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ABSTRACT

Discrete affine systems are obtained by applying dilations to a given shift-invariant system.

The complicated structure of the affine system is due, first and foremost, to the fact that it is not

invariant under shifts. Affine frames carry the additional difficulty that they are “global” in nature:

it is the entire interaction between the various dilation levels that determines whether the system

is a frame, and not the behaviour of the system within one dilation level.

We completely unravel the structure of the affine system with the aid of two new notions:

the affine product, and a quasi-affine system. This leads to a characterization of affine frames;

the induced characterization of tight affine frames is in terms of exact orthogonality relations that

the wavelets should satisfy on the Fourier domain. Several results, such as a general oversampling

theorem follow from these characterizations.

Most importantly, the affine product can be factored during a multiresolution analysis con-

struction, and this leads to a complete characterization of all tight frames that can be constructed

by such methods. Moreover, this characterization suggests very simple sufficient conditions for

constructing tight frames from multiresolution. Of particular importance are the facts that the

underlying scaling function does not need to satisfy any a priori conditions, and that the freedom

offered by redundancy can be fully exploited in these constructions.
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Affine systems in L2(IR
d): the analysis of the analysis operator

Amos Ron and Zuowei Shen

1. Introduction

1.1. General

The present paper is the last in a series of three, all devoted to the study of shift-invariant

frames and shift-invariant stable (=Riesz) bases for L2(IR
d), d ≥ 1, or a subspace of it. In the first

paper, [RS1], we studied such bases under the mere assumption that the basis set can be written as

a collection of shifts (namely, integer translates) of a set of generators Φ. The second paper [RS2]

analyses the Weyl-Heisenberg frames and Riesz bases. In the present paper, we study applications

of the results of [RS1] to wavelet (or affine) frames. Wavelet systems are not shift-invariant, hence

the basic analysis of [RS1] cannot be directly applied to this case.

Our original intent was to write a paper on affine Riesz bases and affine frames. The present

paper, however, is devoted solely to fundamental affine frames. The primary reason is that the

fiberization techniques of [RS1] allowed us to unravel completely the complicated structure of the

analysis operator (or more precisely, of the so-called “frame operator”) of an affine system, with

less success with respect to the relevant synthesis operator. In fact, the current wavelet theory is

(implicitly) centered around the synthesis operator, since, initially, the synthesis operator seems to

be very attractive: its transformation to the frequency domain can be done by standard Fourier

analysis methods, and this leads to a very simple structure when the system is orthonormal or semi-

orthonormal. That, in our opinion, is deceptive: as soon as one attempts to study non-orthogonal

systems, the painfully complicated structure of this operator emerges, a structure which is easy to

reveal and hard to unravel. In addition, the operator does not interact well with multiresolution

constructions, in the sense that its basic component, the bracket product, cannot be factored during

the construction.

We believe that the study of the analysis operator in this paper results in the first complete

systematic intrinsic analysis of affine systems, and, to explain this point of view, we briefly compare

the typical results here to the present state-of-the-art in this field. Wavelet theory is currently

dominated by the innovative idea of multiresolution analysis (=:MRA; cf. [Ma], [Me]). By all

accounts, MRA constitutes a major breakthrough in the understanding of affine systems, and even

more importantly, for the construction of such systems, some of which seem to be inaccessible

without this machinery (with the primary example being the univariate construction of compactly

supported orthonormal affine systems with arbitrary smoothness by Daubechies in [D2]). However,

the current MRA theory suffers in several important aspects. Firstly, its main body consists of

sufficient conditions for obtaining “good” systems, and not of characterizations of such systems.

Furthermore, the typical assumptions begin with the imposition of stringent conditions on the

refinable space. Added to that, the sufficient conditions are not given intrinsically in terms of

the system, but rather, in terms of the algorithm used for its construction: Put it differently,

“good” systems, constructed by “bad” methods, are unapproachable. Secondly, almost all existing
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MRA results are about irredundant systems: not only that the additional freedom offered by

redundancy have not been successfully exploited to date, but, due to their global nature and lack

of biorthogonality relations, redundant systems remain, by and large, an unanswered challenge to

multiresolution analysis.

In contrast with the above, the results of this paper center around a new non-constructive

intrinsic analysis of affine systems. It is carried out in any spatial dimension d, for any integer

dilation matrix s, and any number of wavelets. It results in complete characterizations of fun-

damental frames and fundamental tight frames together with formulae for the associated frame

bounds. The characterizations, as well as the bound formulae, are given in terms of the norms and

inverse-norms of a certain family of constant-coefficient non-negative definite self-adjoint infinite-

order matrices, referred to hereafter as “fibers”. These characterizations, in their essence, cannot

distinguish between redundant and irredundant systems; however, other methods may then be

employed to characterize irredundancy: in the case of tight frames / orthonormal systems the ad-

ditional step is straightforward, and a complete characterization of orthonormal affine systems is

therefore obtained.

While our theory does not assume and does not suggest any constructive way for obtaining the

affine system, it reduces the analysis of systems constructed by multiresolution to simple arithmetic

calculations: the main reason for that is that the basic component of the analysis operator, the

newly defined affine product, can be factored during the MRA construction. The study of MRA

constructions can then be carried out without any a priori restrictions on the spatial dimension,

the dilation matrix, and/or the number of scaling functions. Furthermore, the scaling functions

may or may not be “good” generators for V0, the number of wavelets may be arbitrarily large

(which means that sometimes redundancy is inevitable), and the mask functions are not a-priori

restricted in any way (other than being measurable and appropriately periodic). In that generality,

we provide a complete characterization of all fundamental tight frames that can be constructed by

multiresolution. These characterizations lead to a very simple sufficient condition, given entirely in

terms of mask functions, that guarantees the construction to yield a fundamental tight frame. The

results here provide an clear evidence to the “power of redundancy”: the simple sufficient condition

is based on the ability to find a matrix whose first row is given, and whose columns are orthonormal;

redundancy allows one to have more rows than columns in that matrix. As an illustration for that

power, compactly supported tight affine frames generated by 2m univariate splines of order 2m are

constructed.

In addition, several (seemingly unrelated and none related to MRA) observations now in the

literature may be explained and thereby generalized, with the aid of the results here. To mention

few examples, Daubechies-Tchamitchian’s upper frame bound estimate, [D1], is closely related to

the bounding the `2-norm of a self-adjoint matrix by its `1-norm, while their lower frame bound

estimate corresponds to inverse-norm estimates of a diagonally dominant matrix. Daubechies’ and

Chui-Shi’s bounds in terms of a “Littlewood-Paley type expression” (see [D3], [CS2] and [CS4])

can now be understood as an attempt to estimate the norm and inverse-norm of a Hermitian

matrix in terms of its diagonal entries, while Chui-Shi oversampling results [CS1], [CS3] and [CS4],

follow at once by observing that the fibers associated with the oversampling system are, up to a

normalization factor, submatrices of those associated with the original system.
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Our theory also sheds new light on affine systems generated by band-limited wavelets. For

example, any system whose wavelets satisfy the band assumption used in [DGM] has diagonal fiber

matrices. Similarly, any system whose wavelets have the same band as Meyer’s wavelets, have

block-diagonal fiber matrices, with 2 × 2 blocks.

During the revision of this paper, we added several additional references to the reference list.

First, we became aware of the paper [H] (that was submitted before ours) where a characterization

of tight frames similar to Corollary 5.7 is proved. Second, various applications of the theory

developed here can be found in [RS3-5] and [GR]. Specifically, multivariate compactly supported

tight spline frames are constructed in [RS4], while [GR] proves the existence, for any given dilation

matrix, of compactly supported tight affine systems of arbitrarily high smoothness.

1.2. Univariate dyadic systems

We illustrate some of the main observations made in the paper by discussing them in a partic-

ularly simple setup, when the spatial dimension d is 1 (i.e., we decompose L2(IR)), and the dilations

are dyadic. We assume here basic familiarity with wavelet theory, and defer various definitions to

the main body of the article.

An affine system X ⊂ L2 is a collection of functions of the form

X =
⋃

k∈ZZ

DkE(Ψ),

where Ψ ⊂ L2(IR) is finite, E(Ψ) = ∪ψ∈ΨE(ψ) is the collection of shifts i.e., integer translates, of

Ψ, and D is the dyadic dilation operator D : f 7→
√

2 f(2·). The functions in Ψ are the generators

of X, usually referred to as (mother) wavelets. The analysis operator T ∗ is the map

T ∗ : L2 → `2(X) : f 7→ {〈f, x〉}x∈X .

The system X is a fundamental frame if T ∗ is well-defined, bounded and bounded below. A

fundamental frame is tight if, up to a scalar multiple, T ∗ is unitary. The frame bounds are the

numbers ‖T ∗‖2, and 1/‖T ∗−1‖2.

We introduce in this paper, and extensively use, the following affine product:

Ψ[ω, ω′] :=
∑

ψ∈Ψ

∞∑

k=κ(ω−ω′)

ψ̂(2kω)ψ̂(2kω′), ω, ω′ ∈ IR,

where κ is the dyadic valuation:

κ : IR → ZZ : ω 7→ inf{k ∈ ZZ : 2kω ∈ 2πZZ}.

(Thus, κ(0) = −∞, and κ(ω) = ∞ unless ω is 2π-dyadic.) Our convention is that Ψ[ω, ω′] := ∞
unless we have absolute convergence in the corresponding sum. Throughout the introduction, we

always assume that

|ψ̂(ω)| = O(|ω|−1/2−δ), near ∞, for some δ > 0,
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for every wavelet ψ ∈ Ψ. The assumption is so mild (even the Haar function satisfies it!) that we

forgo mentioning it in the formal statements of this section. Finally, we set, for r ≥ 0,

Hr := {f ∈ L2 : | supp f̂ ∩ [−r, r]| = 0}.

Since the system X is not shift-invariant, and since our fiberization techniques from [RS1]

assume this shift-invariance at their outset, we analyse X by associating it with two different shift-

invariant systems. The first, and simpler one, is the truncated affine system X0, obtained by simply

removing from X the non-shift-invariant part, i.e., the part generated by negative dilations. The

truncated system X0 is primarily useful for the analysis of Riesz basis systems (the case when T ∗

is surjective): this property cannot be lost while passing to a subsystem, and, in fact, the converse

is also true.

