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Carl de Boor

Abstract. In the study of approximation order, particularly in a multi-
variable setting, quasi-interpolants have played a major role. This report
points out some limitations of quasi-interpolants and describes some re-
cent results on approximation order obtained without the benefit of the
quasi-interpolant idea.

§1. Approximation Order

In most general terms, “approximation order” is defined as follows.

Definition 1.1. The indexed collection (Sh) (with h→ 0) of linear subspaces
of some normed linear space X has (exact) approximation order k, in symbols:

ao((Sh)h) = k ,

provided

(i) for all “smooth” f , dist(f, Sh) = O(hk) (lower bound)
(ii) for some “smooth” f , dist(f, Sh) 6= o(hk) (upper bound)

This definition raises many questions.
• norm? In this report, I will usually consider X = Lp(G), with G

some ‘suitable’ subset of R d , e.g., either a bounded convex body, or else all of
R d . In fact, the major results reported are for G = R d and p = 2 or p = ∞.
With X such a function space,

Xc

denotes the subspace of compactly supported f ∈ X.
• “smooth”? With X as chosen, a typical choice for “smooth” is that

f be in the Sobolev spaceW k
p (G) (written W k,p(G) in [1]. If G is bounded and
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there is no specification of the expected constant in O(hk), then it is usually
sufficient to define “smooth” to mean “polynomial”. In that case, it is usually
a polynomial of homogeneous degree k that furnishes the upper bound.

• how does O(hk) depend on f? The definition of approximation
order permits, offhand, the possibility that the constant in the O(hk) term of
1.1(i) depends in some entirely unspecified way on f . It is more satisfactory,
though, if this dependence can be made explicit, for example in the terms
that specify “smoothness”. Thus a desirable strengthening of 1.1(i) is that

sup
h,f

dist(f, Sh)
hk‖f‖(k)

<∞ ,

with the finiteness of ‖f‖(k) defining that f is “smooth”. Theorems 7.1, 6.3
and 6.4 below give such results.

• Sh? In this report, I will deal only with the following choices:
◦ Each Sh is a space of piecewise polynomial (=: pp) or, more generally,

piecewise exponential (=: pe) or piecewise analytic (=: pa) functions, and
h is the “meshsize” of the underlying partition ∆ (consisting, typically,
of convex bodies, such as simplices and the like).

◦ (Sh) is a scale, i.e.,

Sh = σhS := {f(·/h) : f ∈ S} ,

with S some fixed space of functions. In this case, I will use the abbrevi-
ation

ao(S) := ao((σhS)h) .

Such an indexed collection (Sh) is called stationary , in order to distin-
guish it from the next example.

◦ More generally, we might have Sh = σhS
h, a case referred to as non-

stationary (in case the Sh do change with h). Note that, in either case,
the space Sh is given as the h-dilate of some space. This is done since, in
certain arguments, it is more efficient to deal with the scale-ups σ1/hSh
than with the spaces Sh themselves. In the stationary case, this amounts
to considering the approximation of

fh := σ1/hf = f(·h)

from the fixed space S.
◦ Of particular interest in this report (and in much current work in approx-

imation theory, in part because of the current interest in wavelets) is the
case when each Sh is shift-invariant, i.e., closed under shifts := integer
translations.
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§2. Shift-invariance

A collection S of functions on R d is called shift-invariant if

g ∈ S =⇒ g(· + α) ∈ S for all α ∈ Z
d

(where Zd is the set of d-vectors whose entries are integers).
For example, the space

Πρ
<k,∆

of all pp Cρ-functions of total degree< k on some partition ∆ is shift-invariant
in case the partition is shift-invariant in the sense that

∆ + α = ∆ for all α ∈ Z
d .

Examples of interest include the three- and four-direction mesh popular in
the bivariate box spline literature.

The simplest (nontrivial) example of a shift-invariant space is the space

S0(ϕ) :=
{ ∑
α∈Zd

ϕ(· − α) c(α) : c ∈ `0(Zd)
}

of all finite linear combinations of the shifts of one function, ϕ. This is the
shift-invariant space generated by ϕ since it is the smallest shift-invariant
space containing ϕ. If S0(ϕ) is contained in our normed linear space X of
interest, then we follow [6] and write

S(ϕ) := S0(ϕ)−

for the closure of S0(ϕ) in X and call it the principal shift-invariant, or PSI ,
space generated by ϕ.

