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Abstract. A suitably weakened definition of generalized principal lattices is shown to be equivalent to the recent

definition of Aitken-Neville sets.

The recent paper [CGS08] explores the relationship of Aitken-Neville sets, introduced in [SX], to gen-
eralized principal lattices, introduced in [CGS06]. Both are subsets X of F

d (with F equal to R or C) that
are n-correct for some n in the sense that, with

Π≤n

the collection of polynomials on F
d of (total) degree ≤ n, the restriction map

(1) Π≤n → F
X : p 7→ p X := (p(x) : x ∈ X)

is invertible, hence arbitrary values given at X can be interpolated uniquely by some polynomial of degree
≤ n. In particular, #X = dimΠ≤n.

Both kinds of sets have considerably more structure than that (see the definitions below). [CGS08]
proves that any generalized principal lattice is an Aitken-Neville set and gives simple examples to show
that the converse does not hold. The present note makes more precise how the two notions differ and then
proposes an appropriate relaxation of the definition of a generalized principal lattice that makes the two
notions equivalent. In the process, some of the arguments from [CGS08] are simplified.

Standard multiindex notation is used. In particular,

|α| := α(0) + · · · + α(d)

is the degree of the multiindex
α = (α(0), . . . , α(d)) ∈ Z

0:d
+ ,

where, in an abuse of standard Matlab notation, 0:d is the set with elements 0, 1, . . . , d, i.e.,

0:d := {0, 1, . . . , d},

and Z+ := {0, 1, 2, . . .}. With that, let

Γn := {γ ∈ Z
0:d
+ : |γ| = n}.

Also, let
ǫj

be the particular multiindex with all entries 0 except for the jth which is 1. Finally, with another abuse of
notation,

X\x := {y ∈ X : y 6= x}.

definitions

(2) Definition. A GCn-set is a set X in F
d of cardinality ≥ dimΠ≤n for which, for each x ∈ X , there are

≤ n hyperplanes whose union contains X\x but not x.

Since any hyperplane is the zero-set of some polynomial of degree 1, it then follows that, for every x
in such a GCn-set X , there is a product ℓx of ≤ n polynomials of degree 1 that vanishes on all of X\x
but not on x, and this implies that the linear map (1) is onto, hence necessarily dim Π≤n ≥ #X , therefore
dimΠ≤n = #X and the map (1) is invertible, hence X is n-correct, This implies that deg ℓx = n for all
x ∈ X .

GCn-sets were introduced in [CY] as those n-correct sets X whose corresponding Lagrange polynomials
ℓx, x ∈ X , are products of polynomials of degree 1.

[CY] had two particular examples of GCn-sets in mind, natural lattices and principal lattices.
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(3) Definition. A natural lattice of degree n in F
d is of the form

X = {xK : K ∈ (H
d )},

with H a collection of n + d hyperplanes in F
d in general position, meaning that every subset K of d

hyperplanes in H has exactly one point in common, call it xK, with different subsets resulting in different
points.

Such a natural lattice is evidently a GCn-set, with X\xK contained in the union of the hyperplanes in
H\K which does not contain xK.

(4) Definition. A generalized principal lattice of degree n (or, GPLn-set for short) is a set X in F
d

that can be so indexed as
X = {xα : α ∈ Γn}

that, for some collection H := (Hj
i : i ∈ 0:(n−1), j ∈ 0:d) of hyperplanes and all applicable α ∈ Γn, r, and i,

(5)
⋂

j 6=r

Hj

α(j) = {xα} ⊂ Hr
α(r)

while

(6) xα ∈ Hj
i =⇒ α(j) = i.

Note that, necessarily, #H = n(d+1), i.e., the hyperplanes Hj
i are pairwise distinct: Indeed, if Hj

i = Hr
s

for some i, s < n, then, by (5), xα ∈ Hj
i = Hr

s for any α with α(j) = i, hence (6) implies that α(r) = s for
any such α, which is nonsense unless j = r, in which case it implies that i = s.