It is harder to study redundant fundamental frames (i.e., fundamental frames that are not

Riesz bases) with the aid of truncation, and the reason is essential: frames cannot be “locally

analysed”, meaning that X can be a frame while a subset Y ⊂ X may not be a frame (for the

closed subspace of L2 that it spans); thus, one is not likely to be able to analyse “frame properties”

of X, by analysing analogous properties of subsets of X. This also may explain the fact that,

to date, the literature on multiresolution constructions of affine systems (which are very “local”

methods in the above sense) contains a wealth of results about orthonormal affine systems, as well

as many results on Riesz basis systems, and only a handful, specific, results on frame constructions.

Partial success in connecting between the analysis operators of X and X0 is obtained upon

restricting the latter one to spaces of the form Hr, r → ∞. Our study of that limit process, which

is detailed in the paper, reveals a fundamental connection between the affine system X and another

shift-invariant system which we call the quasi-affine system associated with X, and denote by Xq.

It is obtained from X by replacing, for each ψ ∈ Ψ, k < 0, and j ∈ ZZ, the function 2k/2ψ(2k · +j)
that appears in X, by the 2−k functions

2kψ(2k(· + α) + j), α = 0, 1, . . . , 2−k − 1.

Note that, while the affine system is dilation-invariant but not shift-invariant, the situation with

the quasi-affine system is complementary.

It is obvious that “basis properties” of X (such as orthogonality) are not preserved while

passing to Xq. In contrast, the following basic result, which is a special case of Theorem 5.5, holds:

Theorem 1.1. An affine system is a fundamental frame if and only if its quasi-affine counterpart

is a fundamental frame. Furthermore, the two systems have identical frame bounds. In particular,

the affine system is tight if and only if the quasi-affine system is tight.

We then analyse the affine system X via the so-called “dual Gramian” fibers, G̃(ω), ω ∈ IRd

(which may be only almost everywhere defined) of the shift-invariant Xq, [RS1]. Each fiber G̃(ω)

is a non-negative definite self-adjoint matrix whose rows and columns are indexed by 2πZZ, and

whose (α, β)-entry is

G̃(ω)(α, β) = Ψ[ω + α, ω + β].
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Each matrix is considered as an endomorphism of `2(2πZZ) with norm denoted by G∗(ω) and inverse

norm G∗−(ω). It is understood that G∗(ω) := ∞ whenever G̃(ω) does not represent a bounded

operator, and a similar remark applies to G∗−(ω). We then conclude from Theorem 1.1 and the

results of [RS1] the following:

Theorem 1.2. Let X be an affine system generated by Ψ. Let G∗ and G∗− be the dual Gramian

norm functions defined as above. Then X is a fundamental frame if and only if G∗,G∗− ∈ L∞.

Furthermore, the frame bounds of X are ‖G∗‖L∞
and 1/‖G∗−‖L∞

.

It is easy to conclude the following from the above theorem (cf. Corollary 5.7 for the general

case):

Corollary 1.3.

(a) An affine system X generated by Ψ is a fundamental tight frame with frame bound C if and

only if

(1.4) Ψ[ω, ω] = C,

and

(1.5) Ψ[ω, ω + 2π + 4πj] = 0,

for a.e. ω ∈ IR and j ∈ ZZ.

(b) An affine system X is a complete orthonormal system if and only if (1.5) holds, (1.4) holds

with C = 1, and Ψ lies on the unit sphere of L2.

Note that the diagonal entries of the dual Gramian matrices have the form

(1.6) Ψ[ω, ω] =
∑

ψ∈Ψ

∞∑

k=−∞

|ψ̂(2kω)|2.

Thus, known estimates for the frames bounds in terms of this expression [D1], [CS1], [CS2] and

[CS3], can be accurately viewed as an estimation of the norm and the inverse norm of a non-negative

definite matrix via the inspection of its diagonal entries. Furthermore, in complete analogy to semi-

orthogonal systems, one can define here diagonal affine systems as the case when Ψ[ω, ω′] = 0, for

every ω 6= ω′. In this case, the frame bounds are entirely determined by (1.6), and a dual frame

can be conveniently constructed by “diagonal” division, i.e., dividing each ψ̂ by Ψ[ω, ω].

Several applications of the above analysis are described in the paper. Among these, we mention

here only the one concerning the construction of tight frames using multiresolution with a single

scaling function. Here, we assume φ ∈ L2 to be refinable with mask τφ, and mean that

φ̂(2·) = τφφ̂,

for some 2π-periodic τφ, limω→0 φ̂(ω) = 1 = φ̂(0), and that φ̂ decays at ±∞ at a polynomial rate

no slower than 1/2 + δ, δ > 0.
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Given any finite set Ψ in the closed linear span V1 of the half-shifts of φ(2·), it is then possible

to represent each ψ ∈ Ψ on the Fourier domain as

ψ̂(2·) = τψφ̂,

for some 2π-periodic τψ, assumed hereafter to be (essentially) bounded. We then construct a matrix

∆ which has two columns and 1 + #Ψ rows, whose φ-row is

[τφ, τφ(· + π)],

and with the other rows being

[τψ, τψ(· + π)], ψ ∈ Ψ.

Note that, importantly, we are not assuming the matrix ∆ to be square, and that no major assump-

tion has been made so far with respect to φ and τφ. The following is a special case of Corollary

6.7:

Theorem 1.7. Under the assumptions listed above, if the columns of the matrix ∆ are orthonormal

for almost every ω ∈ [0, π], then Ψ generates a fundamental tight affine frame with frame bound 1.

Note that the construction is “local” but the analysis cannot be so: The shifts of Ψ cannot be

expected in general to form a frame for V1 or a subspace of it. Note also that if Ψ is a singleton,

the matrix ∆ is 2 × 2, and the above construction can succeed only if τφ is a conjugate quadrature

filter (CQF), i.e.,

|τφ|2 + |τφ(· + π)|2 = 1, a.e.

Thus, given a CQF τφ, one may, for example, uses Mallat’s construction (see [Ma]) to yield a tight

frame generated by a single wavelet. This result (for the present particular setup) is essentially due

to [L].

We also remark that the shifts E(φ) of a refinable function φ whose refinement mask is CQF

do not necessarily form a frame of V0 := D−1V1. In fact, if, e.g., φ̂ vanishes on a null-set only (as

is the case when φ is a compactly supported, or an exponentially decaying function), then E(φ)

cannot be a redundant frame (see [RS1]). It follows then, in case the CQF mask of the refinable

φ is finite, E(φ) is a frame only when it is orthonormal. Hence, the above-detailed construction of

tight affine frames is of particular interest since it covers cases when φ is a “bad” generator of V0.

In fact, affine frames constructed by MRA from a frame E(φ) are already analysed in the present

literature; cf. [LC] and [BL].

Theorem 1.7 does not characterize all tight frames constructed by multiresolution. However,

such characterization is possible, and is given in Theorem 6.5.

Finally, the following result (which is a special case of Corollary 6.9) concerns the construction

of orthonormal systems:

Corollary 1.8. Assume that ∆ is a square matrix. Then, the tight frame constructed in Theorem

1.7 is orthonormal if and only if ‖φ‖ = 1.
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The standard current argument for constructing an orthonormal affine system from multireso-

lution, assumes that the shifts of the scaling function are orthonormal (cf. [D3]), which forces τφ to

be CQF. However, the above result shows that, given a CQF, an orthonormal system is guaranteed

by the mere assumption that the scaling function has norm 1 (recall that one cannot adjust φ to

have norm 1, since we already assume φ̂(0) = 1). Under the additional assumption that τφ is a

polynomial, this fact has been established in [D3] for the case discussed in this section, and [LLS]

for the general case.

1.3. Compactly supported tight spline frames

Our goal in this paper is confined to developing the basic theory of discrete affine systems.

Therefore, applications are discussed because they are either instrumental to wavelet theory (such

as the discussion in §6), or as an anecdotal illustration (such as the discussion in §4.3). In particular,

no part of this paper is devoted to specific constructions of wavelet systems.

However, it should be undoubtedly clear that constructing tight frames based on results like

Theorem 1.7 is extremely simple, if one is willing to use sufficiently many wavelets. The simplest

construction we are able to observe is detailed in this subsection.

Let m be a positive integer, and define τ0(ω) := cos2m(ω/2). The polynomial τ0 is the refine-

ment mask of the centered B-spline φ of order 2m:

φ̂(ω) =
sin2m(ω/2)

(ω/2)2m
.

We define 2m (2π-periodic) wavelet masks by

τn(ω) :=

√(
2m

n

)
sinn(ω/2) cos2m−n(ω/2), 1 ≤ n ≤ 2m,

and let τ := (τn)
2m
n=0. We then observe that, firstly,

〈τ(ω), τ(ω)〉 = (cos2(ω/2) + sin2(ω/2))2m = 1,

and that, secondly,

〈τ(ω), τ(ω + π)〉 = (sin(ω/2) cos(ω/2))2m(1 − 1)2m = 0.

Therefore, the 2m wavelets defined by

ψ̂n(ω) := in

√(
2m

n

)
cos2m−n(ω/4) sin2m+n(ω/4)

(ω/4)2m
, 1 ≤ n ≤ 2m,

generate a fundamental tight frame. Note that each of the wavelets is a real valued symmetric

(or anti-symmetric) function supported in [−m,m] = suppφ and is a spline of degree 2m − 1,

smoothness C2m−2, and knots at ZZ/2.
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Figure 1. The two wavelets that generate a C0 piecewise linear tight frame.

The two piecewise-linear wavelets (that correspond to the choice m = 1) are drawn is Figure

1.

The extension of the above algorithm to odd order splines is straightforward: one merely needs

to replace 2m by 2m− 1 and to insert a factor ω 7→ e−iω/2 into the definition of the various masks.

1.4. Layout of the paper

The rest of the paper is laid out as follows. In §2 we briefly discuss frames and affine systems

in L2, and in §3 present relevant material from [RS1]. In §4 we discuss the relations between an

affine system and its truncated affine system. The core of our analysis is in §5, where quasi-affine

systems are studied, and where the results of §4 are applied to yield Theorem 1.1 in its general

form. Finally, the construction of tight frames via multiresolution is the topic of §6.

2. Frames and affine frames

For a given countable subset X ⊂ L2 := L2(IR
d), the synthesis operator T := TX which is

used to reconstruct functions from discrete information is defined by

(2.1) T : `2(X) → L2 : c 7→
∑

x∈X

c(x)x.

For a general X, TX is well-defined only on the finitely supported elements of `2(X). In case it

is bounded on these finitely supported elements, it is then extended by continuity to all of `2(X).

In that event, X is said to be a Bessel system, and we refer then to the number ‖TX‖2 as the

Bessel bound of X. The adjoint of T ∗
X of TX is the analysis operator

T ∗
X : L2 → `2(X) : f 7→ (〈f, x〉)x∈X .