More generally, if Φ is a finite collection of functions on R d , then we set

S0(Φ) :=
∑
ϕ∈Φ

S0(ϕ)

and call
S(Φ) := S0(Φ)−

a finitely generated shift-invariant, or FSI , space, and call Φ its set of genera-
tors. The structure of PSI and FSI spaces in L2(R d) is detailed in [6] and [7],
with particular emphasis on the construction of generating sets for a given FSI
space having good properties (such as ‘stability’ or ‘linear independence’).

It is natural to consider approximations from S(ϕ) in the form

ϕ∗c :=
∑
α∈Zd

ϕ(· − α) c(α)

for a suitable coefficient sequence c. However, offhand, such a sum makes
sense only for finitely supported c, and one of the technical difficulties in
ascertaining the approximation order of S(ϕ) derives from the fact that, in
general, S(ϕ) may contain elements which cannot be represented in the form
ϕ∗c for some sequence c, with the series ϕ∗c converging in norm.
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§3. Quasi-interpolants

In the spline and finite-element literature, lower bounds for ao((Sh)h) are
usually obtained with the aid of a corresponding sequence (Qh)h of linear
maps, with ranQh ⊆ Sh, which is a ‘good quasi-interpolant sequence of order
k’ in the sense of the following definition.

Definition 3.1. (Qh)h is a good quasi-interpolant sequence of order k if it
satisfies the following two conditions:
(i) uniformly local: For some h-independent finite ball B and all x ∈ G,

|(Qhf)(x)| ≤ const ‖f|x+hB‖;
(ii) polynomial reproduction: Qhf = f for all f ∈ Π<k.

Here,
Π<k

denotes the collection of all polynomials in d arguments of total degree < k.
The term ‘quasi-interpolant’ is used in the finite element literature (see,

e.g., [26] to stress the fact that Qhf does not necessarily match function values
at all the nodes of the finite elements used, but ‘merely’ reproduces certain
polynomials. [4] contains a recent survey of the use of quasi-interpolants in
spline theory.

To recall, the standard use made of such a good quasi-interpolant se-
quence is to observe that, for arbitrary f and arbitrary g ∈ Π<k,

|f(x) −Qhf(x)| = |(1 −Qh)(f − g)(x)| ≤ const ‖(f − g)|x+hB‖ ,

which provides a bound on ‖f − Qhf‖ in terms of how well f can be ap-
proximated from Π<k on a set of the form x + hB, giving the error bound
constB hk‖f‖(k) in which ‖f‖(k) measures the ‘size’ of the k-th derivatives of
f and which provides the desired O(hk). If our space X is Lp for some p <∞,
then this argument has to be fleshed out a bit (see, e.g., [20]).

Since this argument is so simple and effective, there have been various
generalizations. For example, since the argument relies on how well f can be
approximated locally from Π<k, it has been observed (e.g., in [15], [11], [22])
that it is sufficient to have Qh reproduce a translation-invariant space H (e.g.,
a space of exponentials) which is ‘locally close’ to Π<k (in the sense defined
at this section’s end).

As another example, if Sh = σhS(ϕ), then it is natural to construct Qhf
in the form

σhQfh

(recall that fh := σ1/hf) with

Qf :=
∑
α∈Zd

ϕ(· − α)λf(· + α)

for some suitable linear functional λ. Since, for any linear functional λ (defined
at least on Π<k) and any f ∈ Π<k, α 7→ λf(·+α) is polynomial of degree < k
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in α, this approach requires that ϕ∗c be at least well-defined for sequences c
with some growth at infinity. In the original context of a compactly supported
ϕ (e.g., as in [27]), this is no problem. However, with the recent interest in
radial basis functions (see, e.g., [24]) and wavelets, also noncompactly sup-
ported ϕ have to be considered and, for these, the quasi-interpolant approach
(as used, e.g., in [23], [16], [20], and [2]) requires that ϕ satisfy the condition
ϕ(x) = O(|x|−d−k−ε) at ∞ for some positive ε (and forces one to make do
with Q which is only ‘essentially local’). In particular, the higher the desired
approximation order, the faster must ϕ decay at infinity.

