L2(IRd) → `2(F ) : g 7→ (〈g, f〉)f∈F .

The equivalent definition of a frame with the aid of this operator is analogous:
there exist constants C1, C2 > 0 such that

(23) C1‖f‖L2(IRd) ≤ ‖T ∗
F,2f‖`2(F ) ≤ C2‖f‖L2(IRd)

for every f in the orthogonal complement of kerT ∗
F,2. While it seems that we

have gained nothing by switching operators, it is usually easier to identify the
above-mentioned orthogonal complement: it is simply the closure in L2(IRd)
of the finite span of F .

The constant C1 (C2, respectively) is sometimes referred to as the lower
(upper, respectively) stability/frame bound.

A third, and possibly the most effective, definition of stable bases/frames
goes via a dual system: let R be some assignment

R : F → L2(IRd),

and assume that F as well as RF are Bessel systems. We then say that RF
is a dual system for F if the operator

TF,2T
∗
RF,2 : g 7→

∑
f∈F

〈g,Rf〉f

is a projector, i.e., it is the identity on the closure of spanF . The roles of F
and RF in the above definition are interchangeable. We have the following
simple lemma:

Lemma 24. Let F ⊂ L2(IRd) be countable, and assume that F is a Bessel
system. Then:
(a) F is a frame if and only if there exists an assignment R : F → L2(IRd)

such that RF is Bessel, and is a dual system of F .
(b) F is a stable basis if and only if there exists an assignment R : F →

L2(IRd) such that RF is Bessel, and is a dual system for F in the stronger
biorthogonal sense: for f, g ∈ F ,

〈f,Rg〉 =
{

1, f = g,
0, f 6= g

(i.e., T ∗
F,2TRF,2 is the identity operator).

The next result is due to [5] and [41]. It was also established indepen-
dently by Benedetto and Li (cf. [2]). We use below the convention that

0/0 := 0.
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Theorem 25. Let φ ∈ L2(IRd) be given. Then:

(a) E(φ) is a Bessel system if and only if φ̃ ∈ L∞(IRd). Moreover, ‖Tφ,2‖ =
‖φ̃‖L∞(IRd).

(b) Assume E(φ) is a Bessel system. Then E(φ) is a frame if and only if

1/φ̃ ∈ L∞(σ(S2(φ))). Moreover, ‖Tφ,2−1‖ = ‖1/φ̃‖L∞(IRd) (with Tφ,2−1

the pseudo-inverse of Tφ,2).
(c) Assume E(φ) is a frame. Then it is also a stable basis if and only if φ̃

vanishes almost nowhere, i.e., if and only if S2(φ) is regular.

Proof (sketch): Choosing ψ := φ in (20), we obtain that, for c ∈
`2(ZZd),

‖T ∗
φ Tφ c‖`2(ZZd) = (2π)−d/2‖φ̃2ĉ‖L2(TTd).

This yields that ‖T ∗
φ Tφ ‖ = ‖φ̃2‖L∞ , and (a) follows.

For (b), assume that 1/φ̃ is bounded on its support σ(S2(φ)), and define
ψ by

ψ̂ :=
φ̂

φ̃2
=

φ̂

[φ̂, φ̂]
.

Then ψ lies in L2(IRd). Moreover, if c ∈ `2(ZZd) and ĉ is supported in supp φ̃,
then

[ψ̂, φ̂]ĉ =
[φ̂, φ̂]

[φ̂, φ̂]
ĉ = ĉ.

In view of (20), this implies that ̂T ∗
φ Tψ is a projector (whose range consists of

all the periodic functions that are supported in σ(S2(φ))), hence that E(ψ) is
a system dual to E(φ). Also, E(φ) is a Bessel system by assumption, while
for ψ we have that

[ψ̂, ψ̂] =
[φ̂, φ̂]

[φ̂, φ̂]2
=

1

[φ̂, φ̂]
∈ L∞.

Hence, by (a), E(ψ) is a Bessel system, too. We conclude from (a) of Lemma
24 that E(φ) is a frame.

For the converse implication in (b), let E(ψ) be a Bessel system that is
dual to E(φ). Then, by (b) of Lemma 21, [ψ̂, φ̂] = 1 on its support. On the
other hand, by Cauchy-Schwarz,

[φ̂, ψ̂]2 ≤ [φ̂, φ̂][ψ̂, ψ̂].

This shows that, on supp[ψ̂, φ̂],

[φ̂, φ̂]−1 ≤ [ψ̂, ψ̂].

The conclusion now follows from (a) and the fact that E(ψ) is assumed to be
Bessel.
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As for (c), once E(φ) is known to be a frame, it is also a stable basis if
and only if Tφ,2 is injective. In view of (a) of Lemma 21 (take ψ := φ there),
and the definition of the spectrum of S2(φ), that injectivity is equivalent to
the non-vanishing a.e. of φ̃.

Note that the next corollary applies, in particular, to any compactly
supported φ ∈ L2(IRd).

Corollary 26. Let φ ∈ L2(IRd). If φ̃ is continuous, then E(φ) is a frame (if
and) only if it is a stable basis.

Proof: Since φ̃ is continuous and 2π-periodic, the function 1/φ̃ can
be bounded on its support only if it is bounded everywhere. Now apply
Theorem 25.