A GPLn-set is a GCn-set: For, by (5), X\xα is contained in the union of the ≤
∑d

j=0 α(j) = |α| = n

hyperplanes Hj
i with i < α(j) since, for any β ∈ Γn\α, we must have β(j) < α(j) for some j, while, by (6),

that union does not contain xα.
(7) Remark. This conclusion does not use the full power of either (5) or (6). In fact, it only uses

(8) α(r) < n =⇒ xα ∈ Hr
α(r)

and

(9) xα ∈ Hj
i =⇒ α(j) ≤ i.

Generalized principal lattices were introduced (and analyzed) in [CGS06], as a generalization from
the bivariate situation in [CG05] and [CG06], however in the following different, though equivalent, form:
Additional hyperplanes are required to exist, namely, for each j ∈ 0:d, a hyperplane Hj

n intersecting X only
at xnǫj

is required to exist and, correspondingly, (5) is usually stated

{xα} =
⋂

j 6=r

Hj

α(j) =

d
⋂

j=0

Hj

α(j),

where now also α(j) = n can appear. However, since these hyperplanes Hj
n are not uniquely defined by X

nor do they play any role in the GCn-structure of X , it seems unnecessary to bring them in in the first place.
Also, (6) is usually stated

(10) ∀α ∈ (0:n)0:d
d

⋂

j=0

Hj

α(j) ∩ X 6= ∅ =⇒ α ∈ Γn.

However, (6) and (10) are equivalent in the presence of (5). First, (6) implies (10): If

xβ ∈
d

⋂

j=0

Hj

α(j)

for some α ∈ (0:n)0:d and some β ∈ Γn, then, by (6), β(j) = α(j), all j, hence α = β ∈ Γn, at least for
α ∈ (0:(n−1))0:d and β(j) < n for all j; by the choice of the Hj

n, the case α(j) = n can happen only if
β = nǫj and, in that case, (6) implies that α(r) = 0 for all r 6= j, hence again α = β ∈ Γn. Also, as already

stated in [CGS06: Remark 2], (10) implies (6) in the presence of (8) (hence of (5)): If xα ∈ Hj
i then, by (8),

xα ∈ ∩d
r=0H

r
β(r) with β := α + (i − α(j))ǫj , hence, by (10), β ∈ Γn and so, in particular, i = α(j).
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Note that any GPLn-set is the lattice transform (in the sense of [CY]) of the standard principal
lattice

A := {α| : α ∈ Γn},

with
x| := (x(j) : j = 1:d) for x ∈ R

0:d,

with the collection K of hyperplanes

Kj
i := {x| : x ∈ R

0:d, x(j) = i}, i ∈ 0:(n − 1), j ∈ 0:d,

and with Φ : A → X : α| 7→ xα and Ψ : K → H : Kj
i 7→ Hj

i . Further, because #H = n(d + 1) = #K, Ψ is

1-1, hence ([CGS08]) any two GPLn-sets in F
d are lattice transforms of each other.

While [CY] correctly credit [N] with coining the term ‘principal lattice’ (actually, [N] uses ‘principal
lattice of the d-simplex’), the recognition that the standard principal lattice just described is n-correct (at
least for d = 2) goes back at least to [Bi]. Perhaps the major contribution of [N] is to have stimulated [CY].

The following generalization, suggested by (7)Remark, of GPLn-sets requires much less yet, by (7)Re-
mark, still provides GCn-sets.

(11) Definition. A fully generalized principal lattice of degree n (or, FGPLn-set for short) is a
set X in F

d that can be so indexed as X = {xα : α ∈ Γn} that (8) and (9) hold for some collection
(Hj

i : i ∈ 0:(n − 1), j ∈ 0:d) of hyperplanes and all applicable α ∈ Γn, r, and i.