There are other costs associated with the quasi-interpolant approach. For
example, it works, offhand, only with integer values of k. Also, it requires that

∩hSh 6= {0} .

The artificiality of this last restriction is nicely illustrated by the following
simple example, from [15]:

Example 3.2. (Dyn, Ron). Let d = 1, p = ∞, and let Sh be the span of the
hZ-translates of the piecewise linear function

ϕh : x 7→
{
x+ 1 , 0 ≤ x < h ;
0 , otherwise .

Thus Sh consists of certain piecewise linear functions, with breakpoint se-
quence hZ, but the only polynomial (hence the only analytic function) it
contains is the zero polynomial. In particular, it is not possible to construct
a quasi-interpolant of positive order for it. Nevertheless, the approximation

Qhf :=
∑
j∈hZ

ϕh(· − j)f(j)

has the error

f −Qhf = f −
∑
j∈hZ

χ
h
(· − j)f(j) +

∑
j∈hZ

(χ
h
− ϕh)(· − j)f(j) ,

with χ
h

the characteristic function of the interval [0 . . h). Since ‖χ
h
−ϕh‖∞ =

h,
‖f −Qhf‖∞ ≤ ωf (h) + ‖f‖∞h ,

where ωf is the modulus of continuity of f . It follows that Qhf converges to
f uniformly in case f is uniformly continuous and bounded.

This example could still be treated by an appropriate generalization of
the notion of quasi-interpolant. Specifically, one could consider a good quasi-
interpolant sequence (Qh) of positive local order k, meaning that (Qh) is
uniformly local and that

Qhf = f +O(‖f|B‖ |h|k)
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on hB for any f ∈ Π<k. A sufficient condition for this is that Qh = 1 on a
D-invariant space H of entire functions which is locally close to Π<k in the
sense that its ‘limit at the origin’ (cf. [10]), H↓, contains Π<k. Here,

H↓ := span{f↓ : f ∈ H} , (3.3)

where f↓ is the initial, i.e., the first nonzero, term in the expansion f =
f0 + f1 + f2 + · · · of f into homogeneous polynomials fj of degree j, all j.
Thus, for any f ∈ Π<k, there exists g ∈ H with f = g+O(|h|k) on hB, hence,
on hB, Qhf = Qhg+O(|h|k) = g+O(|h|k) = f +O(|h|k) = f +O(‖f|B‖|h|k)
(the last equality by the fact that Π<k is finite-dimensional).

Still, the point of the example should be clear.
Finally, the quasi-interpolant approach is of no help with upper bounds.

§4. Upper Bounds

Upper bounds for ao((Sh)h) have to be fashioned separately for each case
(much as the details of a quasi-interpolant sequence have to be so fashioned).
The general principle employed is duality, which provides the following well-
known observation.

If Y is a linear subspace of the normed linear space X, and λ ∈ X∗ with
λ ⊥ Y (i.e., λ is a continuous linear functional on X which vanishes on all of
Y ), then, for any x ∈ X and any y ∈ Y , λx = λ(x− y) ≤ ‖λ‖‖x− y‖, hence
|λx| ≤ ‖λ‖ dist(x, Y ). In other words,

λ ⊥ Y =⇒ dist(x, Y ) ≥ |λx|
‖λ‖ .

As a simple application, consider ao(S) for

X = L∞(G), S = Πρ
<k,∆ .

Assume without loss of generality that G is the d-dimensional cube,

G = C := [−1 . . 1]d ,

let δ be any element in the partition ∆, and let g be any nontrivial homoge-
neous polynomial of degree k. If e is the error in the best L2(δ)-approximation
to g from Π<k, then the mapping

λ : L∞ → R : f 7→
∫
δ

ef

(i) is a bounded linear functional;
(ii) is orthogonal to S, since all λ sees of f ∈ S is its restriction to δ, and on

δ each f ∈ S is just a polynomial of degree < k;
(iii) satisfies λg =

∫
δ
ee > 0.
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Now consider λhf :=
∫
δ
ef(h·). Then

(i) λh is a bounded linear functional, with h-independent norm

‖λh‖ =
∫
δ

|e| = λ signum(e) ,

where signum(e) : x 7→ signum(e(x)).
(ii) λh ⊥ Sh := σhS, since g ∈ Sh is of the form f(·/h) for some f ∈ S.
(iii) Using the homogeneity of g, one computes that λhg =

∫
δ
eg(h·) = hk

∫
δ
eg

= hkλg with λg > 0.
So, altogether,

dist(g, Sh) ≥ hk(λg/λ signum(e)) ,

showing that ao(Πρ
<k,∆) ≤ k.