§3. Beyond local PSI spaces

‘Extending the theory of local PSI spaces’ might be interpreted as one
of the following two attempts. One direction is to extend the setup that is
studied; another direction is to extend the tools that were developed. These
two directions are clearly interrelated, but not necessarily identical.

When discussing more general setups, there are, again, several different,
and quite complementary, generalizations. Once such extension concerns the
application of the stability notion to p-norms, p 6= 2. This is the subject of
§3.1.

Another extension is the study of the linear independence and the related
notions in FSI spaces. This is the subject of §3.2 and §3.3.

A third extension is the extension of the notions of stability and frames
to FSI spaces. We will introduce in that context (§3.4) the general L2-tools
and briefly discuss the general approach in that direction: starting with the
bracket product, we will be led to the theory of fiberization, a theory that goes
beyond FSI spaces, and goes even beyond general SI spaces.

3.1. Lp-stability in PSI Spaces

We denote by
Tφ,p

the restriction of the synthesis operator Tφ to `p(ZZd).

Definition: p-Bessel systems and p-stable bases. Given 1 ≤ p ≤ ∞, and
φ ∈ Lp(IRd), we say that E(φ) forms
(a) a p-Bessel system, if Tφ,p is a well-defined bounded map into Lp(IRd).
(b) a p-stable basis, if Tφ,p is bounded, injective and its range is closed in

Lp(IRd).

We first discuss, in the next result, the p-Bessel property: that property
is implied by mild decay conditions on φ. We provide characterizations for
the 1- and ∞-Bessel properties, and a sufficient condition for the other cases.
As to the proofs, the proof of the 1-case is straightforward, and that of the
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∞-case involves routine arguments. The sufficient condition for the general p-
Bessel property can be obtained easily from the discrete convolution inequality
‖a∗b‖`p ≤ ‖a‖`1‖b‖`p , can also be obtained by interpolation between the p = 1
and the p = ∞ cases, and is due to [22]. Note that for the case p = 2 the
sufficient condition listed below is not equivalent to the characterization in
Theorem 25.

The following spaces, which were introduced in [22], are useful here and
later:

(27) Lp(IRd) := {f ∈ Lp(IRd) : ‖φ‖Lp(IRd) := ‖
∑
j∈ZZd

|φ(·+j)|‖Lp([0,1]d) <∞}.

Proposition 28.
(a) E(φ) is 1-Bessel iff φ ∈ L1(IRd). Moreover, ‖Tφ,1‖ = ‖φ‖L1(IRd).

(b) E(φ) is ∞-Bessel iff φ ∈ L∞(IRd). Moreover, ‖Tφ,∞‖ = ‖φ‖L∞(IRd).

(c) If φ ∈ Lp(IRd), 1 < p <∞, then E(φ) is p-Bessel and ‖Tφ,p‖ ≤ ‖φ‖Lp(IRd).

We now discuss the p-stability property. A complete characterization of
this stability property is known again for the case p = ∞ (in addition to the
case p = 2 that was analysed in Theorem 25). We start with this case, which
is due to [22].

Theorem 29. Let φ ∈ L∞(IRd). Then the following conditions are equiva-
lent:
(a) E(φ) is ∞-stable.
(b) Tφ,∞ is injective.

(c) φ̂ does not have a real 2π-periodic zero.

Proof (sketch): The implication (a)=⇒(b) is trivial, while the proof
of (b)=⇒(c) has already been outlined in Proposition 14.

(b)=⇒(a) [36]. Assuming (a) is violated, we find sequences (an)n ⊂
`∞(ZZd) such that an(0) = 1 = ‖an‖`∞(ZZd), all n, and such that Tφ an tends
to 0 in L∞(IRd). Without loss, (an)n converges pointwise to a sequence a;
necessarily a 6= 0. Since (an)n is bounded in `∞(ZZd), and since φ ∈ L∞(IRd),
it follows that Tφ an converges pointwise a.e. to Tφ a. Hence Tφ a = 0, in
contradiction to (b).

(c)=⇒(b): If (b) is violated, say, Tφ a = 0, then âφ̂ = 0. Since â is a
pseudo-measure, and φ ∈ L∞(IRd) ⊂ L1(IRd), we conclude that â is supported
in the zero set of φ̂. However, â is periodic and non-zero, hence φ̂ must have
a periodic zero.

The reader should be warned that the above reduction of stability to
injectivity is very much an L∞-result. For example, for a univariate compactly
supported bounded φ, Tφ is injective on `p(ZZ) for all p < ∞ [34], while
certainly E(φ) may be unstable (in any chosen norm). On the other hand (as
follows from some results in the sequel), assuming that φ lies in L∞(IRd), the
injectivity of Tφ,∞ characterizes the p-stability for all 1 ≤ p ≤ ∞!
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In order to investigate the stability property for other norms, we follow
the approach of [22], assume that φ̃2 = [φ̂, φ̂] is bounded away from 0 (cf.
Theorem 25), and consider the function g defined by its Fourier transform as

ĝ :=
φ̂

φ̃2
.