Of course, the Bessel bound can be equivalently defined as ‖T ∗
X‖2.

We study in this paper the following possible properties of a given system X.

Definition 2.2. Let X be a Bessel system. X is a

(a) frame if ranT is closed (equivalently, if ranT ∗ is closed).

(b) Riesz basis if it is a frame and T is 1-1; otherwise, the frame X is redundant.
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(c) fundamental frame if it is a frame and T ∗ is 1-1.

Remark. Some of the articles that deal with frames for L2(IR), reserve the notions of “frame” and

“Riesz basis” only to the case that we refer to here as a “fundamental frame” and “fundamental

Riesz basis”.

If X is a frame, the restriction of T to the orthogonal complement (in `2(X)) of kerT is

bounded below, hence invertible. This partial inverse of T is denoted here by T−1, and a similar

definition is used to define T ∗−1. For a frame X, it is customary to refer to the Bessel bound

‖T ‖2 as the upper frame bound. The complementary bound is ‖T −1‖−2 = ‖T ∗−1‖−2 and is

sometimes called the lower frame bound. Thus, in the instance of a fundamental frame, the

frame bounds are the sharpest constants in the inequalities

c‖f‖2
L2

≤ ‖T ∗f‖2
`2(X) ≤ C‖f‖2

L2
, ∀f ∈ L2.

A frame whose upper and lower bounds coincide is a tight frame. One should note that it is

usually easier to handle inverses than pseudo-inverses, and it is thus desired to study the operator

that is known to be injective; consequently, the study of a Riesz basis X is best done with the aid

of T , and the study of a fundamental frame X is best done with T ∗. Indeed, this paper focuses on

fundamental frames, and exclusively approaches the problem via T ∗.

The following elementary fact will be used in this paper as the link between tight frames and

orthonormal ones.

Proposition 2.3. Let X be a tight frame in L2 (not necessarily fundamental) with frame bound

1. Then:

(a) X lies in the closed unit ball of L2.

(b) X is orthonormal if and only if it lies on the unit sphere of L2.

Proof: Since X is assumed to be tight with bound 1, T T ∗ and T ∗T are orthogonal pro-

jectors. Thus, for every atom x ∈ X, the sequence T ∗x cannot exceed in norm the δ-sequence in

`2(X) with one-point support in x (since T ∗x = T ∗T δ, and T ∗T is orthogonal). Consequently,

‖T ∗x‖ ≤ 1, and since the value T ∗x assumes at x is ‖x‖2, we conclude that ‖x‖2 ≤ 1 with equality

only if T ∗
X\xx = 0. This proves (a), and (b) easily follows.

In order for X to be fundamental in L2, it should, necessarily, be infinite. In practice, however,

one generates X by applying certain unitary operators to one or few functions, called the gener-

ators of the system. In the context of affine (wavelet) systems, two such operators, dilation and

translation, are employed in the construction of X. Here, the dilation operator is meant as

D : f 7→ |det s|1/2f(s·),

with s a d× d invertible matrix. The matrix s is held fixed throughout the paper, and its specific

nature is usually ignored. It is only assumed to satisfy two basic properties: (i) s−1 is contractive,

and (ii) the entries of s are integer numbers. The first assumption is essential in the affine context.

The second is essential for the application of our shift-invariance methods.
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The second operator is the shift operator. Here, for a fixed invertible d×d matrix L, we define

the shift operator Ej by

Ej : f 7→ f(· + j), j ∈ LZZd,

and set, for any function set Φ,

EL(Φ) := {ELjφ : φ ∈ Φ, j ∈ ZZd}.

Since the extension of our results from the lattice ZZd to a lattice LZZd is purely notational, we always

describe our results with respect to the integer lattice. Other lattices enter the discussion only when

two different lattices are analysed simultaneously (such as in the context of oversampling).

In these terms, an affine system X consists of the orbits obtained by an application of a

discrete analog of the affine group to a finite function set Ψ:

(2.4) X := {DkEjψ = Es
−kjDkψ : ψ ∈ Ψ, k ∈ ZZ, j ∈ ZZd}.

We index the function DkEjψ by (ψ, k, j), and identify the index with the function, i.e., we set

(2.5) (ψ, k, j) := DkEjψ.

Given any discrete lattice L ⊂ IRd, the function set X is L-shift-invariant if each Ej , j ∈ L,

maps X 1-1 onto itself. The default lattice is always ZZd. In [RS1], it was showed that the synthesis

and analysis operators of any shift-invariant X can be decomposed, on the frequency domain, into

a collection of constant coefficient (usually infinite-order) matrices, “fibers”, termed there the pre-

Gramian, Gramian, and dual Gramian. It was proved that the properties of being a Bessel system,

a frame, a Riesz basis, and others, can be studied by studying an analogous property for each of the

(much simpler) fibers. More details about these fiberization techniques are given in §3. However, at

the outset of our study here, one should observe that an affine X is not invariant under any lattice

shifts, since only the s−kZZd-shifts of Dkψ are included in X, and these shifts become sparser as

k → −∞.

Notations: bracket products. The following bracket product plays a key role in the theory of

shift-invariant systems (cf. e.g., [JM], [BDR1,2], [RS1]):

(2.6) [f, g] :=
∑

j∈2πZZd

f(· + j)g(· + j), f, g ∈ L2.

Among other things, we will require the following elementary fact that follows from Parseval’s

identity:

(2.7) ‖T ∗
E(φ)f‖ = ‖[f̂ , φ̂]‖L2(TTd), f, φ ∈ L2.

In this paper, we introduce another important bracket product: the affine (or dual) bracket

product. Given Ψ ∈ L2, and a dilation matrix s, the product is defined as

(2.8) Ψ[ , ] : (ω, ω′) 7→
∑

ψ∈Ψ

∞∑

k=κ(ω−ω′)

ψ̂(s∗kω)ψ̂(s∗kω′), ω, ω′ ∈ IRd.
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Here, the κ-function is defined by

(2.9) κ : IRd → ZZ : ω 7→ inf{k ∈ ZZ : s∗kω ∈ 2πZZd}.

Note that κ(0) = −∞, and hence the diagonal of the affine product, denoted hereafter by Ψ[ ], is

Ψ[ ] : ω 7→
∑

ψ∈Ψ

∑

k∈ZZ

|ψ̂(s∗kω)|2.

Also, κ(ω) = ∞, unless ω ∈ 2πs∗kZZd for some integer k, and hence Ψ[ω, ω′] = 0, unless ω − ω′ is

s∗-adic. Furthermore, one easily observes that Ψ[ , ] is s∗-invariant, i.e.,

(2.10) Ψ[s∗ω, s∗ω′] = Ψ[ω, ω′], ∀ω, ω′.

3. Preliminaries: dual Gramian fiberization of shift-invariant systems

Given a shift-invariant system E(Φ), Φ ⊂ L2, three matrices, the pre-Gramian, the Gramian

and the dual Gramian appear in our fiberization approach in [RS1]. The most relevant to the

present context is the dual Gramian, which is a decomposition, on the Fourier domain, of the

operator TT ∗, and is a collection G̃(ω), ω ∈ IRd, of non-negative definite self-adjoint matrices. The

rows/columns of each matrix are indexed by 2πZZd (or, more generally, by the lattice dual to the

lattice of shifts that we use, viz., the lattice 2πL∗−1ZZd, if the shifts are taken from LZZd), and the

entry (α, β) of G̃(ω) is

G̃(ω)(α, β) =
∑

φ∈Φ

φ̂(ω + α)φ̂(ω + β).

The matrix G̃(ω) is considered as an endomorphism acting on `2(2πZZd). (Initially, however, we

cannot even assert that the entries of G̃(ω) are well-defined in the sense that their sum converges

absolutely, let alone that G̃(ω) represents a bounded endomorphism of `2(2πZZd).)

The following theorem summarizes some of dual Gramian results (cf. Corollary 3.2.2, Theorem

3.3.5, and Theorem 3.4.1 of [RS1]).

Theorem 3.1. Let X be a system that consists of the shifts of some Φ ⊂ L2, with a dual Gramian

G̃. Consider the following functions (if the underlying operator is not well-defined or is unbounded,

its norm equals ∞, by definition):

G∗ : IRd → IR+ : w 7→ ‖G̃(w)‖ ,

G∗− : IRd → IR+ : w 7→ ‖G̃(w)−1‖ .

Then the following is true.

(a) The following conditions are equivalent:

(i) X is a Bessel system.

(ii) G∗ ∈ L∞.

Furthermore, the Bessel bound of X is ‖G∗‖L∞
.
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(b) Assume X is a Bessel system. Then the following conditions are equivalent.

(i) X is a fundamental frame.

(ii) G∗− ∈ L∞.

Furthermore, the lower frame bound is then 1/‖G∗−‖L∞
.

(e) Assume X is a fundamental frame . Then the following conditions are equivalent:

(i) X is a tight frame.

(ii) G̃ = CI a.e. for some constant C (with I the identity matrix).

Furthermore, C is then the frame bound of X.

4. Truncated affine systems

4.1. The connection between an affine system and its truncated counterpart

Let X be a an affine system (cf. (2.4)). Given an integer k, the truncated affine system Xk

is defined by

(4.1) Xk := {(ψ, k′, j) = Dk′Ejψ ∈ X : k′ ≥ −k},

(cf. (2.5)). It is clear that Xk is sk-shift-invariant. We set Xk− := X\Xk, and abbreviate T := TX ,

Tk := TXk
, and Tk− := TXk−

. For any k, a natural isometry between the spaces `2(X0) and `2(Xk)

is given by

(V kc)(ψ, n, j) := c(ψ, k + n, j).

It is evident that

(4.2) T0 = DkTkV
k.

Since the maps V k, Dk are norm-preserving, the above relation reveals a rigid connection between

the Bessel property and/or Riesz basis property ofX andX0 (see below). The analysis of redundant

frames via the above approach is harder: X can be a frame (fundamental or not) while X0 is not.

To overcome this difficulty, we investigate the restriction of the analysis operator to subspaces of L2.

We note that the following theorem and its subsequent corollary hold for general dilation-invariant

systems.

Theorem 4.3. Let X be a an affine system.