If we try the same argument for p < ∞, we hit a little snag. Take, in
fact, p at the other extreme, p = 1. There is no difficulty with (ii) or (iii), but
the conclusion is weakened because (i) now reads

(i)′ ‖λh‖ = supf∈L1
| ∫
δ
ef(h·)|/‖f‖1 ≤ ‖e|δ‖∞ supf∈L1(δ)

∫
δ
|f(h·)|/‖f‖1 ,

and the best we can say about that last supremum is that it is at most h−d

since
∫
δ
f(h·) =

∫
hδ
f/hd. Hence, altogether, ‖λh‖ ≤ const /hd.

Thus, now our bound reads

dist 1(g, Sh) ≥ hk const /(const /hd) 6= o(hk+d)

which is surely correct, but not very helpful.
What we are witnessing here is the fact that the error in a max-norm

approximation is indeed localized, i.e., it occurs at a point, while, for p <∞,
the error ‘at a point’ is less relevant; the error is more global; one needs to
consider the error over a good part of G. Further, in the argument below, I
need some kind of uniformity of the partition ∆, of the following (very weak)
sort (in which |A| denotes the d-dimensional volume of the set A, and C
continues to denote the cube [−1 . . 1]d):

Assumption 4.1. There exists an open set b and a locally finite set I ⊂ R d

(meaning that I meets any bounded set only in finitely many points) so that

(α) b + I is the disjoint union of b + i, i ∈ I, with each b + i lying in some
δ ∈ ∆ (the possibility of several lying in the same δ is not excluded);

(β) for some const > 0 and all n, |(b+ I) ∩ nC| ≥ const |nC|.
For example, any uniform partition of R satisfies this condition. As an-

other example, if d = 2 and ∆ is the three-direction mesh, then ∆ consists
of triangles of two kinds, and taking b to be the interior of one of these tri-
angles and I = Z2 guarantees (α), while (β) holds with const = 1/2. On the
other hand, Shayne Waldron (a student at Madison) has constructed a neat
example to show that the Assumption 4.1 is, in general, necessary for the
conclusion that ao(Πρ

<k,∆) ≤ k. The example uses ρ = −1 and arbitrary k,
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d = 1, G = [−1 . . 1], p = 1, and ∆ obtained from Z by subdividing [j . . j + 1]
into 2|j| equal pieces, j ∈ Z.

With Assumption 4.1 holding, define λ as before, but with b replacing
the element δ of ∆. Further, assume without loss that C ⊆ G, and define

λhf :=
∫
b

e
∑
i∈Ih

f(h · +i) ,

where
Ih := {i ∈ I : b+ i ⊆ C/h} .

This gives:

(i)1

‖λh‖ ≤ sup
f∈L1

∑
i∈Ih

∫
b+i

|e||f(h·)|∑
i∈Ih

∫
h(b+i)

|f | = ‖e|b‖∞/hd ,

using the fact that the sum b+ Ih is disjoint.
Hence, we didn’t worsen our situation here. We also didn’t sacrifice (ii)

because, by assumption, each b + i lies in the interior of some δ ∈ ∆, and
therefore

∫
b
ef(h · +i) = 0 for every f ∈ Sh. But we materially improved the

situation as regards (iii), for we now obtain

(iii)1

λhg =
∫
b

e
∑
i∈Ih

g(h · +i) = hk
∫
b

e
∑
i∈Ih

g = hk const #Ih

with
#Ih = |b+ Ih|/|b| ≥ const |C/h|/|b| = const /hd .

With this, our conclusion is back to what we want:

dist 1(g, Sh) ≥ (hk const /hd)/(const /hd) 6= o(hk) .