We have the following:

Proposition 30. Let φ, g ∈ Lp(IRd) ∩ Lp′(IRd), 1 ≤ p ≤ ∞, and p′ is its
conjugate. Assume that

(31) [φ̂, ĝ] = 1.

Then E(φ) is p-stable.

Proof (sketch): From Proposition 28 and the assumptions here, we
conclude that E(φ) as well as E(g) are p-, as well as p′-Bessel systems. Also
Poisson’s summation formula can be invoked to infer (from (31)) that

〈φ,Ejg〉 = δj,0, j ∈ ZZd,

i.e., that the shifts of g are biorthogonal to the shifts of φ.
Consider the operator

T ∗
g,p : Lp(IRd) → `p(ZZd) : f 7→ (〈f, Ejg〉)j∈ZZd .

Then, T ∗
g,p is the adjoint of the operator Tg,p′ (for p = 1 it is the restriction of

the adjoint to L1(IRd)). Since E(g) is p′-Bessel, it follows that T ∗
g,p is bounded.

On the other hand, T ∗
g,pTφ,p is the identity, hence Tφ,p is boundedly invertible,

i.e., E(φ) is p-stable.
The following result is due to [22]. We use in that result, for 1 ≤ p <∞,

the notation
Sp(φ)

for the Lp(IRd)-closure of the finite span of E(φ) (for φ ∈ Lp(IRd)).

Theorem 32. Let 1 ≤ p ≤ ∞ be given, let p′ be its conjugate exponent, and
assume that φ ∈ L := Lp(IRd) ∩ Lp′(IRd). Then:

(a) If φ̃ does not have (real) zeros, then E(φ) is p- and p′- stable. In this
case, a generator g of a basis dual to E(φ) lies in L, and, for p <∞, the
dual space Sp(φ)∗ is isomorphic to Sp′(φ).

(b) If φ̃ has a 2π-periodic zero, then E(φ) is not p-stable.

Proof (sketch): (a): Poisson’s summation yields that the Fourier
coefficients of φ̃2 are the inner products (〈φ,Ejφ〉)j∈ZZd . The assumption
φ ∈ L implies that φ ∈ L2(IRd), and that latter condition implies that the
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above Fourier coefficients are summable, i.e., φ̃2 lies in the Wiener algebra
A(TTd).

Now, if the continuous function φ̃ does not vanish, then, since φ ∈ L2(IRd),
g defined by ĝ = φ̂/φ̃2 is also in L2(IRd), and we have [φ̂, ĝ] = 1. However,
by Wiener’s Lemma, 1/φ̃2 ∈ A(TTd), too. This means that g = Tφ a for some
a ∈ `1(ZZd). From that it follows that g ∈ L and is bounded, hence, by
Proposition 30, E(φ) is p-stable. The p′-stability is obtained by symmetry,
which directly implies, for p <∞, that Sp(φ)∗ = Sp′(φ). Incidentally, we have
proved that a dual basis of E(φ) lies, indeed, in L.

We refer to [22] for the proof of (b).

Proof of the implication (c)=⇒(d) in Proposition 14: If φ
decays rapidly, φ̃ is infinitely differentiable. It, further, vanishes nowhere in
case φ̂ does not have a 2π-periodic zero. Thus, the Fourier coefficients a of
φ̃−2 are rapidly decaying, hence the function g defined by ĝ = φ̂/φ̃2 is rapidly
decaying, too.

3.2. Local FSI Spaces: Resolving Linear Dependence, Injectability

An FSI space S is almost always given in terms of a generating set Φ
for it. In many cases, the generating set has unfavorable properties. For
example, E(Φ) might be linearly dependent (in the sense that TΦ c = 0, for
some non-zero c ∈ Q(Φ), i.e.,

(33)
∑

j∈ZZd×Φ

c(j, φ)Ejφ = 0.)

Theorem 15 provides a remedy to this situation for univariate local PSI
spaces: if the compactly supported generator φ of S has linearly dependent
shifts, we can replace it by another compactly supported generator, whose
shifts are linearly independent.

The argument extends to univariate local FSI spaces, and that extension
is presented in the sequel. The essence of these techniques extend to spaces
that are not local (cf. e.g., [32]. I should warn the reader that it may not be
trivial to see the connection between the factorization techniques of [32] and
those that are discussed here; nonetheless, a solid connection does exist), but
definitely not to shift-invariant spaces in several dimensions. The attempt to
find an alternative method that is applicable in several dimensions will lead
us, as is discussed near the end of this subsection, to the notion of injectability.

We start with the following result from [5]:

Lemma 34. Let S2(Φ) and S2(Ψ) be two local FSI spaces. Then the orthog-
onal projection, of S2(Ψ) into S2(Φ), as well as the orthogonal complement
of this projection, are each local (FSI) spaces, i.e., each is generated by com-
pactly supported functions.

Proof (sketch): The key for the proof is the observation (cf. [5])
that, given any compactly supported f ∈ L2(IRd), and any FSI space S that
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is generated by a compactly supported vector Φ ⊂ L2(IRd), there exist trigono-
metric polynomials τf , (τφ)φ∈Φ such that

(35) τf P̂ f =
∑
φ∈Φ

τφφ̂.