In what follows, for any A ⊂ F
d,

conv A and ♭A

denote, respectively, the convex hull of A and the affine space or flat spanned by the elements of A.

(12) Definition ([SX]). An Aitken-Neville set (or, configuration) of degree n (or ANn-set, for short)
is a set X in F

d that can be so indexed as X = {xα : α ∈ Γn} that

(13) {xβ+kǫj
: j ∈ 0:d} is 1-correct, β ∈ Γn−k, k ∈ 1:n,

and

(14) α ∈ conv{β + kǫj : j ∈ J} =⇒ xα ∈ ♭{xβ+kǫj
: j ∈ J}, β ∈ Γn−k, k ∈ 1:n, J ⊂ 0:d, α ∈ Γn.

Note that the implication in (14) vacuously holds for J = ∅ and is implied by (13) for J = 0:d. Aitken-
Neville sets were introduced in [SX] as precisely the kind of n-correct sets for which the natural multivariate
generalization of the classical Aitken-Neville process is available, as shown in [SX] (and recalled in more
detail at the end of this note).

results

(15) Proposition. Any ANn-set X = {xα : α ∈ Γn} is a FGPLn-set, with the hyperplanes given by

(16) Hj
i := ♭{xiǫj+(n−i)ǫr

: r 6= j}, i ∈ 0:(n − 1), j ∈ 0:d.

Proof: For each i ∈ 0:(n−1) and j ∈ 0:d, the set {xiǫj+(n−i)ǫr
: r ∈ 0:d} is, by assumption, 1-correct,

hence Hj
i is, indeed, a hyperplane and, again by assumption, it contains all xα with α ∈ conv{iǫj + (n − i)ǫr :

r 6= j}. In particular, if α(j) = i, then

α =
∑

r 6=j

α(r)

n − i
(iǫj + (n − i)ǫr) ∈ conv{iǫj + (n − i)ǫr : r 6= j},

therefore xα ∈ Hj
i ; this proves (8). Further, (8) implies that, for any α ∈ Γn with k := α(j)− i > 0 for some

j, each x(α−kǫj)+kǫr
with r 6= j is in Hj

i , therefore xα itself cannot be in Hj
i since, otherwise, Hj

i would
contain the entire set {x(α−kǫj)+kǫr

: r ∈ 0:d} which, by assumption, is 1-correct, contradicting the fact that

Hj
i is a hyperplane. In short, xα ∈ Hj

i implies α(j) ≤ i, i.e., (9) holds.
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(17) Corollary ([CGS08]). Any ANn-set X is a GCn-set.

(18) Corollary. The hyperplanes defined in (16) in terms of the labeling X = {xα : α ∈ Γn} of an ANn-set
satisfy

(19) Hj

β(j) = ♭{xβ+kǫr
: r 6= j}

for all k ∈ 1:n and all β ∈ Γn−k.

Proof: For any such β, γ := β + kǫj is in Γn and satisfies k = γ(j) − i with i := β(j), hence,

as we observed in the preceding proof, Hj
i contains the d-set {xβ+kǫr

: r 6= j}, and, as this set is affinely

independent, its affine hull must be all of Hj
i .

(20) Proposition. Any X = {xα : α ∈ Γn} satisfying (5) (hence (8)) and (9) with respect to some
hyperplanes Hj

i , i ∈ 0:(n − 1), j ∈ 0:d, is an ANn-set, and the Hj
i must be as given in (16), hence satisfy

(19).

Proof: Let k ∈ 1:n, β ∈ Γn−k.

Then {xβ+kǫj
: j ∈ 0:d} is affinely independent. Indeed, in the contrary case, there would be some r so

that

xβ+kǫr
∈ ♭{xβ+kǫj

: j 6= r} ⊂ Hr
β(r),

the set inclusion since Hr
β(r) is an affine set and contains, by (8), each xβ+kǫj

for j 6= r, and this would

contradict (9) since (β + kǫr)(r) > β(r).