Note that this lower bound on the distance only sees S as a space of pp’s
of degree < k, hence is valid even when we take the biggest such space, i.e.,
the space

Π<k,∆

of all pp functions of degree < k on the partition ∆. For this space, it is not
hard to show that the approximation order is at least k, since approximations
can be constructed entirely locally. Thus,

ao(Π<k,∆) = k .

For this reason, this is called the optimal approximation order for a pp space
of degree < k.
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Such a local construction of approximations is still possible for Π0
<k,∆ (at

least in the uniform norm; it would be interesting to run down this argument
for the 1-norm), hence, at least in the uniform norm,

ao(Πρ
<k,∆) = k for ρ ≤ 0 .

However, for ρ > 0, the story is largely unknown, with first results in [5] and
[19].

I became sensitized to the issue that the derivation of upper bounds for
the approximation order from pa spaces requires much more care for p < ∞
than for p = ∞ by the paper [22] in which ao((Sh)h) is carefully studied for
the case that each Sh is a piecewise exponential space. Here is their result
concerning upper bounds (in which the term ‘exponential’ is meant to describe
any function which is a linear combination, with polynomial coefficients, of
functions of the form x 7→ exp(θ·x)).
Theorem 4.2. (Lei, Jia). Let (Sh)h be an indexed collection of piecewise
exponential spaces on R

d with the property that, for some open subset Ω of
(0 . . 1)d and every h and every α ∈ Z

d , Sh|(Ω+α)h ⊆ H|(Ω+α)h for some fixed
D-invariant finite-dimensional space H of exponentials for which Πk 6⊆ H↓ (as
defined in (3.3) ). Then, for any p in the range 1 ≤ p ≤ ∞, ao((Sh)h) ≤ k.

Here is my version of their proof (in which ‖f‖p(B) denotes the Lp(B)-
norm of f|B while ‖a‖ is any norm of the n-vector a, and Bh is the Euclidean
ball with radius h centered at the origin). The special case of pp Sh treated
earlier is simpler since, in that case, H is also scale-invariant.

Let
V := [v1, v2, . . . , vn] : R n → H↓ : a 7→

∑
j

vja(j)

be any homogeneous basis for H↓.
I claim that any F = [f1, f2, . . . , fn] : R n → H with fj↓ = vj , all j, is a

basis for H. For the proof (which also proves the inequality (4.3) of use later),
observe that ‖V a‖p(Bh) = ‖V ah‖p(B1) ≥ ‖ah‖/‖V −1‖, where

ah := (hd/p+deg vja(j))nj=1 , ‖V −1‖ := sup
c

‖c‖/‖V c‖p(B1) ,

and ‖V −1‖ is certainly finite. On the other hand, (vj−fj)(x) = O(|x|deg vj+1)
since vj = fj↓, hence

‖(F − V )a‖p(Bh) ≤ h constF ‖ah‖ .

Therefore, altogether,

‖Fa‖p(Bh) ≥ ‖V a‖p(Bh) − ‖(F − V )a‖p(Bh)
≥ (1/‖V −1‖ − h constF )‖ah‖ =: consth,F ‖ah‖ , (4.3)
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which shows that F is one-to-one (since the last expression is positive for all
sufficiently small h). Since dimH↓ = dimH by [10], this finishes the proof.

Now let q be a homogeneous polynomial not in the range of V . Then
[q, V ] is one-to-one, and is made up of the initial terms of the columns of [q, F ].
This permits substitution of [q, F ] for F in (4.3) (with const[q,F ] = constF ),
and so gives the conclusion that, for all a ∈ R

n ,

‖q − Fa‖p(Bh) = ‖[q, F ](1,−a)‖p(Bh) ≥ consth,F ‖(hd/p+deg q, ah)‖
≥ consth,F hd/p+deg q ,

hence

distp(q,H)(Bh) = min
a

‖q − Fa‖p(Bh) ≥ consth,F hd/p+deg q , (4.4)

with limh→0 consth,F = 1/‖V −1‖ > 0. Since we can choose deg q = k by
assumption, this proves the upper bound when p = ∞. (I note in passing that
this argument could also have been phrased explicitly in terms of annihilating
linear functionals.)

As to the Lp-argument, start with the observation that it is sufficient
to prove an upper bound for the L1-approximation order on any bounded G
since this implies the same upper bound for any p > 1 (including p = ∞) and
for any G, bounded or not.