Here, Pf is the orthogonal projection of f on S2(Φ).
Now, let g be the inverse transform of τf P̂ f . From (35) (and the fact that

Φ is compactly supported) we get that g is of compact support, too. From
(b) of Theorem 19, it follows that S2(g) = S2(Pf). Thus, S2(Pf) is a local
PSI space. Varying f over Ψ, we get the result concerning projection.

When proving the claim concerning complements, we may assume with-
out loss (in view of the first part of the proof) that S2(Ψ) ⊂ S2(Φ). Let
now P denote the orthogonal projector onto S2(Ψ). Then, by (35), given φ
in Φ, there exists a compactly supported g, and a trigonometric polynomial
τ such that ĝ = τ P̂φ. Thus also τ(φ̂ − P̂ φ) is the transform of a compactly
supported function g1 (since φ is compactly supported by assumption). By
(b) of Theorem 19, S2(g1) = S2(φ− Pφ), and the desired result follows.

The first part of the next result is taken from [5]. The second part is due
to R.Q. Jia.

Corollary 36.
(a) Every local FSI space S2(Φ) is the orthogonal sum of local PSI spaces.
(b) Every local univariate shift-invariant space S?(Φ) is generated by a com-

pactly supported Ψ whose shift set E(Ψ) is linearly independent.

Proof (sketch): Note that in part (a) we tacitly assume that Φ ⊂
L2(IRd). Let f ∈ Φ. By Lemma 34, the orthogonal complement of S2(f) in
S2(Φ) is a local PSI space. Iterating with this argument, we obtain the result.

Part (b) now follows for Φ ⊂ L2(IR): we simply write then S2(Φ) as
an orthogonal sum of local PSI spaces, apply Theorem 15, and use the fact
orthonormality implies linear independence. If Φ are merely distributions
(still with compact support), then we can reduce this case to the former one
by convolving Φ with a suitable smooth compactly supported mollifier.

In more than one dimension, it is usually impossible to resolve the de-
pendence relations of the shifts of Φ. This is already true in the case of a
single generator (cf. the discussion in §2.3.) One of the possible alternative
approaches (which I learned from the work of Jia, cf., e.g., [21]; the basic idea
can already be found in the proof of Lemma 3.1 of [23]), is to embed the given
SI space in a larger SI space that has generators with ‘better’ properties.

Definition 37. Let Φ be a finite collection of compactly supported distri-
butions. We say that the local FSI space S?(Φ) is injectable if there exists
another finite set Φ0 of compactly supported distributions so that:
(a) S?(Φ) ⊂ S?(Φ0), and
(b) Φ0 has linearly independent shifts.
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The injectability assumption is quite mild. For example, if Φ consists of
(compactly supported) functions then S?(Φ) is injectable: one can take Φ0 to
be any basis for the finite dimensional space span{χEjφ : φ ∈ Φ, j ∈ ZZd},
where χ is the support function of the unit cube.

At the time this article is written, I am not entirely convinced that the
injectability notion is the right one for the general studies of local FSI spaces,
and for several reasons. First, if some of the entries of the compactly supported
Φ are merely distributions, it is not clear how to inject S?(Φ) into a better
space. Moreover, the above-mentioned canonical injection of a function Φ
into S?(Φ0) is not smoothness-preserving. I.e., while the entries of Φ may be
smooth, the entries of Φ0 are not expected to be so. We do not know of a
general technique for smoothness-preserving injection.

My last comment in this context is about the actual notion of ‘linear
independence’. The analysis in §2.2 and §2.3 provides ample evidence that
this notion is the right one in the context of local principal shift-invariant
spaces. The same cannot be said about local finitely-generated SI spaces, as
the following example indicates.

Example. Let Φ := {φ1, φ2} be a set of two compactly supported functions,
and assume that E(Φ) is linear independent. Then, with f any finite linear
combination of E(φ1), the set {φ1, φ2+f} also has linearly independent shifts.
However, we can select f to have very large support, hence to enforce large
support on φ2 + f . Consequently, the generators of a linearly independent
E(Φ) may have as large supports as one wishes them to have, in stark contrast
with the PSI space counterpart (Theorem 13).

Thus we need, in the context of FSI space theory, a notion that is some-
what stronger than linear independence, and that takes into account the sup-
port size of the various elements, as well as an effective characterization of
this property, as effective perhaps as that of linear independence that appears
in the next section.

3.3. Local FSI Spaces: Linear Independence

Despite of the reservations discussed in the previous subsection, linear
independence is still a basic notion is the theory of local FSI spaces, and the
injectability assumption provides one at times with a very effective tool. The
current subsection is devoted to the study of the linear independence prop-
erty via the injectability tool. The basic reference on this matter is [23]. The
results here are derived under the assumption that the FSI space S?(Φ) is
injectable into the FSI space S?(Φ0) (whose generators have linearly inde-
pendent shifts). Recall from the last subsection that every univariate local
FSI space is injectable (into itself), and that, in higher dimensions, local FSI
spaces that are generated by compactly supported functions are injectable as
well. It is very safe to conjecture that the results here are valid for spaces
generated by compactly supported distributions, and it would be nice to find
a neat way to close this small gap.
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Thus, we are given a local FSI space S?(Φ), and assume that the space
is injectable, i.e., it is a subspace of the local FSI space S?(Φ0), and that Φ0

have linear independent shifts. In view of Corollary 11, we conclude that there
exists, for every φ ∈ Φ, a finitely supported cφ ∈ Q(Φ0), such that

TΦ0
cφ = φ.