Further, let ∅ 6= J ⊂ 0:d. Then

(21) ♭{xβ+kǫj
: j ∈ J} =

⋂

j 6∈J

Hj

β(j).

Indeed, by (8), each xβ+kǫj
is in every Hr

β(r) for all j 6= r, hence we have the containment ⊂ in (21). But, by

the affine independence just proved, we know the left-hand side to be of dimension #J − 1, while, by (5), we
know the hyperplanes on the right-hand side to be in general position (as a subset of a set of d hyperplanes
in F

d having exactly one point in common), hence the intersection has dimension d−#((0:d)\J) = #J − 1,
too, therefore must equal the left-hand side.

With that, any γ ∈ Γn ∩ conv{β + kǫj : j ∈ J} satisfies γ(r) = β(r) for r 6∈ J , hence, by (8) and (21),

xγ ∈
⋂

r 6∈J

Hr
γ(r) =

⋂

r 6∈J

Hr
β(r) = ♭{xβ+kǫj

: j ∈ J}.

(22) Remark. The full strength of (5) is used here only at one point, namely to ensure that the Hj

β(j),

j 6= r, are in general position. However, since |β| < n here, this only requires the condition

(23) α(r) > 0 =⇒ #
⋂

j 6=r

Hj

α(j) = 1.

Even in the presence of (8), which implies that ∩j 6=rH
j

α(j) ⊃ {xα}, this condition is weaker than (5) since it

does not imply that ∩j 6=rH
j

α(j) = {xα} for α(r) = 0. A simple example is provided by the natural lattice in

(25) below which satisfies (8) and (23) but fails to satisfy (5) for any r and for α = ǫi + ǫj with {r, i, j} = 0:2.
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Figure. A natural lattice labeled as an AN2-set (right), and its perturbation into a GPL2-set (left).

Since any GPLn-set satisfies (5) and (9), we have

(24) Corollary ([CGS08]). Any GPLn-set X is an ANn-set.

(25) Example: Planar AN2-sets.

Let X be a planar AN2-set. Then X = {v0, v1, v2, e0, e1, e2}, with

vj := x2ǫj
, ej := xΣi6=jǫi

, j ∈ 0:2.

Further, for any permutation (r, s, t) of (0, 1, 2),

Hs
0 = ♭{vr, es, vt}, Hs

1 = ♭{er, et}.

Finally, with β = 0, we know {xβ+2ǫj
: j ∈ 0:2} = {v0, v1, v2} to be 1-correct, hence Hr

0 ∩ Hs
0 = {vt}. In

particular, the Hr
0 are pairwise distinct. Also, with |β| = 1, hence β = ǫr say, we know {xβ+ǫj

: j ∈ 0:2} =
{vr, es, et} to be 1-correct, hence Hr

0 ∩Hs
1 = {er}. Therefore, also none of the Hr

0 equals any of the Hs
1 . But

there is, offhand, no such restriction among the Hj
1 , except that, if Hr

1 = Hs
1 , then also Hr

1 = Ht
1. Thus, a

planar AN2-set involves either 6 or 4 (planar) hyperplanes. In the first case, it is a GPL2-set, in the second,
it is not but is (see the Figure) a natural lattice of degree 2. In the second case, it fails to be a GPL2-set
because the hyperplanes Hj

i are not all pairwise distinct, hence (6) must fail, and it does: ej ∈ H3 = Hj
1 ,

yet ej(j) 6= 1.
Incidentally, any planar GC2-set X is necessarily an AN2-set since, for each x ∈ X , at least one of the

two hyperplanes containing X\x must be a maximal, i.e., must contain three points of X , hence there must
be at least three maximals. Pick three maximals. Then the union of these three contains all of X . If x lies
on two of these maximals, it is one of the vj , while any x that lies on only one of these three maximals is one
of the ej . Thus the left-hand picture in the Figure shows the most general planar GC2-set, – except that
the ej are chosen to be nearly collinear, to make the set nearly a natural lattice (which is the only planar
GC2-set with four maximals).