(a) X is a Bessel system if and only if Xk is so, for some/any k. Furthermore, ‖T‖ = ‖Tk‖.
(b) X is a Riesz basis if and only if Xk is so, for some/any k. Furthermore, ‖T−1‖ = ‖Tk−1‖.
(c) Assume that X is a Bessel system, let H be some subspace of L2(IR

d), and let H ′ be the closure

of ∪k∈ZZD
kH. If, for some k, T ∗

k is bounded below on D−kH, then T ∗ is bounded below on

H ′, and

‖T ∗
|H′

−1‖ ≤ ‖T ∗
k|H

−1‖.
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Proof: The relation (4.2) proves that Tk0 is bounded (invertible) for some k0, if and only

if Tk is so for every k, and the norms are identical in such a case. The claims in (a,b) now easily

follow from the facts that (i) the boundedness and invertibility of T are determined by its action

on the finitely supported sequences in `2(X), and (ii) each such sequence lies in some `2(Xk), for

sufficiently large k.

In the proof of (c), we assume, without loss, that k = 0, and first note that, in view of (a), it

may be assumed without loss that X and X0 are Bessel systems. Now, (4.2) implies that

T ∗
0 = V −kT ∗

kD
−k.

Therefore, T ∗
0 is bounded below onH if and only if T ∗

k is bounded below onD−kH, and furthermore,

‖(T ∗
0 |H )−1‖ = ‖(T ∗

k |
D−kH

)−1‖.

The boundedness below of T ∗
k |

D−kH
implies the boundedness below of the restriction T ∗

|
D−kH

of

T ∗ to D−kH, and thus

‖(T ∗
|
D−kH

)−1‖ ≤ ‖(T ∗
k |

D−kH
)−1‖ = ‖(T ∗

0 |H )−1‖.

Since k here is arbitrary, (c) follows.

In general, it is hard for us to apply (c) of Theorem 4.3 for the derivation of explicit conditions

for X to be a frame. However, for one specific choice of H, our tools apply. This special, yet very

important, case is described in the next result.

Corollary 4.4. Let

(4.5) Hr := {f ∈ L2(IR
d) : supp f̂ ⊂ IRd\Ωr},

and where Ωr the ball of radius r around the origin. Then X is a fundamental frame if, for some

r ≥ 0, T ∗
0 is bounded, and is also bounded below on Hr. Also, with T ∗

0,r the restriction of T ∗
0 to

Hr,

‖T ∗−1‖ ≤ ‖T ∗
0,r

−1‖.

Proof: By (a) of Theorem 4.3, T ∗ is bounded if and only if T ∗
0 is bounded, and therefore,

we may assume without loss that X is a Bessel system here. Now, we invoke (c) of Theorem 4.3,

for the choice H := Hr. Since s∗−1 is contractive, D−1Hr ⊃ Hδr, for some δ < 1. Therefore,

∪n∈ZZD
nHr is the space of all functions whose Fourier transform vanishes on some neighborhood of

the origin. Since this space is dense in L2(IR
d), we obtain that T ∗ is bounded below on the entire

L2(IR
d), i.e., that X is a fundamental frame.
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The converse of the above result is valid as well, but requires us to impose a decay condition

(at ∞) on Ψ̂ (with Ψ the generating set of X), which we consider as very mild. To describe this

assumption, set, for every k ∈ ZZ+,

Ak := {α ∈ 2πZZd : |α| > 2k},

and

c(ψ, k) := ‖
∑

α∈Ak

|ψ̂(· + α)|2‖L∞([−π,π]d).

Our decay assumption on Ψ̂ is as follows:

(4.6)
∑

ψ∈Ψ

∞∑

k=0

c(ψ, k) <∞.

It is elementary to prove that (4.6) is satisfied once ψ̂(ω) = O(|ω|−ρ), as ω → ∞, for some ρ > d/2,

and every ψ ∈ Ψ. However, there are examples (e.g., Haar wavelets in several dimensions) that

satisfy (4.6) while violating that simpler, yet stronger, decay assumption. Whence our decision to

stick to the more complicated (4.6).

With the additional assumption (4.6), the condition stated in Corollary 4.4 is equivalent to X

being a fundamental frame.

Lemma 4.7. Let X be a fundamental affine frame, generated by a finite set Ψ (cf. (2.4)) that

satisfies (4.6). Then, for every ε > 0, there exists a sufficiently large r such that T ∗
0 is bounded

below on Hr, and

‖T ∗
0,r

−1‖ ≤ ‖T ∗−1‖ + ε.

Proof: First, since X is assumed to be a frame, X is a Bessel system, hence X0 is a Bessel

system, too, by virtue of Theorem 4.3.

Let T ∗
0,r (T ∗

0−,r respectively) be the restriction of T ∗
0 (T ∗

0− resp.) to Hr. Clearly, for every

f ∈ Hr,

(4.8) ‖T ∗f‖2 = ‖T ∗
0,rf‖2 + ‖T ∗

0−,rf‖2.

We will show that

(4.9) ‖T ∗
0−,r‖

r→∞
−→ 0.

However, since X is a fundamental frame, we conclude from (4.8) that for every f ∈ Hr,

‖T ∗
0,rf‖2 = ‖T ∗f‖2 − ‖T ∗

0−,rf‖2 ≥ ‖T ∗−1‖−2‖f‖2 − ‖T ∗
0−,r‖2‖f‖2.

Thus, given any ε > 0, we can choose r sufficiently large to obtain that T ∗
0,r is bounded below and

that

‖T ∗
0,r

−1‖ ≤ ‖T ∗−1‖ + ε.
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Thus, we only need prove (4.9), and, clearly, we may assume there that Ψ is a singleton {ψ},
as we do, indeed. Here, we fix k < 0, set Yk := DkE(ψ), and compute that (cf. (2.7))

‖T ∗
Yk
f‖2 =

∑

α∈ZZd

|〈DkEαψ, f〉|2 =
∑

α∈ZZd

|〈Eαψ,D−kf〉|2

= ‖[ψ̂, D̂−kf ] ‖2
L2(TTd) = |det s|k‖[ψ̂, f̂(s∗k·)]‖2

L2(TTd).

Since f ∈ Hr, f̂(s∗k·) vanishes on a ball with center at the origin and radius δkr, for some δ < 1.

Thus,

|det s|k‖[ψ̂, f̂(s∗k·)]‖2
L2(TTd) ≤ |det s|k‖

∑

|α|≥δkr

|ψ̂(· + α)|2‖L∞(TTd)‖ [f̂(s∗k·), f̂(s∗k·)] ‖L1(TTd)

= ‖
∑

|α|≥δkr

|ψ̂(· + α)|2‖L∞(TTd) ‖f‖2.

Since ‖T ∗
0−,rf‖2 =

∑
k<0 ‖T ∗

Yk
f‖2, we therefore conclude that

‖T ∗
0−,r‖2 ≤

∑

k<0

‖
∑

|α|≥δkr

|ψ̂(· + α)|2‖L∞(TTd).

Selecting r = δ−k
′

, k′ ∈ ZZ+, the above sum becomes

(4.10)
∑

k>k′

‖
∑

|α|≥δ−k

|ψ̂(· + α)|2‖L∞(TTd).

Since we assume (4.6), this last expression is recognized as the tail of a convergent series, hence

can be made arbitrarily small by choosing large k′ (i.e., large r).

We summarize our findings concerning the connections between the frame properties of an

affine system and its truncated counterpart in the following theorem.

Theorem 4.11. Let X be an affine Bessel system generated by the finite Ψ. Assume that Ψ

satisfies condition (4.6). Then X is a fundamental frame if and only if for some r ≥ 0, the

restriction T ∗
0,r of the map T ∗

X0
to Hr is bounded below. Furthermore,

‖T ∗
X

−1‖ = lim
r→∞

‖(T ∗
0,r)

−1‖.

Finally, two immediate consequences of Theorem 4.3 (that are of negative nature) are recorded

in the following corollary.

Corollary 4.12. Let X be an affine system, and X0 be its truncated counterpart. Then:

(a) X0 cannot be a fundamental Riesz basis.

(b) X0 cannot be a tight frame unless ranTX is the orthogonal sum ⊕k∈ZZ ranTXk\Xk−1
.

Proof: (a): If X0 is fundamental in L2(IR
d), then X, as a proper superset of X0, cannot

be a Riesz basis for L2(IR
d). By Theorem 4.3, X0 is not a Riesz basis, either.
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(b): Since X0 is a frame, then, by (c) of Theorem 4.3, X is a frame too, and we have

‖T‖ ≥ 1/‖T−1‖ ≥ 1/‖T0
−1‖ = ‖T0‖,

with the equality since X0 is tight, and the penultimate inequality by (c) of Theorem 4.3. Further,

(a) of that theorem guarantees ‖T‖ = ‖T0‖, and hence, we arrive at

‖T‖ = 1/‖T−1‖ = 1/‖T0
−1‖ = ‖T0‖,

which shows that X is also a tight frame, and has the same bounds as those of X0. Now, let

f ∈ ranT0. Since X and X0 are tight frames for their range, and with the same frame bounds,

and since f ∈ ranT0 ⊂ ranT , we obtain that ‖T ∗f‖ = ‖T ∗
0 f‖. On the other hand, ‖T ∗f‖2 =

‖T ∗
0 f‖2 + ‖T ∗

0−f‖2. Thus, we conclude that T ∗
0− vanishes on ranT0, and the result now easily

follows.

There are examples (some can be constructed based on the biorthogonal wavelets obtained

in [CDF]) of an affine system X whose corresponding truncated system X0 is a frame, for which,

nonetheless, ranT is not the orthogonal sum ⊕n∈ZZ ranTXn\Xn−1
. This means that ‘tightness

assumption’ in (b) of the above corollary cannot be removed.

4.2. Dual Gramian analysis of truncated affine systems

In order to compute the dual Gramian G̃0 of the shift-invariant X0, we need choose a suitable

set Φ for which X0 = E(Φ). For that, we let Γk be the quotient group

Γk := ZZd/skZZd.

The same notation also stands for any set of representers for this group. Note that Γk is of order

|det s|k, and, of course, the fact that s is an integer matrix is essential here. Then, the set Φ is

defined as

Φ = {(ψ, k, γ) := DkEγψ : ψ ∈ Ψ, k ≥ 0, γ ∈ Γk}.

It is straightforward to see that, indeed, the shift-invariant set E(Φ) generated by Φ is exactly the

truncated set X0.

Next, we observe that the Fourier transform of the function φ = (ψ, k, γ) is the function

φ̂ = Dk
∗(eγψ̂) = es−kγD

k
∗ ψ̂, D∗ : f 7→ |det s|−1/2f(s∗−1·), eγ : ω 7→ eiγ·ω,

and thus the (α, β) ∈ 2π(ZZd × ZZd)-entry of G̃0(ω) has the form

G̃0(ω)(α, β) =
∑

ψ∈Ψ

∑

k≥0

Dk
∗ ψ̂(w + α)Dk

∗ ψ̂(w + β)
∑

γ∈Γk

es−kγ(α− β).