We then create a matrix Γ, whose columns are the vectors cφ, φ ∈ Φ (thus
the columns of Γ are indexed by Φ, the rows are indexed by Φ0, and all the
entries are finitely supported sequences defined on ZZd).

It is useful to consider each of the above sequences as a (Laurent) poly-
nomial, and to write the possible dependence relations among E(Φ) as formal
power series. Let, thus, A be the space of formal power series in d variables.
I.e., a ∈ A has the form

a =
∑
j∈ZZd

a(j)Xj,

with Xj the formal monomial. Recall that

ZZd ⊃ supp a := {j ∈ ZZd : a(j) 6= 0}.

Let
A0

be the ring of all finitely supported d-variate power series (i.e., Laurent poly-
nomials). Given a finite set Φ, let

A(Φ)

be the free A0-module consisting of #Φ copies of A. We recall that the z-
transform is the linear bijection

Z : Q → A : c 7→
∑
j∈ZZd

c(j)Xj.

Applying the z-transform (entry by entry) to our matrix Γ above, we obtain
a matrix

M,

whose entries are in A0. We consider this matrix M an A0-homomorphism
between the module A(Φ) and the module A(Φ0), i.e.,

M ∈ HomA0(A(Φ), A(Φ0)).

It is relatively easy then to conclude the following:
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Lemma 38. In the above notations,
(a) If E(Φ) is linearly independent, then M is injective.
(b) The converse is true, too, provided that E(Φ0) is linearly independent.

Thus, the characterization of linear independence in (injectable) local FSI
spaces is reduced to the characterization of injectivity in HomA0(A(Φ), A(Φ0)).
We provide below the relevant result, which can be viewed either as a spectral
analysis result in HomA0(A(Φ), A(Φ0)), or as an extension of the Nullstellen-
satz to modules. The following result is due [23]. The Jia-Micchelli proof
reduces the statement in the theorem below to the case studied in Theorem
7 by a tricky Gauss elimination arguement. The proof provided here is some-
what different, and employs the Quillen-Suslin Theorem, [33], [47].

Discussion 39: The Quillen-Suslin Theorem. We briefly explain the
relevance of this theorem to our present setup. The Quillen-Suslin Theo-
rem affirms a famous conjecture of J.P Serre (cf. [26]) that every projective
module over polynomial ring is free. The extension of that result to Laurent
polynomial rings is mentioned in Suslin’s paper, and was proved by Swan. A
simple consequence of that theorem is that a every row (w1, . . . , wm) of Lau-
rent polynomials that do not have a common zero in (C\0)d, can be extended
to a square A0-valued matrix W which is non-singular everywhere, i.e., W (ξ)
is non-singular for every ξ ∈ (C\0)d. A very nice discussion of the above,
together with a few more references, can be found in [22].

The Nullstellensatz for Free Modules. Let A be the space of formal power
series in d-variables. Let

A0

be the ring of all finitely supported d-variate power series. Given a positive
integer n, let

An

be the free A0-module consisting of n copies of A. Let

Mm×n ∈ HomA0(A
n, Am)

be an A0-valued matrix. Then M is injective if and only if there does not
exist ξ ∈ (C\0)d for which rankM(ξ) < n.

Here, M(ξ) is the constant-coefficient matrix obtained by evaluating each
entry of M at ξ.

Proof (sketch): The ‘only if’ follows immediately from the fact that,
for every ξ as above, there exists aξ in A such that a0aξ = a0(ξ), for every
a0 ∈ A0. Indeed, if M(ξ) is rank-deficient, we can find a vector in c ∈ Cn\0
such that M(ξ)c = 0, and we get that aξc ∈ kerM .

We prove the converse by induction on n. For n = 1, we let I be the ideal
in A0 generated by the entries of the (single) column of M . If a ∈ kerM ⊂
A1 = A, then a0a = 0 for every a0 ∈ I. By an argument identical to that
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used in the proof of Theorem 7, we conclude that, if kerM 6= 0, then all the
polynomials in I must vanish at a point ξ ∈ (C\0)d, hence M(ξ) = 0.

So assume that n > 1, and that a ∈ kerM\0. We may assume without
loss that the entries of the first column of M do not have a common zero
ξ ∈ (C\0)d (otherwise, we obviously have that rankM(ξ) < n). Thus, by the
classical Nullstellensatz, we can form a combination of the rows of M , with
coefficients wi in A0, so that the resulting row u has the constant 1 in its
first entry. Then, the entries wi cannot have a common zero in (C\0)d, and
therefore (cf. Discussion 39) the row vector w := (wi) can be extended to an
m × m A0-valued matrix W that is non-singular at every ξ ∈ (C\0)d. Set
M1 := WM .