Thus, to establish the desired upper bound, it is sufficient to prove that

dist1(q, Sh)(Bρ) ≥ consthk

for some smooth q, some positive const, and any particular positive ρ.
For this, we now choose q to be any homogeneous polynomial of minimal

degree not in H↓. Then, for any z, q(·+ z) = q+V az, with ‖az‖ ≤ const ‖z‖,
and q(· + z) − Fa = q − F (a− az) + (V − F )az, therefore

dist1(q(· + z),H)(Bh) ≥ dist1(q,H)(Bh) − h constF ‖ahz‖.
This implies with (4.4) that there exist positive constants const, h0, R (de-
pending on F and q) so that

dist1(q(· + z),H)(Bh) ≥ consthd+deg q (4.5)

for all h < h0, ‖z‖ < R.
By the translation-invariance of H (which follows from the assumed D-

invariance),
dist(q,H)(Ωh+ z) = dist(q(· + z),H)(Ωh)

while, by assumption, Sh ⊆ H on each (Ω + α)h with α ∈ Zd . Thus, from
(4.5) and using the fact that Ω contains some ball of positive radius, we find
that

dist1(q, Sh)(Bρ) ≥
∑
α∈N

dist1(q(· + αh),H)(Ωh) ≥ consthdeg q hd #N ,
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with
N := {α ∈ Z

d : (Ω + α)h ⊆ Bρ, ‖αh‖ < R}
and with h < h0, where const > 0 and R > 0 are independent of h. Since
#N = O(h−d) for all small h, and deg q ≤ k, we are done.

Further illustrations of the use of duality in the derivation of upper
bounds on ao(S) (albeit only for bivariate pp S) can be found in [9] and
its references.

§5. The Strang-Fix Condition

The literature on ao(S(ϕ)) for a compactly supported ϕ has been dominated
by the Strang-Fix condition. It concerns the behavior of the Fourier transform

ϕ̂ : ξ 7→
∫
Rd

ϕe−ξ

of ϕ at the points of 2πZd . Here and below,

eθ : R d → C : x 7→ exp(iθ·x)
denotes the exponential function (with purely imaginary frequency iθ). In
one of its many versions, the Strang-Fix condition reads as follows.

Definition 5.1. We say that ϕ satisfies SFk in case

(i) ϕ̂(0) = 1;
(ii) For all multi-indices α satisfying |α| < k we have Dαϕ̂ = 0 on 2πZd\0.

Its importance derives from the following theorem, in which we use the
convenient notation

ϕ∗′f :=
∑
j∈Zd

ϕ(· − j)f(j)

for the semidiscrete convolution of the two functions ϕ and f even if it requires
further discussion of just what exactly is meant by it when the sum is not
(locally) finite. Also, recall that L1(R d)c denotes the compactly supported
functions in L1(R d).

Theorem 5.2. (Schoenberg (d=1), Fix and Strang). For ϕ ∈ L1(R d)c, the
following are equivalent:

(a) ϕ∗′ is degree-preserving on Π<k: for all p in Π<k, ϕ∗′p ∈ p+ Π<deg p;
(b) ϕ satisfies SFk.

The proof is via the Poisson summation formula. Starting with [27], the
theorem is used to construct a good quasi-interpolant sequence (Qh) of order
k with ranQh ⊆ σhS(ϕ). More than that, it forms part of an argument
that seems to show that ao(S(ϕ)) ≥ k if and only if ϕ/ϕ̂(0) satisfies SFk.
The precise statement of this equivalence for X = L2(R d) (see [27]) involves,
unfortunately, a restricted notion of approximation order called ‘controlled’
approximation. (According to [25], this restriction can be dropped for X =
L∞(R d) provided ϕ̂(0) 6= 0.)

On a related issue, [27] reports the following
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Conjecture 5.3. (Babuška). The approximation order in L2(R d) of the FSI
space S(Φ) with Φ ⊂ L2(R d)c is already attained by some PSI space S(ϕ)
with ϕ ∈ S0(Φ).

The actual version of this conjecture reported in [27] involves controlled
approximation and was eventually shown to be invalid by Jia in [18]. The
following correct version, involving yet another restricted notion of approx-
imation order called ‘local’ approximation, can be found in [8], with some
details actually attended to only in [20].