The exponential sum is zero unless es∗−k(α−β) is the identity character of Γk, i.e., unless −k ≥
κ(α− β) (cf. (2.9) for the definition of κ). Consequently,

G̃0(ω)(α, β) =
∑

ψ∈Ψ

0∑

k=κ(α−β)

ψ̂(s∗k(ω + α))ψ̂(s∗k(ω + β)).
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Defining the m-order truncated affine product by

Ψm[ω, ω′] :=
∑

ψ∈Ψ

m∑

k=κ(ω−ω′)

ψ̂(s∗kω)ψ̂(s∗kω′),

we can write then

(4.13) G̃0(ω)(α, β) = Ψ0[ω + α, ω + β].

Recall that some of the main results of this section are in terms of the restriction T ∗
0,r of T ∗

X0

to Hr. From the dual Gramian representation as detailed in [RS1], we easily conclude that the

assumption f ∈ Hr renders all α-rows and α-columns of the dual Gramian G̃0(ω) (viewed, say, as

a quadratic form) inactive, in the case |ω+α| ≤ r. This means that the fibers of the dual Gramian

representation of T ∗
0,r are the matrices

G̃0,r(ω), ω ∈ IRd,

that are obtained from G̃0(ω) by retaining the entries (α, β) for which |ω + α|, |ω + β| > r, and

removing all other entries.

We thus conclude from Theorem 3.1 and Theorem 4.11 the following result:

Theorem 4.14. Let X be an affine system generated by Ψ. Let G̃0(ω), and G̃0,r(ω), ω ∈ IRd, be

the dual Gramian fibers of T ∗
X0

, and T ∗
0,r as detailed above. Set:

(4.15) G∗
0 (ω) := ‖G̃0(ω)‖, G∗−

0,r (ω) := ‖G̃0,r(ω)−1‖.

Then:

(a) X is a Bessel system iff G∗
0 ∈ L∞. Furthermore, the Bessel bound of X is then ‖G∗

0‖L∞
.

(b) Assume X is a Bessel system. If, for some r ≥ 0, G∗−
0,r ∈ L∞, then X is a fundamental frame

and its lower frame bound c satisfies

(4.16) 1/c ≤ lim
r→∞

‖G∗−
0,r‖L∞

.

(c) If (4.6) holds, and X is a fundamental frame, then G∗−
0,r ∈ L∞ for all sufficiently large r, and

equality holds in (4.16).

4.3. Oversampling

We sidetrack in this subsection to consider the problem of oversampling an affine system.

A reader interested in the core development of this article may skip this section without loss of

continuity.

Here, “oversampling” means that we replace, in the definition of X, the integer shifts ZZd by

the denser shifts that are taken from the superlattice LZZd of ZZd (thus L−1 is an integer matrix).

We denote the oversampling system by X(L).
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The variant of the oversampling problem that we consider here was initiated by Chui and Shi

[CS1], [CS3] and [CS4]: One starts with a fundamental frame X and aims at connecting between

the bounds of X and the bounds of the oversampling X(L).

We compare between the dual Gramian G̃0 of the truncated affine X0 and the dual Gramian

G̃L0 of the truncated oversampling X(L)0. The latter is computed in the same way we computed

G̃0 in §4.2, with an appropriate modification due to change of the lattice: it is now indexed by the

dual lattice of LZZd, viz., the sublattice L := 2πL∗−1ZZd of 2πZZd, and its entries are

(4.17) G̃L0 (ω)(α, β) = |detL|−1
∑

ψ∈Ψ

0∑

k=κL(α−β)

ψ̂(s∗k(ω + α))ψ̂(s∗k(ω + β)),

where

κL(α) := min{k : s∗kα ∈ L}.

Note that the only two differences between the entries here of G̃L0 , and those of the dual Gramian G̃0

of X0 are (i): the factor |detL|−1 that appears here, (ii) the different definition of the κ-function.

We thus conclude that the dual Gramian G̃L0 of X(L)0 is a submatrix of |detL|−1G̃0, provided

that the following “relative primality” condition holds:

κ = κL on L.

It is straightforward to conclude from the definition of the κ and κL that this condition is equivalent

to

(4.18) L∗−1ZZd ∩ s∗kZZd = s∗kL∗−1ZZd, ∀k ≥ 0.

Note that s∗ and L∗−1 are integer matrices.

Analogous observations are valid if we replace, for r > 0, G̃0 by G̃0,r, and G̃L0 by G̃L0,r (only

that now the comparison should be done fiber by fiber since each fiber has its own set of rows and

columns).

Since all dual Gramian matrices are non-negative definite, passing to submatrices of them is

norm-reducing as well as inverse-norm reducing. The following results are therefore immediate

from Theorem 4.14, when combined with the above observations.

Theorem 4.19. Let X be a fundamental affine frame generated by Ψ, with a dilation matrix s,

with ZZd as its lattice of shifts, and with frame bounds c, C. Let X(L) be obtained from X by

replacing ZZd by its superlattice LZZd. Assume that (4.18) holds. Then:

(a) X(L) is a fundamental frame with upper frame bound ≤ |detL|−1C.

(b) If, in addition, Ψ satisfies (4.6), then the lower frame bound of X(L) is ≥ |detL|−1c.

(c) In particular, if (4.6) holds and X is tight, then X(L) is tight, too.

Examples.

(1). If d = 1, s = m, and L = 1/n, condition (4.18) reads as

nZZ ∩mkZZ = mknZZ,
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and is clearly equivalent to the relative primality of m,n. Thus, this special case of Theorem 4.19

generalizes the corresponding theorem of [CS3].

(2). More generally, let M be the left-hand-side of (4.18), and let µ be the determinant of (any

basis for) M; also, let a := det s, l := detL−1. Then, on the one hand, µ must be divisible by

l.c.m(ak, l), while, on the other hand, since M is certainly a superlattice of the right-hand-side of

(4.18), the equality (4.18) is equivalent to |µ| = |akl|. Thus, (4.18) must hold in case det s and

detL−1 are relatively prime:

Corollary 4.20. Theorem 4.19 holds if we make there, instead of (4.18), the stronger assumption

g.c.d(det s,detL−1) = 1.

The case when L is scalar in above corollary is essentially proved in [CS4].

The oversamplings discussed so far are “benign”: no fundamental change in the structure of

the system occurs while passing from X to X(L). In §6, we will briefly revisit this problem and

will consider a rather different variant: we choose there the oversampling matrix L as the inverse

of the dilation matrix.

5. Quasi-affine systems

The analysis of affine systems by truncation is very useful for computing the upper frame

bound. However, it requires a limit process for the capturing of the more challenging lower frame

bound. This is particularly painful when we would like to verify that X is tight, or that another

system, say X̃, is dual to X: we need then to verify that the dual Gramian matrices G̃0,r(ω)

converge, as r → ∞ to a scalar form; at the same time, no row or column of G̃0(ω) belongs to all

(G̃0,r(ω))r.

These difficulties are overcome by associating X with another shift-invariant system, Xq,

referred to as the quasi-affine system of X. To recall, X0 was obtained from X by truncation,

i.e., removing all elements (ψ, k, j) (as defined in (2.5)) whose index k is negative. We construct

the quasi-affine system in a more subtle way: given k < 0, rather than removing from X the

s−kZZd-shift-invariant set

{(Ψ, k,ZZd)} := {(ψ, k, j) : (ψ, j) ∈ Ψ × ZZd},

we replace it by the larger shift-invariant system

|det s|k/2{Ψ, k, skZZd}.

Thus,

Xq := X0 ∪ {|det s|k/2(ψ, k, j) : ψ ∈ Ψ, k < 0, j ∈ skZZd}.

Our analysis of truncated systems was independent of their dual Gramian analysis: Only after

the main results were established, we converted them into dual Gramian language. In contrast,

the dual Gramian of the quasi-affine system is our main tool in the derivation of the connections

between the affine X and the quasi-affine Xq, hence need be computed at this stage.
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In order to compute the dual Gramian G̃q of Xq, we write the quasi-affine system as the union

Xq = X0 ∪ Y1 ∪ Y2 ∪ . . . ,

with

Yk = |det s|−k/2E(D−kΨ).

Since we have already computed in the previous section the dual Gramian G̃0 of X0, it remains to

compute the dual Gramian of ∪k≥1Yk. The natural generators for Yk (as a shift-invariant system)

are Φk := |det s|−k/2D−kΨ, whose Fourier transforms are Ψ̂(s∗k·). This means that the (α, β)-entry

of the dual Gramian of Xq\X0 is

∑

ψ∈Ψ

∞∑

k=1

ψ̂(s∗k(ω + α))ψ̂(s∗k(ω + β)) = Ψ[ω + α, ω + β] − Ψ0[ω + α, ω + β].

Therefore, we obtain from the representation (4.13) of G̃0 the following result:

Proposition 5.1. Given a quasi-affine system Xq generated by Ψ, the (α, β)-entry of the dual

Gramian G̃q(ω) of Xq is the affine product Ψ[ω + α, ω + β].

We denote by G∗
q (ω) the norm of the fiber G̃q(ω), and by G∗−

q (ω) the norm of its inverse (with

the usual convention that these numbers can be infinite). Theorem 3.1 affirms that Xq is a Bessel

system if and only if G∗
q ∈ L∞, and that Xq is a fundamental frame if and only if G∗

q ,G∗−
q ∈ L∞.

The key then to the connection between Xq and X lies in the following lemma:

Lemma 5.2. Let Xq be a quasi-affine system, and let r ≥ 0. Let T ∗
Xq be the analysis operator of

Xq, and let T ∗
q,r be its restriction to Hr. Then:

(a) Xq is a Bessel system (i.e., T ∗
Xq is bounded) if (and only if) T ∗

q,r is bounded. The Bessel bound

of Xq is then ‖T ∗
q,r‖2.

(b) Assume Xq is Bessel. Then, Xq is a fundamental frame if (and only if) T ∗
q,r is bounded below

(hence invertible). Furthermore, the lower frame bound of Xq is then ‖T ∗
q,r

−1‖−2.

Proof: We prove only (a). The proof of (b) is entirely analogous.

As in the case of the truncated affine system, one can easily verify that the dual Gramian

representation of T ∗
q,r is obtained by removing from G̃q(ω), for each ω ∈ IRd, all rows and columns

α for which |ω + α| > r. We denote by G̃qr(ω) the so obtained fibers. The norm of T ∗
q,r is then the

essential supremum of the map ω → ‖G̃qr(ω)‖.
Fix ω ∈ IRd\(2πZZd). Then there exists a positive integer k such that, with ωk := s∗kω,

(5.3) dist(ωk, 2πs
∗kZZd) > r.