Since the (1, 1)-entry of M1 is the constant 1, we can and do use Gauss
elimination to eliminate all the entries in the first column (while preserving,
for every ξ ∈ (C\0)d, the rank of M1(ξ)). From the resulting matrix, remove
its first row and its first column, and denote the matrix so obtained by M2. M2

has n−1 columns. Also, since kerM ⊂ kerM1, we conclude that kerM2 6= {0}
(since otherwise kerM1 contains an element whose only non-zero entry is the
first one, which is absurd, since the (1, 1)-entry of M1 is 1). Thus, by the
induction hypothesis, there exists ξ ∈ (C\0)d such that rankM2(ξ) < n − 1.
It then easily follows that rankM1(ξ) < n, and since W (ξ) is non-singular, it
must be that rankM(ξ) < n, as claimed.

By converting back the above result to the language of shift-invariant
spaces, we get the following result, [23]. Note that the result is not a complete
extension of Theorem 8, due to the injectability assumption here.

Theorem 40. Let Φ be a finite set of compactly supported distributions,
and assume that S?(Φ) is injectable. Then E(Φ) is linearly dependent if and
only if there exists a linear combination φ? of Φ for which E(φ?) is linearly
dependent, too.

3.4. L2-Stability and Frames in FSI Spaces, Fiberization

One of the main results in the theory of local SI spaces is the charac-
terization of linear independence. A seemingly inefficient way to state the
PSI case (Theorem 8) of this result is as follows: ‘let φ be a compactly sup-
ported distribution, φ̂ its Fourier transform. Given ω ∈ Cd, let Cω be the
one-dimensional subspace of Q spanned by the sequence

(41) φω : 2πZZd → C : α 7→ φ̂(ω + α).

Let Gω be the map
Gω : C → Cω : c 7→ cφω.

Then Tφ is injective (i.e., E(φ) is linearly independent) if and only if each of
the maps Gω is injective’.

Armed with this new perspective of the linear independence characteri-
zation, we can now find with ease a similar form for the characterization of
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the linear independence in the FSI space setup. We just need to change the
nature of the ‘fiber’ spaces Cω: Given a finite vector of compactly supported
functions Φ, and given ω ∈ Cd, we define (cf. (41))

Cω := span{φω : φ ∈ Φ},

and

(42) Gω : CΦ → Cω : c 7→
∑
φ∈Φ

c(φ)φω.

Then, the characterization of linear independence for local FSI spaces, Theo-
rem 40 (when combined with Thoerem 8) says that TΦ is injective if and only
if each Gω, ω ∈ Cd, is injective.

The discussion above represents a general principle that turned out to be
a powerful tool in the context of shift-invariant spaces: fiberization. Here, one
is given an operator and is interested in a certain property of the operator T
(e.g., its injectivity or its boundedness). The goal of fiberization is to associate
the operator with a large collection of much simpler operators Gω (=: fibers),
to associate each one of them with an analogous property Pω, and to prove
that T satisfies P iff each Gω satisfies the property Pω (sometimes in some
uniform way).

The idea of fiberization appears implicitly in many papers on SI spaces
from the early 90’s (e.g., [22], [23], [5]). It was formalized first in [41], and was
applied in [42] to Weyl-Heisenberg systems, and in [43] to wavelet systems.
We refer to [40] for more details and references.

In principle, the fiberization techniques of [41] apply to the operator
TΦT ∗

Φ , for some (finite of countable) Φ ⊂ L2(IRd), as well as to the opera-
tor T ∗

ΦTΦ . The first approach is dual Gramian analysis, while the second is
Gramian analysis. We provide in this subsection a brief introduction to the
latter, by describing its roots in the context of the FSI space S2(Φ).

We start our discussion with the Gramian matrix G := GΦ which is
the analog of the function φ̃2 (cf. (18)). The Gramian is an L2(TTd)-valued
matrix indexed by Φ × Φ, and its (ϕ, φ) entry is

[φ̂, ϕ̂](ω) =
∑

α∈2πZZd

φ̂(ω + α)ϕ̂(ω + α).

In analogy to the PSI case (cf. the proof of Theorem 25), a dual basis for Φ
may be given by the functions whose Fourier transforms are

G−1Φ̂,

provided that the above expression represents well-defined functions.
In case Φ ⊂ L2(IRd), the entries of G, hence the determinant detG, all lie

in the Wiener algebra A(IRd). If detG vanishes nowhere, one obtains that the
functions whose Fourier transforms are given by G−1Φ̂ can be written each as
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TΦ c, for some c ∈ `1(ZZd)×Φ. The functions obtained in this way, thus, lie in
L2(IRd), and in this way, [22] extend Theorem 32 to FSI spaces: the crucial
PSI condition (that φ̃ vanishes nowhere) is replaced by the condition that the
Gramian is non-singular everywhere. That non-singularity is equivalent to the
injectivity of the map Gω (cf. (42)) for every real ω ∈ IRd.

We wish to discuss in more detail the L2-stability and frame notions, for
general Φ in L2(IRd). Then the entries of G, hence its determinant, may not
be continuous. The extension of the L2-results to FSI spaces cannot make use
of the mere non-singularity of G (on IRd). Instead, one inspects the norms of
the operators

Gω : `2(Φ) → `2(Φ) : v 7→ G(ω)v.