Theorem 5.4. (de Boor, Jia). Let Φ be a finite subset of Lp(R d)c, and let
X = Lp(R d). Then the following are equivalent:

(a) (σhS(Φ)) has ‘local’ approximation order k;
(b) some ϕ ∈ S0(Φ) satisfies SFk.

This theorem verifies the version of the Babuška conjecture used in [14].
Further, [21] shows that (b) is equivalent to the statement

(b)′ Some sequence (ϕn) in S0(Φ) satisfies SFk “in the limit”.

Finally, [19] contains the following extension of work begun in [5]:

Theorem 5.5. (Jia). Let S be a univariate, shift-invariant, locally finite-
dimensional set of functions, closed under convergence on compact sets. Then
the following are equivalent:

(a) ao(S ∩ Lp(R )) ≥ k;
(b) Some ϕ ∈ Sc satisfies SFk.

§6. Approximation Order in L∞

In [13], Chui, Jetter and Ward introduce the commutator for ϕ ∈ C(R d)c as
the linear map

C(R d) → C(R d) : f 7→ ϕ∗′f − f∗′ϕ
and use it for the construction of a good quasi-interpolant sequence (Qh) of
order k with ranQh ⊆ σhS(ϕ). For this, they prove the following.

Proposition 6.1. (Chui, Jetter, Ward). If ϕ belongs to C(R d)c and satisfies
SFk, then

for all f ∈ Π<k , ϕ∗′f = f∗′ϕ .

Subsequently, it was observed in [3] that actually

for all f ∈ S(ϕ) , ϕ∗′f = f∗′ϕ , (6.2)

and this observation was exploited by A. Ron in [25] in the following simple
and surprising way. He observes that, as a consequence of (6.2),

for all f ∈ S(ϕ) , ϕ∗′eθ − eθ∗′ϕ = ϕ∗′(eθ − f) − (eθ − f)∗′ϕ ,
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(recall that eθ : x 7→ exp(iθ·x)), and this leads to the conclusion that

‖ϕ∗′eθ − eθ∗′ϕ‖∞ ≤ 2‖ϕ∗′‖∞ dist∞(eθ,S(ϕ))

(with ‖ϕ∗′‖∞ = ‖∑
α∈Zd |ϕ(· − α)|‖∞). Since (as pointed out by A. Ron)

ϕ∗′eθ − eθ∗′ϕ
eθ

∼ c+
∑

α∈Zd\0
ϕ̂(θ + 2πα) eα ,

this throws new light on the connection between ao(S(ϕ)) in L∞ and the
behavior of ϕ̂ ‘at’ 2πZd .

[12] exploits this idea in the more general context of a ϕ ∈ X := L∞(R d)
with the only requirement that ϕ∗′ be a bounded map from `∞ to X. Further,
while S(ϕ) is still taken to be the ‘closure’ of S0(ϕ), it is not taken as the norm-
closure but, in effect, as the largest shift-invariant space containing S0(ϕ) and
satisfying (6.2).

Here is the main result of [12] concerning upper bounds.

Theorem 6.3. ([12]). Let (ϕh) be an indexed collection of elements of X :=
L∞(R d). Assume that ϕh∗′ : `∞ → X is defined and bounded independently
of h, and that θ ∈ R

d . If dist(eθ, σhS(ϕh)) = O(hk), then∑
α∈Zd\0

|ϕ̂h(hθ + 2πα)|2 ≤ const θ h2k .

In particular, then

|ϕ̂h(hθ + 2πα)| ≤ const θ hk for all nonzero α in Z
d .

The following points should be stressed:
◦ There is some latitude here for the definition of “smooth” since it need

only include complex exponentials.
◦ Only mild decay of ϕh is needed (enough to make ϕ∗′ : `∞ → L∞ well-

defined).
◦ Nothing is said here about ϕ̂h(0) (which is particularly important if ϕ̂h(0)

is zero).
◦ It is easy to recover the rest of SFk in the stationary case, i.e., in case
ϕh = ϕ, for all h.