Using the s∗-invariance of the affine bracket product (2.10), we see that

G̃q(ω)(α, β) = G̃q(ωk)(s
∗kα, s∗kβ);
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i.e., G̃q(ω) coincides with the submatrix of G̃q(ωk) that corresponds to the indices 2πs∗kZZd. More-

over, thanks to (5.3), that submatrix in not only a submatrix of G̃q(ωk) but also of the smaller

matrix G̃qr(ωk). Since passing to a submatrix is norm-reducing (as well as inverse-norm reducing,

as needed for the proof of (b)) on non-negative definite matrices, we therefore conclude that

G∗
q (ω) := ‖G̃q(ω)‖ ≤ ‖G̃qr(ωk)‖ ≤ ‖T ∗

q,r‖2.

This being true for almost every ω (i.e., every ω with the exclusion of the null-set 2πZZd), we

conclude that

‖T ∗
Xq‖2 = ‖G∗

q‖L∞
≤ ‖T ∗

q,r‖2.

Since increasing the domain of any operator can only increase its norm, the converse implication

and inequality are trivial. This proves (a).

The above lemma shows that, when analysing a quasi-affine system, we may safely restrict

attention to any space of the form Hr. The next lemma (which is closely related to Lemma 4.7)

states that, in that event, the difference between the quasi-affine Xq and the truncated affine X0

is “negligible”.

Lemma 5.4. Let Xq be a quasi-affine system generated by Ψ. Assume that Ψ satisfies (4.6).

Then, for every ε > 0, there exists sufficiently large r, such that, with Y := Xq\X0, and with T ∗
Y,r

the restriction of T ∗
Y to Hr,

‖T ∗
Y,r‖ < ε.

We postpone the proof of the lemma to the end of this section, and move to the main theorem

of this paper.

Theorem 5.5. Let X be an affine system generated by Ψ, and let Xq be its quasi-affine counter-

part. Assume that Ψ satisfies (4.6). Then:

(a) X is a Bessel system if and only if Xq is a Bessel system. Furthermore, the two systems have

the same Bessel bound.

(b) X is a fundamental frame if and only if Xq is a fundamental frame. Furthermore, the two

systems have the same frame bounds.

In particular, X is a fundamental tight frame if and only if Xq is a fundamental tight frame.

Proof: (a): If Xq is a Bessel system with Bessel bound Cq, then certainly its subset X0 is

a Bessel system with Bessel bound C ≤ Cq. Invoking Theorem 4.3, we conclude that X is a Bessel

system, too, and its Bessel bound is C, as well, hence is ≤ Cq. Note that we have not used (4.6) in

this part of the proof.

Conversely, assume that X is a Bessel system with bound C. Then, Theorem 4.3, X0 is a

Bessel system, too, and with the same bound C; a fortiori, T ∗
0,r (=the restriction of T ∗

X0
to Hr)

is bounded, and its norm is ≤
√
C, for whatever r we choose. We now choose r large enough to

ensure that, Lemma 5.4, ‖T ∗
Y,r‖2 ≤ ε, with T ∗

Y,r as in that lemma. Consequently, for every f ∈ Hr,

‖T ∗
Xqf‖2 = ‖T ∗

X0
f‖2 + ‖T ∗

Y f‖2 ≤ (C + ε)‖f‖2.
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This proves that the restriction of T ∗
Xq to Hr is bounded (and its norm is ≤

√
C + ε), which implies,

Lemma 5.2, that Xq is a Bessel system with bound ≤
√
C + ε. Since ε was arbitrary, we obtain

the desired result.

(b): in view of (a), we may assume without loss that Xq and X are Bessel systems with the

same Bessel bounds. Now, suppose that Xq is a fundamental frame, with lower frame bound cq.

Invoking Lemma 5.4, we find r sufficiently large such that, in that lemma’s notations, ‖T ∗
Y,r‖2 ≤ ε.

Then, for every f ∈ Hr,

‖T ∗
X0
f‖2 = ‖T ∗

Xqf‖2 − ‖T ∗
Y f‖2 ≥ (cq − ε)‖f‖2.

Assuming, without loss, that cq − ε > 0, Theorem 4.11 can be invoked to yield that that T ∗
X is a

fundamental frame, and with frame bound c ≥ cq − ε. Thus, c ≥ cq.

Finally, we assume that X is a fundamental frame and with lower frame bound c. Theorem

4.11 then implies that, for any given ε, we can find r such that

‖T ∗
X0
f‖2 ≥ (c− ε)‖f‖2, ∀f ∈ Hr.

Since Xq is a superset of X0, then we trivially obtain from the above that

‖T ∗
Xqf‖2 ≥ (c− ε)‖f‖2, ∀f ∈ Hr.

Thus, T ∗
Xq is bounded below on Hr, therefore, Lemma 5.2, Xq is a fundamental frame with lower

frame bound ≥ c− ε. We conclude that cq ≥ c, and this completes the proof of (b).

Theorem 5.5, when combined with Theorem 3.1, provides the following complete characteri-

zation of fundamental affine frames:

Theorem 5.6. Let X be an affine system generated by Ψ. Assume that Ψ satisfies (4.6). Let

G̃q be a dual Gramian of the associated quasi-affine system, as described in Proposition 5.1, with

norm-function G∗
q , and inverse-norm function G∗−

q . Then:

(a) X is a Bessel system if and only if G∗
q ∈ L∞. Furthermore, the Bessel bound is ‖G∗

q‖L∞
.

(b) X is a fundamental frame if and only if G∗
q ,G∗−

q ∈ L∞. Furthermore, the lower frame bound

is 1/‖G∗−
q ‖L∞

.

Our characterization of (fundamental) tight affine frames is now immediate: by Theorem 3.1

and Theorem 5.5, X is fundamental and tight if and only if the dual Gramian G̃q is a.e., the scalar

matrix CI, with C the frame bound, i.e., if and only is Ψ[ω, ω′] = Cδω,ω′ . However, there are

essentially only two cases here: the diagonal case ω = ω′, and the case when κ(ω − ω′) = 0. The

other required conditions are easily derived from this latter case using the affine invariance (2.10)

of the affine product.

Corollary 5.7. Let X be an affine system generated by Ψ. Assume that (4.6) holds. Then X is

a fundamental tight frame if and only if, for almost every ω, ω′ ∈ IRd,

Ψ[ω, ω′] = Cδω,ω′ ;
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equivalently,

Ψ[ω, ω] = C, and Ψ[ω, ω + α] = 0, for a.e. ω, and every α ∈ 2π(ZZd\s∗ZZd).

Remark. The “diagonal condition” in the above characterization is

Ψ[ω, ω] =
∑

ψ∈Ψ

∑

k∈ZZ

|ψ̂(s∗kω)|2 = C.

This, indeed, is well-known as a necessary condition for a tight frame (cf. [D3]).

Remark. The last corollary implies that functions Ψ whose Fourier transforms are positive a.e.

cannot generate tight frames.

From the characterization of tight frames, one obtains the following useful characterization of

orthonormal wavelets.

Corollary 5.8. Let X be an affine system generated by Ψ. Assume that (4.6) holds. Then the

following statements are equivalent:

(i) The affine set X is an orthonormal basis of L2(IR
d).

(ii) Each ψ ∈ Ψ has norm 1, and

Ψ[ω, ω] = 1, and Ψ[ω, ω + α] = 0, for a.e. ω, and every α ∈ 2π(ZZd\s∗ZZd).

Proof: Obviously, X lies on the unit sphere of L2 whenever Ψ does so. Therefore, the

result follows directly from Corollary 5.7 and Proposition 2.3.

Remark. It is important to understand that, even if X forms an orthonormal basis for L2, X
q

is still only a tight frame: irredundancy is lost while passing from X to Xq! On the other hand,

if X, indeed, is orthonormal and fundamental, then the shift-invariance of X0 implies that not

only X0 ⊥ (X\X0), but also, X0 ⊥ (Xq\X0). This means that, not only Xq is tight for L2,

but also Xq\X0 is a tight frame for the orthogonal complement X⊥
0 of X0. In case X is derived

from multiresolution, X⊥
0 is the familiar scaling function space V0. Hence we obtain the following

oversampling result:

Corollary 5.9. If Ψ is a collection of orthonormal wavelets constructed with respect to a scaling

function space V0, and if they satisfy (4.6), then the shift-invariant system

{|det s|k/2EjDkψ : ψ ∈ Ψ, j ∈ ZZd, k < 0}

is a tight frame for V0.

Note that the corollary does not assume any particular way for obtaining the wavelets from

the multiresolution. In fact, even the length of V0 (i.e., the minimal number of scaling functions

whose shifts span V0) is only assume here to be finite.
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Proof of Lemma 5.4. While it seems plausible that the statement here is weaker than that of

Lemma 4.7, we did not find a way to derive it directly from that lemma, hence provide a separate

(and very similar) proof. In fact, the proof does show that this is a weaker statement.

We may assume without loss that Ψ is a singleton. Then, we let Yk be the integer shifts of

|det s|k/2Dkψ. Now, we fix k < 0, and f ∈ Hr. By (2.7), ‖T ∗
Yk
f‖ = ‖[ψ̂(s∗−k·), f̂ ]‖L2(TTd). Taking

into account the fact that f ∈ Hr, we obtain from Hölder’s inequality that

‖[ψ̂(s∗−k·), f̂ ]‖2
L2(TTd) ≤ ‖

∑

|·+α|≥r

|ψ̂(s∗−k(· + α))|2 [f̂ , f̂ ]‖L1(TTd).

Since ‖[f̂ , f̂ ]‖L1(TTd) = ‖f‖2, we then conclude that

‖T ∗
Yk
f‖2 ≤ ‖

∑

|·+α|≥r

|ψ̂(s∗−k(· + α))|2‖L∞([−π,π]d) ‖f‖2

Since |s∗−k(·+ α)| > δ−kr, for some δ > 1, whenever | ·+α| > r, and since s∗−k2πZZd ⊂ 2πZZd, we

conclude that

‖
∑

|·+α|≥r

|ψ̂(s∗−k(· + α))|2‖L∞([−π,π]d) ≤ ‖
∑

|·+α|>δ−kr

|ψ̂(· + α)|2‖L∞([−π,π]d =: ck.