We also recall the notion of a pseudo-inverse: for a linear operator L on a
finite-dimensional (inner product) space, the pseudo-inverse L−1 of L is the
unique linear map for which L−1L is the orthogonal projector with kernel
kerL. If L is non-negative Hermitian (like Gω is), then ‖L−1‖ = 1/λ+, with
λ+ the smallest non-zero eigenvalue of L.

The result stated below was established in [5] (stability characterization)
and in [41] (frame characterization). The reference [5] contains a characteri-
zation of the so-called quasi-stability which is a slightly stronger notion than
the notion of a frame (and which coincides with the frame notion in the PSI
case).

In the statement of the result below, we use the norm functions

G : ω 7→ ‖Gω‖,

and
G−1 : ω 7→ ‖Gω−1‖.

Recall that Gω−1 is a pseudo-inverse, hence is always well-defined.

Theorem 43. Let Φ be a finite vector of L2(IRd) functions. Then:
(a) E(Φ) is a Bessel system (i.e., TΦ,2 is bounded) iff G ∈ L∞(IRd). Moreover,

‖TΦ,2‖2 = ‖G‖L∞ .

(b) Assume that E(Φ) is a Bessel system. Then E(Φ) is a frame iff G−1 ∈
L∞(IRd). Moreover, the square of the lower frame bound (cf. (22)) is
then 1/‖G−1‖L∞ .

(c) E(Φ) is stable iff it is a frame and in addition S2(Φ) is regular, i.e., Gω
is non-singular a.e.

§4. Refinable shift-invariant spaces

Refinable shift-invariant spaces are used in the construction of wavelet
systems via the vehicle of multiresolution analysis. It is beyond the scope
of this article to review, to any extent, the rich connections between shift-
invariant space theory on the one hand and refinable spaces (and wavelets) on
the other hand. I refer to [40] for some discussion of these connections.
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Definition 44. Let N be a positive integer. A compactly supported distri-
bution φ ∈ D′(IRd) is called N-refinable if φ(·/N) ∈ S?(φ).

Another possible definition of refinability is given on the Fourier domain:
an L2(IRd)-function φ is refinable if there exists a bounded 2π-periodic τ
such that, a.e. on IRd,

φ̂(Nω) = τ(ω)φ̂(ω).

The definitions are not equivalent, but are closely related and are both used in
the literature. We will be primarily interested in the case of a univariate com-
pactly supported L2(IR)-function φ with globally linearly independent shifts.
For such a case, the above two definitions coincide, and the mask function τ
is a trigonometric polynomial.

Our discussion here is divided into two parts: in §4.1, we present a re-
markable property of 2-refinable univariate local PSI spaces: for such spaces,
the basic property of global linear independence (that can always be achieved
by a suitable selection of the generator of the space, cf. Theorem 15) implies
the much stronger property of local linear independence. Unfortunately, this
result does not extend to any more general setup.

A major problem in the context of refinable functions is the identification
of their properties by a mere inspection of the mask function. While we do
not attempt to address that topic (this article is devoted exclusively to the
intrinsic properties of SI spaces), we give, in §4.2, a single example that shows
how the basic tools and results about SI spaces help in the study of that
problem.

4.1. Local Linear Independence in Univariate Refinable PSI Spaces

A strong independence relation is that of local linear independence (cf.
§2.3). It is well-known that univariate polynomial B-splines satisfy this prop-
erty. On the other hand, the support function of the interval [0, 1.5] is an
example of a function whose shifts are (gli) (hence (wlli)), but are not (slli),
and thus, local linear independence is properly stronger than its global coun-
terpart, even in the univariate context. It is then remarkable to note that,
for a 2-refinable univariate compactly supported φ, global independence and
local independence are equivalent.

The theorem below is due to [28]. For a function φ with orthonormal
shifts, it was proved before by Meyer, [30].

Theorem 45. Let φ be a univariate refinable function whose shifts satisfy the
local spanning property (ls) (cf. Theorem 13). Then, E(φ) is locally linearly
independent.

Proof: By Theorem 15, the local spanning property is equivalent to
the global linear independence property, and we will use that latter property
in the proof.

It will be convenient during the proof to use an alternative notation for
the synthesis operator Tφ . Thus, we set

φ∗′ : Q → S?(φ) : c 7→ Tφ c,
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i.e., φ∗′ := Tφ .
We assume that φ is supported in [0, N ] and that ψ = φ ∗′ a, with the

sequence a supported in {0, 1, 2, ..., N} (and, thus, ψ is supported in [0, 2N ]);
we also assume that the shifts of φ are locally linearly independent over some
interval [0, k], and that the even shifts of ψ are (globally) linearly independent.
Under all these assumptions, we prove that the even shifts of ψ are locally
linearly independent over [0, k], as well.

The theorem will follow from the above: for ψ := φ(·/2), the global
linear independence of E(φ) is equivalent to the global linear independence of
the even shifts of ψ. Thus, assuming the shifts of φ are locally independent
over [0, k], the above claim (once proved) would imply that the even shifts of
ψ are locally independent over that set, too, and this amounts to the local
independence of the shifts of φ over [0, k/2]. Starting with k := N − 1 (i.e.,
invoking Proposition 16), we can then proceed until the interval is as small as
we wish.