(26) Proposition ([CGS08]). Every natural lattice of degree 2 is an AN2-set, hence the class AN is
strictly larger than the class GPL.

Proof: Let H0, . . . , Hd+1 be hyperplanes in F
d in general position, and, with yi,j the unique point

of intersection of the d hyperplanes Hk with k 6= i, j and i < j, set

xǫi+ǫs
:= yi,j , with s :=

{

i, j = d + 1
j, otherwise.

Then, for β = 0, {xβ+2ǫj
: j ∈ 0:d} is the natural lattice of degree 1 obtained from H0, . . . , Hd, hence

1-correct. Further, for |β| = 1, necessarily β = ǫi for some i, and then {xβ+ǫj
: j ∈ 0:d} is the natural lattice

obtained from the Hk with k 6= i, j, therefore also 1-correct. Finally, the only indices in the convex hull of
other indices are the indices

ǫi + ǫj = (2ǫi + 2ǫj)/2

for i 6= j and, by construction, xǫi+ǫj
is, indeed, in the affine hull of x2ǫi

and x2ǫj
(which is the intersection

of the d − 1 hyperplanes Hk with k ∈ (0:d)\{i, j}).
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(27) Proposition. A set X in F
d is an ANn-set if and only if it is a FGPLn-set satisfying

(23) α(r) > 0 =⇒ #
⋂

j 6=r

Hj

α(j) = 1.

Proof: By (20)Proposition and (22)Remark, any FGPLn-set satisfying (23) is an ANn-set.
Assume, conversely, that X is an ANn-set with respect to a certain labeling X = {xα : α ∈ Γn}. Then

(15)Proposition shows that X is a FGPLn-set with the hyperplanes Hj
i , i ∈ 0:(n−1) and j ∈ 0:d, defined

in (16) in terms of that labeling of X . Hence it remains to prove (23). For this, with k := α(r) > 0 and
β := α − kǫr, and by (18)Corollary,

⋂

j 6=r

Hj

α(j) =
⋂

j 6=r

♭{xβ+kǫt
: t 6= j},

and we recognize the right-hand side as the intersection of the d facets, of the nondegenerate simplex with
vertices xβ+kǫt

, t ∈ 0:d, that contain xβ+kǫr
= xα, hence that intersection comprises exactly one point, xα.

(28) Corollary [CGS08]. If X is an ANn-set, then X is a GPLn-set if and only if

(29) xα ∈ Hj
i =⇒ α(j) ≥ i.

Proof: Since (6) implies (29), we only have to prove the “if”. For this, we note that (29) together
with (9) (known to be true for any ANn-set, by (15)Proposition) implies (6), while (8) (known to be true
for any ANn-set, by (15)Proposition) together with (23) implies (5) except for the claim

(30) α(r) = 0 =⇒
⋂

j 6=r

Hj

α(j) = {xα}

when α(j) < n for all j 6= r. But for such α, k := α(s) > 0 for some s 6= r and, with β := α − kǫs, we
conclude from (21) (applicable, by (22)Remark, since we know (23)) that ∩j 6=r,sH

j

α(j) = ♭{xα, xα−kǫs+kǫr
}

while (6) implies that xα−kǫs+kǫr
6∈ Hs

α(s), and (30) follows.

My initial attempts at finding some FGPLn-set that is not an ANn-set were ultimately defeated because
of the following

(31) Theorem. ANn = FGPLn.

Proof: Because of (27)Proposition, we only need to prove that any FGPLn-set X = {xα : α ∈ Γn}
with corresponding hyperplanes (Hj

i : i ∈ 0:(n − 1), j ∈ 0:d) satisfies

(23) α(r) > 0 =⇒ #
⋂

j 6=r

Hj

α(j) = 1.