Now, (4.6) implies that the series
∑

k≥0 ck converges. However, for the choice r := δ−k0 , the

above argument proves that

‖T ∗
Y f‖2 =

−1∑

k=−∞

‖T ∗
Yk
f‖2 ≤

∑

k≥−k0

ck‖f‖2,

i.e., that ‖T ∗
Y,r‖ ≤

∑
k≥−k0

ck.

6. Tight frames and orthonormal bases constructed by multiresolution

Since its introduction by Mallat and Meyer (cf. [Ma], [Me]), multiresolution has always been

the prevalent approach for the construction of “good” affine systems (primarily with respect to the

dilation matrix s = 2I). In the constructions that we are aware of, the cardinality of Ψ has always

been |det s| − 1, and the major effort was devoted to selecting Ψ from the refinable space in a way

that the resulting affine system inherits the known “good” properties (orthonormality, Riesz basis)

of the shifts E(φ), where φ is the scaling function. This, however, cannot be carried over, and

need not be carried over to the frame constructions. Cannot, since there are intrinsic limitations

here. For example, [RS1] shows that the only way to obtain redundant frames of the form E(Φ),

Φ finite and compactly supported, is by adding redundant generators to a shift-invariant Riesz

basis E(Φ0). Need not, since our results suggest (and the construction in §1.3 demonstrates) that

successful constructions of affine frames, even tight ones, may be carried out under minimal or no

assumptions on the scaling function and its mask.
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Thus, our method for constructing tight frames from multiresolution does not make any pre-

assumptions on the scaling function, and, at least theoretically, should work for almost any scaling

function φ.

The results in this section equally apply to the case when the refinable space is PSI (i.e., singly

generated), or, more generally, FSI (that is, finitely generated). To simplify the presentation, we

first discuss fully the PSI case, and only then sketch the possible generalizations to FSI setups.

6.1. Multiresolution with a single scaling function

The setup is as follows: φ in L2(IR
d) is given, and V0 be the closed linear span of the shifts

E(φ) of φ. Further, φ is assumed refinable (= is a scaling function = is a father wavelet)

which means that V1 := D(V0) is a superspace of V0. The underlying idea of multiresolution is to

select, in some clever way, the generators Ψ of the affine system X from the space V1, in a way that

their shifts E(Ψ) will “complement” the shifts of φ. For notational convenience, we set

Ψ′ := Ψ ∪ (φ).

The assumption Ψ′ ⊂ V1, is equivalent, [BDR1], to the equality

(6.1) ψ̂(s∗·) = τψφ̂, ψ ∈ Ψ′,

for some measurable τ := (τψ)ψ∈Ψ′ whose components are each 2πZZd-periodic. The function τφ is

the refinement mask, and the other τψ’s are the wavelet masks.

A key role in the analysis below is played by the following 2π-periodic function, which we term

the fundamental function of multiresolution, and which is defined on IRd\(2πZZd) by

Θ(ω) :=

∞∑

k=0

Θk(ω),

with

Θk(ω) := |τΨ(s∗kω)|2
k−1∏

j=0

|τφ(s∗jω)|2,

and where

|τΨ|2 :=
∑

ψ∈Ψ

|τψ|2.

Note that the fundamental function depends on τφ, and on the aggregate τΨ, but not on the

individual wavelet masks.

In order to analyse the construction of tight frames by multiresolution, we naturally invoke

the characterization of tight frames given in Corollary 5.7. The fundamental function of multireso-

lution enters the discussion when we substitute the various masks into the relevant affine products.

Precisely, we have:
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Lemma 6.2. Assume that ω ∈ IRd, and ω′ ∈ ω + 2πZZd. If Ψ[ω, ω] and Ψ[ω′, ω′] are finite, then

(6.3) Ψ[ω, ω′] − Ψ0[ω, ω
′] = Θ(ω)φ̂(ω)φ̂(ω′).

where Ψ0[ , ] is the truncated affine product (cf. (4.13) and its preceding display). In particular,

Θ(ω) is finite.

Proof: Since we assume Ψ[ ] to be finite at ω, ω′, Hölder inequality guarantees the sum

that defines Ψ[ω, ω′] to be absolutely convergent.

Our assumption on ω′ clearly implies that τ(s∗jω) = τ(s∗jω′), for every j ≥ 0. This, combined

with the definition of Ψ and the refinability of φ readily implies that, for k ≥ 0,

∑

ψ∈Ψ

ψ̂(s∗k+1ω)ψ̂(s∗k+1ω′) = Θk(ω)φ̂(ω)φ̂(ω′).

Summing the above over k = 0, 1, 2, . . . we obtain the result.

¿From that, we get the following characterization of fundamental tight frames that can be

constructed by multiresolution. In that characterization, it is useful to consider, for a given t > 0,

the following bilinear form (defined on CΨ′

):

〈v, v′〉t := tvφv
′
φ +

∑

ψ∈Ψ

vψv′ψ ,

and to abbreviate

(6.4) Z := 2π(s∗−1ZZd/ZZd).

Theorem 6.5. Let φ be a refinable function, Ψ a finite set of wavelets, and τ the corresponding

refinement-wavelet mask as above. Assume that (i) φ satisfies (4.6), (ii) φ̂(0) := limω→0 φ̂(ω) = 1,

and (iii) the mask τ is essentially bounded. Then Ψ generates a fundamental tight affine frame

with bound C if and only if the following two conditions hold:

(a) For a.e. ω, limn→−∞ Θ(s∗nω) = C.

(b) For a.e. ω, ω′ ∈ IRd, if κ(ω − ω′) = 1, then

〈τ(ω), τ(ω′)〉Θ(s∗ω) = 0,

unless φ̂ vanishes identically on either ω + 2πZZd or ω′ + 2πZZd.

In particular, in case Θ = 1 a.e., X is a fundamental tight affine frame if the vectors τ and Eντ

are perpendicular a.e., for every ν ∈ Z\0.

Proof: We invoke Corollary 5.7 (the fact that Ψ satisfies (4.6) follows from assumptions

(i) and (iii) of the present theorem). We start with the studying of the diagonal affine product

Ψ[ω, ω]. Since, for all n ∈ ZZ,

Ψ[s∗nω, s∗nω] − Ψ0[s
∗nω, s∗nω] =

∑

ψ∈Ψ

∑

k>0

|ψ̂(s∗n+kω)|2 = Ψ[ω, ω] − Ψn[ω, ω],
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we obtain from Lemma 6.2 (after noting that (6.3) holds as long as the left hand side of that

identity is well defined) that

Ψ[ω, ω] − Ψn[ω, ω] = Θ(s∗nω)|φ̂(s∗nω)|2.

Letting n → −∞, we conclude (from the fact that φ̂(0) = 1) that Ψ[ω, ω] = limn→−∞ Θ(s∗nω).

Thus, the diagonal condition in Corollary 5.7 is equivalent to assumption (a) here.

Next, adopting (a) (without loss), we know that Ψ[ ] is finite a.e., and hence we may invoke

now Lemma 6.2 to conclude that, if ω, ω′ ∈ IRd, and κ(ω − ω′) = 0, then

Ψ[ω, ω′] = Θ(ω)φ̂(ω)φ̂(ω′) +
∑

ψ∈Ψ

ψ̂(ω)ψ̂(ω′).

We iterate now once again with the refinement equation and the wavelet definition to obtain:

(6.6) Ψ[ω, ω′] = 〈τ(s∗−1ω), τ(s∗−1ω′)〉Θ(ω) φ̂(s∗−1ω)φ̂(s∗−1ω′).

Now, fix ω0 ∈ IRd and ν ∈ 2π(ZZd\s∗ZZd). We vary ω over ω0 + 2πs∗ZZd, and we vary ω′ over

ω0+ν+2πs∗ZZd. Regardless of the specific choice of ω, ω′, κ(ω−ω′) = 0, and the above computation

of Ψ[ω, ω′] is valid. Furthermore,

〈τ(s∗−1ω), τ(s∗−1ω′)〉Θ(ω) = 〈τ(s∗−1ω0), τ(s
∗−1(ω0 + ν))〉Θ(ω).

Thus, for Ψ[ω, ω′] to be 0 for each of the above ω, ω′ it is necessary and sufficient that one of

the following holds: either φ̂ vanishes on s∗−1ω0 + 2πZZd = s∗−1ω + 2πZZd, or φ̂ vanishes on

s∗−1(ω0+ν)+2πZZd = s∗−1ω′+2πZZd, or 〈τ(s∗−1ω), τ(s∗−1ω′)〉Θ(ω) = 0. Since κ(s∗−1ω−s∗−1ω′) =

1, this triple condition is equivalent to (b).

If Θ = 1 almost everywhere, then (a) certainly holds. Furthermore, in this case 〈, 〉Θ(ω) is

the usual inner product, and hence the perpendicularity assumption assumed on τ implies the

satisfaction of (b) as well, hence X is a tight frame.

Note that the theorem allows the construction of tight frames in two steps: in the first, one

determines the aggregate |τΨ|, to guarantee, say, that Θ = 1 (or, at least, that (a) holds). Only

then, one may proceed to construct the individual masks (τψ) with the given aggregate |τΨ|, so

that they satisfy the orthogonality condition (b).

In practice, it may be hard to select (τψ)ψ so that the fundamental function Θ is 1. For

this reason, it is worth emphasizing the following important special case of Theorem 6.5, of which

Theorem 1.7 is still a special case:

Corollary 6.7. Let φ be a refinable function, Ψ a finite set of wavelets, and τ the corresponding

refinement-wavelet mask as above. Assume that φ satisfies (4.6), and limω→0 φ̂(ω) = 1. If, for a.e.

ω, and every ν ∈ Z (cf. (6.4))

〈τ(ω), τ(ω + ν)〉 = δν ,

then Ψ generates a fundamental tight frame with frame bound 1.

Proof: We prove the corollary by verifying that conditions (a) and (b) of Theorem 6.5

hold here.
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First, denoting ak := |τφ(s∗kω)|2, we see that

m∑

k=0

(1 − ak)
k−1∏

j=0

aj = 1 −
m∏

j=0

aj .

Since Θ(ω) is the limit, as m→ ∞, of the above expression, we obtain that

(6.8) Θ(ω) = 1 −
∞∏

j=0

aj .

The infinite product here can be shown to vanish a.e. on the set

K := {ω ∈ IRd : φ̂|ω+2πZZd 6= 0},

and hence Θ = 1 on K. Since we assume that φ̂ is continuous at the origin and does not vanish

there, K contains some neighborhood of the origin. Consequently, (a) of Theorem 6.5 holds here

(with C = 1).