Let f =
∑
j∈ZZ b

′(2j)ψ(· − 2j). Assuming f to vanish on [0, k], we want
to show that b′(2j) = 0, −N < j < k/2. Since ψ ∈ S?(φ), f ∈ S?(φ).
Thus, f = φ∗′ c. The local linear independence of E(φ) over [0, k] implies that
c(−N + 1) = c(−N + 2) = . . . = c(k − 1) = 0. We define

f1 :=
∑
j≤−N

c(j)φ(· − j) =: φ ∗′ c1, f2 :=
∑
j≥k

c(j)φ(· − j) =: φ ∗′ c2.

Since c2 vanishes on j < k, (and assuming without loss that a(0) 6= 0), we can
find a sequence b2 supported also on j ≥ k such that c2 = a ∗ b2. Then,

f2 = φ ∗′ c2 = φ ∗′ (a ∗ b2) = (φ ∗′ a) ∗′ b2 = ψ ∗′ b2.

By the same argument (and assuming a(N) 6= 0), we can find a sequence b1
supported on {−2N,−2N − 1, ...} such that c1 = a ∗ b1, hence, as before,

f1 = ψ ∗′ b1.

Thus, we found that f = ψ ∗′ (b1 + b2), with b := b1 + b2 vanishing on
−2N < j < k. Since also f = ψ ∗′ b′, we conclude that λ := b − b′ lies in
kerψ∗′. This leads to

0 = ψ ∗′ λ = (φ ∗′ a) ∗′ λ = φ ∗′ (a ∗ λ).

Since E(φ) is linearly independent, a ∗ λ = 0. Further, λ vanishes at all odd
integers in the interval (−2N, k). If λ vanishes also at all even integers in that
interval, so does b′ and we are done, since this is exactly what we ought to
prove. Otherwise, since dim ker a∗ = N , and the interval (−2N, k) contains at
least N consecutive odd integers we must have (cf. Lemma 46 below) θ ∈ C\0
such that ±θ ∈ spec(a∗), i.e., such that the two exponential sequences

µ1 : j 7→ θj, µ2 : j 7→ (−θ)j

lie in ker a∗. But, then, µ := µ1 + µ2 ∈ ker a∗, and is supported only on the
even integers. Since ψ ∗′ µ = φ ∗′ (a ∗µ) = 0, this contradicts the global linear
independence of the 2-shifts of ψ.
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Lemma 46. Let a : ZZ → C be a sequence supported on [0, N ]. If 0 6= λ ∈
ker a∗, and λ vanishes at N consecutive even (odd) integers, then there exists
θ ∈ C\0 such that the sequences j 7→ θj , and j 7→ (−θ)j lie both in ker(a∗),
i.e., {±θ} ⊂ spec(a∗).

Proof (sketch): dim ker a∗ ≤ N . Let θ ∈ spec(a∗), and assume
that −θ is not there. Then, there exists a difference operator T supported
on N − 1 consecutive even points that maps ker a∗ onto the one-dimensional
span of j 7→ θj . Since Tλ vanishes at least at one point, it must be that λ lies
in the span of the other exponentials in ker(a∗).

Thus, for a univariate 2-refinable compactly supported function, we have
the following remarkable result (compare with Theorem 13):

Corollary 47. Let φ be a univariate 2-refinable compactly supported func-
tion. Then the properties (slli), (gli), (ldb), (ls) and (ms) are all equivalent
for this φ.

Theorem 45 does not extend to generators that are refinable by dilation
factor N 6= 2. To see that, consider, for any integer N ≥ 2 the refinable
function φN defined as follows:

φ̂N (Nω) = τN (ω)φ̂N (ω),

with the Fourier coefficients tN (k) of the 2π-periodic trigonometric polynomial
τN defined by

tN (k) :=




1/2, k ∈ {0, . . . , 2(N − 1)}\{N − 1},
1, k = N − 1,
0, otherwise.

The resulting refinable φ is supported in [0, 2], has globally linearly indepen-
dent shifts, and has linearly dependent shifts on the interval ( 1

N ,
N−1
N ), which

is non-empty for every N ≥ 3. The case N = 3 appears in [14].

4.2. The Simplest Application of SI Theory to Refinable Functions

We close this article with an example that shows how general SI theory
may be applied in the study of refinable spaces. The example is taken from
[38].

Suppose that φ is a univariate, compactly supported, N -refinable distri-
bution with trigonometric polynomial mask τ . Suppose that we would like, by
inspecting τ only, to determine whether the shifts of φ are linearly indepen-
dent. We can invoke to this end Theorem 15. By this theorem, there exists
φ0 ∈ S?(φ), such that (i): φ = Tφ0

c, for some finitely supported c (defined on
ZZ), and (ii): E(φ0) is linearly independent. One then easily conclude that
(i): φ0 is also refinable, with a trigonometric polynomial mask t, and (ii):

(48) τ = t
ĉ(N ·)
ĉ

.
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This leads to a characterization of the linear independence property of the
univariate E(φ) in terms of the no-factorability of τ in the form (48), [38].
That characterization leads then easily to the characterization of the linear
independence property in terms of the distribution of the zeros of τ [25], [38],
[50].
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