This is known to be true when α(j) = 0 for all j 6= r since then each Hj

α(j) with j 6= r is maximal for X in

the sense that #(X ∩Hj

α(j)) is as large as possible since it equals dimΠn(Hj

α(j)), and, according to [B], the

maximals for any GCn-set are in general position.
Hence, to finish the proof, it suffices to prove (23) by induction on n under the additional assumption

that α(j) > 0 for some j 6= r. In that case, xα is in

X\j := {xβ := xβ+ǫj
: β ∈ Γn−1},

and one verifies that this is a FGPLn−1-set in F
d, with

Kr
i :=

{

Hr
i , r 6= j

Hj
i+1, r = j

}

, i ∈ 0:(n − 2), r ∈ 0:d,

the corresponding hyperplanes, hence, with β := α − ǫj , #
⋂

s6=r Ks
β(s) = 1 by induction hypothesis while

⋂

s6=r Ks
β(s) =

⋂

s6=r Hs
α(s).
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Here, finally, is a brief discussion of the background on Aitken-Neville sets.
Let X be a set so indexed as X = {xα : α ∈ Γn} that (13) holds, hence, for each k ∈ 1:n and each

β ∈ Γn−k, there is a unique interpolant Pβf from Π≤1 to arbitrary data values fα given at the data sites
xα, α ∈ β + kΓ1, with the interpolant necessarily writable in Lagrange form as

Pβf =:
d

∑

j=0

fβ+kǫj
ℓβ,j.

With this, [SX] introduces the following multivariate Aitken-Neville algorithm:

ϕβ :=

{

fβ , |β| = n
∑d

j=0 ϕβ+ǫj
ℓβ,j, |β| < n

}

, |β| = n, n − 1, . . . , 0.

Evidently, deg ϕβ ≤ n−|β| (since each ℓβ,j is of degree 1). The major result in [SX] concerning this algorithm
is

Theorem ([SX]). Assume that X = {xα : α ∈ Γn} satisfies (13), and let ϕβ , β ∈ Γn, be the polynomials
generated by the Aitken-Neville algorithm. Then

(32) ϕβ(xγ) = fγ , γ ∈ β + Γk, β ∈ Γn−k,

for k ∈ 1:n and for arbitrary f := (fα : α ∈ Γn) if and only if X is an ANn-set, i.e., if and only if X also
satisfies (14).

In particular, assuming now X = {xα : α ∈ Γn} to be an ANn-set with this particular labeling, the
resulting ϕ0 is a polynomial of degree ≤ n matching the given values on all of X , and, as this holds for
arbitrary data values and #X ≤ #Γn = dimΠ≤n, it follows that ϕ0 is the unique interpolant from Π≤n to
the data values. More than that, it follows that

ϕ0 =
∑

α∈Γn

fαℓα,

with

(33) ℓα :=
∑

j∈(0:d)n,
∑

n

i=1
ǫj(i)=α

n
∏

i=1

ℓ∑
r<i

ǫj(r),j(i)
,

which should lead to some interesting identities, given that all the summands in this formula for ℓα necessarily
are scalar multiples of ℓα since they all have the union of (Hj

i : i < α(j), j ∈ 0:d) as their zero set (with Hj
i

as defined in (16)).
Note that, with the simple change ℓβ,j → ℓj , the Aitken-Neville algorithm becomes the de Casteljau

algorithm:

ϕβ :=

{

fβ , |β| = n
∑d

j=0 ϕβ+ǫj
ℓj, |β| < n

}

, |β| = n, n − 1, . . . , 0,

in which the ℓj are the Lagrange polynomials for interpolation from Π≤1 at the d + 1 vertices of a simplex

in general position in R
d and

ϕ0 =
∑

β∈Γn

fβ (n
β )ℓβ

is the Bernstein-Bézier form of the polynomial ϕ0 with respect to that set of vertices, i.e., the fβ being

the coefficients and ℓβ := ℓ
β(0)
0 · · · ℓ

β(d)
d .
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