As to condition (b) of that theorem, this condition is vaciously valid for w 6∈ K, hence we

assume without loss that ω ∈ K. Then, for a.e. ω ∈ K, Θ(ω) = 1; at the same time, (6.8) implies

that a0(Θ(s∗ω) − 1) = Θ(ω) − 1 = 0, hence one of the two must hold: (i) Θ(s∗ω) = 1, or (ii)

τφ(ω) = 0. Under either of these two assumptions, the requirement 〈τ(ω), τ(ω′)〉Θ(s∗ω) = 0 in

Theorem 6.5 is equivalent to 〈τ(ω), τ(ω′)〉 = 0, that we assume here.

Remark. Note that the above corollary requires Ψ to have a minimal cardinality of |det s| − 1.

Moreover, when #Ψ = |det s| − 1, the matrix

∆ := (Eντψ)ψ∈Ψ′,ν∈Z

is square, and the column orthogonality assumption then implies that the matrix is unitary, and

in particular that ∑

ν∈Z

|Eντφ|2 = 1, a.e.

Refinement masks that the satisfy the above are known as conjugate quadrature filters (CQF).

Thus, in essence, every unitary extension of the row (Eντφ)ν∈Z of a CQF mask results in a column

τ that whose masks defines wavelets that generate tight frames. Several constructive methods of

such unitary extensions are described [RiS1], [RiS2], and [JS], as a part of an effort to construct

multivariate orthonormal wavelets. Conversely, a generating set Ψ that consists of |det s| − 1

functions which is constructed as above, can form a tight frame only if τφ is CQF. However, if we

use more than |det s|−1 generators, there does not seem to be any a-priori restriction on the mask

τφ (other than the most basic conditions, such as τφ(0) = 1).

We now turn our attention to orthonormal systems. First, it is easy to conclude (say, from

the analysis of [BDR2]) that for X constructed from a PSI multiresolution to be orthonormal, it is

necessary that we do not have more than |det s| − 1 wavelets. Second, Corollary 5.8 characterizes

all fundamental tight frames that are orthonormal. However, since the additional assumption in

that corollary is in terms of the constructed wavelets, and not in terms of the masks and/or the

scaling function, it is worth making the following remark:
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Corollary 6.9. LetX be a fundamental tight frame generated by Ψ whose cardinality is |det s|−1,

and which is constructed by multiresolution in the way detailed in Corollary 6.7. Then the following

statements are equivalent:

(a) X is orthonormal.

(b) ‖φ‖ = 1.

Proof: Since τ (the refinement-wavelet mask) is assumed to be unit a.e., we easily conclude

(by integrating the equality |φ̂|2 = (
∑

ψ∈Ψ′ |τψ|2)|φ̂|2 =
∑

ψ∈Ψ′ |ψ̂(s∗·)|2) that

|det s|−1(‖φ̂‖2 +
∑

ψ∈Ψ

‖ψ̂‖2) = ‖φ̂‖2.

Thus,

(6.10)
∑

ψ∈Ψ

‖ψ‖2 = (|det s| − 1)‖φ‖2.

Now, if X is orthonormal, each ψ has norm 1, and (since with assume to have exactly |det s| − 1

wavelets) we obtain that ‖φ‖ = 1.

Conversely, since X is a tight frame with frame bound 1, then, Proposition 2.3, X, hence Ψ,

lies in the closed unit ball of L2, and therefore
∑

ψ∈Ψ ‖ψ‖2 ≤ #Ψ = |det s| − 1. However, upon

assuming ‖φ‖ = 1, we obtain from (6.10) that equality holds in the last inequality, and hence that

Ψ lies on the unit sphere of L2. By Corollary 5.8, X is orthonormal.

Discussion. It is easy to generate examples of fundamental tight frames that cannot be constructed

by the unitary extension principle; moreover, these frames may be orthonormal, while ‖φ‖ 6= 1.

For example, let φ0 be a refinable function and let Ψ be a wavelet set that is derived from φ0

by MRA.

We now switch to another generator, φ, of V0 defined by

φ̂ := tφ̂0,

for some 2π-periodic t that vanishes on a null-set only, and that satisfies, limω→0 t(ω) = t(0) = 1.

Denoting by τ̃ the original refinement-wavelet mask, the new refinement-wavelet mask, τ (with

respect to the same wavelet set Ψ) satisfies

τφ =
t(s∗·)
t

τ̃φ0
,

and

τψ =
1

t
τ̃ψ, ψ ∈ Ψ.

Denoting by Θ0 the fundamental function of the original MRA construction, and by Θ the funda-

mental function of the modified MRA construction, it is easy to see that

Θ = Θ0/|t|2.
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With that in hand, one observes that (Θ0, τ̃) satisfy conditions (a,b) of Theorem 6.5 if and only if

(Θ, τ) satisfy these conditions. This must be so, since the theorem characterizes the tightness of

the system generated by Ψ and both MRA constructions result at the same wavelet set Ψ.

However, unless t is unitary, at most one the fundamental functions Θ, Θ0 can be constant,

which means that at least one of the two constructions cannot be performed by the unitary extension

recipe of Corollary 6.7. Furthermore, since t is more or less arbitrary, it is clear that we can choose

it to guarantee ‖φ‖ 6= 1, regradless of the fact whether Ψ generates an orthonormal system.

Example. We illustrate the above discussion with a simple example. Let φ1 := χ[0,1], φ2 :=

χ[0,2]/2, and φ3 := χ[0,3]/3, where χΩ is the support function of Ω. All three functions are refinable,

have mean-value 1, and their shifts span the same refinable space V0; the orthonormal Haar wavelet

system can thus be derived from the MRA based on either of these three functions.

The mask of φ1 is CQF and the unitary extension leads here, indeed, to that Haar wavelet.

The mask of φ3 is also CQF, but the unitary extension cannot yield the Haar wavelets (e.g., since

‖φ3‖ 6= 1), though, of course, one obtains a tight frame. Finally, the mask of φ2 is not CQF. The

previous discussion shows that the MRAs constructions that lead to the Haar wavelet from either

φ2 or φ3 cannot invoke the unitary extension principle: the two underlying fundamental functions

are not constant.

Oversampling, continued. We continue the analysis of the oversampling procedure that was

outlined in §4.3. We now assume that the oversampling L is the inverse s−1 of the dilation matrix

s. This, of course, violates condition (4.18). Indeed, as is pointed out in [CS3], the oversampling

of the univariate dyadic orthonormal Haar system by 2 does not yield a tight frame. As a matter

of fact, the following result shows, in particular, that oversampling by a factor of 2 of any dyadic

affine system, which is generated from MRA by a compactly supported scaling function, can never

yield a tight frame; this is regardless whether the original system is a frame or not.

Proposition 6.11. Let φ be a refinable function, and Ψ a finite subset of V1. Assume that Ψ

satisfies (4.6), that Ψ[ ] is finite a.e., and that φ̂ vanishes almost nowhere. Let X be the affine

system generated by Ψ, and let Y be the oversampling of X with respect to the lattice s−1ZZd.

Then Y is not a fundamental tight frame.

Remarks. We first stress that X is not assumed to be frame, a fortiori it is not assumed to be a

tight frame. Also, the proof below shows that the condition φ̂ 6= 0 a.e. can be relaxed; however,

without any restriction on supp φ̂ the statement is not valid: the univariate wavelet that is derived

from the sinc-function (and whose Fourier transform is the support function of [−2π,−π]∪ [π, 2π])

generates an orthonormal dyadic affine system. Oversampling by an integer amount results in a

fundamental semi-orthonormal tight frame.

Proof: The new lattice of shifts is s−1ZZd, hence its dual is 2πs∗ZZd. Thus, in a way entirely

analogous to (4.17), we find that the dual Gramian fibers of the quasi-affine Y q are indexed by

2πs∗ZZd, and the (0, α)-entry being

|det s|
∑

ψ∈Ψ

∞∑

k=κ
s−1 (α)

ψ̂(s∗k(ω))ψ̂(s∗k(ω + α)).
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We choose a non-diagonal entry (0, α) with κs−1(α) = 0 i.e., α = s∗α0, for some α0 ∈ 2π(ZZd\s∗ZZd).
From that it follows that, with ω0 := s∗−1ω, our (0, α)-entry of the dual Gramian of Y q is

|det s|
∑

ψ∈Ψ

∞∑

1

ψ̂(s∗k(ω0))ψ̂(s∗k(ω0 + α0)).

This expression was computed in Lemma 6.2, and was shown to be

|det s|Θ(ω0)φ̂(ω0)φ̂(ω0 + α0).

Since we assume that, up to a null set, supp φ̂ = IRd, it follows, Corollary 5.7, that, if Y is tight,

Θ = 0 a.e. However, this is absurd since each summand of Θ is non-negative and the first summand

is |τΨ|2: if this summand is 0 a.e., all our wavelets are 0.

6.2. Multiresolution with several scaling functions

Here, we assume that the space V0 is FSI and refinable. This means by definition that the

shifts E(Φ), Φ ⊂ L2 finite, are fundamental in V0, and that V1 := D(V0) is a superspace of V0.

Regardless of any further assumptions, this implies that

Φ̂(s∗·) = τΦΦ̂,

for some Φ × Φ matrix τΦ, whose entries are measurable and 2π-periodic. The wavelets Ψ are

constructed with the aid of another matrix, τΨ whose entries are 2π-periodic and measurable, and

whose order is Ψ × Φ, that is

Ψ̂(s∗·) = τΨΦ̂.

The augmented matrix τ has now the order of (Φ ∪ Ψ) × Φ.

The arithmetic manipulations presented in the previous section can be carried verbatim to the

FSI setup, with an appropriate conversion of the various expressions. For example, the orthogonality

conditions expressed in Corollary 6.7 should now read as τ ∗(ω)τ(ω + ν) = δνI, with I the Φ × Φ

identity matrix. The function Θk is replaced by the Φ × Φ matrix

τΦ(ω)∗τΦ(s∗ω)∗ . . . τΦ(s∗k−1ω)∗τΨ(s∗kω)∗τΨ(s∗kω)τΦ(s∗k−1ω) . . . τΦ(ω).

The fundamental function Θ is, thus, a non-negative definite Φ×Φ matrix, and should be interpreted

in Lemma 6.2 as a bilinear form.

We checked, for example, the details of Corollary 6.7: while the product
∏m
j=0 aj that appears

in the proof of that corollary is now a matrix product, and may not converge to 0, it suffices to

show that this product converges to 0 as a bilinear form acting on a fixed vector pair (Φ̂(ω), Φ̂(ω′)),

something that follows easily. Further, the continuity assumption on φ̂ at the origin should be

replaced by the assumption that limω→0(Φ̂
∗ΘΦ̂)(ω) = 1.
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