◦ Even if “smooth” is taken to mean “compactly supported, but infinitely
smooth”, the same condition is obtained, provided ϕh has a certain decay
at ∞.
The results of [12] concerning lower bounds on ao(S(ϕ)) make use of the

following definition of “smooth”: f ∈ X is “smooth” if its Fourier transform
is a Radon measure for which

‖f‖(k) := ‖(1 + | · |k)f̂‖1 <∞ ,

with the suffix ‘1’ intended to indicate that the total variation of the measure
in question is meant.

Here is a sample result.
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Theorem 6.4. ([12]). Assume that ϕh∗′ : `∞ → L∞ is bounded for every h.
Then, for any positive η,

dist(f, σhS(ϕh)) ≤ hk (2π)−d ‖f‖(k) A + o(hk)

with

A := sup
h

∑
α∈Zd\0

∥∥∥ 1
(hk + | · |k)

ϕ̂h(· + 2πα)
ϕ̂h

∥∥∥
L∞(Bη)

.

Since this theorem gives ao((σhS(ϕh))h) ≥ k only if A <∞, this focuses
attention on the behavior near zero of each of the functions

ϕ̂h(· + 2πα)/ϕ̂h , α ∈ Z
d\0 . (6.5)

Specifically, in the stationary case, if this ratio is a smooth function in a
neighborhood of 0, then the finiteness of A would require the ratio to have a
zero of order k at 0, and conversely, provided ϕ̂ has some decay. From this
vantage point, the Strang-Fix condition SFk is seen to be neither necessary
nor sufficient for ao(S(ϕ)) ≥ k, but to come close to being necessary and
sufficient for appropriately restricted ϕ.

Note that the finiteness of A requires the infinite sum in its definition
to be finite, and such finiteness can, in general, only be deduced when ϕ̂h,
in addition to being “small” near 2πZd\0, decays appropriately (and this
requires some smoothness of ϕh).

The fact that the finiteness of A involves only the ratios (6.5) makes
the conclusion of the theorem independent of localization, i.e., independent
of which difference operators were applied to the original generator for S(ϕh)
in order to obtain the appropriately decaying ϕh.

The proof in [12] of results like this theorem makes use of an approxima-
tion from S(ϕ) of the form

f ≈ Rf := (2π)−d
∫
Rd

εθf̂(θ) dθ ∈ S(ϕ)

in which the approximation

eθ ≈ εθ := ϕ∗′eθ/ϕ̃(θ) ∈ S(ϕ)

is suggested by

eθ∗′ϕ = eθ
∑
j

exp(−ij)ϕ(j) =: eθ ϕ̃(θ) .
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§7. Approximation Order in L2

For an arbitrary ϕ ∈ X := L2(R d), the approximation order of S(ϕ) can
be characterized completely, in terms of ϕ̂. This is due to the fact (proved
in [6] but also derivable from more general results in [17]) that, if PS is the
orthogonal projector onto S(ϕ), then

P̂Sf =
[f̂ , ϕ̂]
[ϕ̂, ϕ̂]

ϕ̂ ,

where
[f̂ , ϕ̂] : Td → C : x 7→

∑
α∈2πZd

f̂(x+ α)ĝ(x+ α)

is the very convenient “bracket product” of f̂ , ϕ̂ ∈ X, and Td is the d-
dimensional torus, i.e.,

T
d := [−π . . π]d

with the appropriate identification of boundary points.
The definition of f being “smooth” employed in [6] is that

‖f‖Wk
2 (Rd ) := ‖(1 + | · |)kf̂‖2 <∞ .

The characterization uses the following abbreviation

Λϕ := 1 − |ϕ̂|2
[ϕ̂, ϕ̂]

=

∑
α∈Zd\0 |ϕ̂(· + 2πα)|2∑
α∈Zd |ϕ̂(· + 2πα)|2 .

Theorem 7.1. ([6]). For any (ϕh)h in X = L2(R d),

ao((σhS(ϕh))h) ≥ k ⇐⇒ sup h
∥∥∥ Λϕh

(h+ | · |)2k
∥∥∥
L∞(Td)

<∞ .

This result focuses attention on the behavior of Λϕ near 0, hence, if ϕ̂ is
bounded away from zero near 0, it focuses, once again, attention on the ratios
(6.5). Here is a typical

Corollary 7.2. ([6]). If ϕ ∈ L2(R d), and 1/ϕ̂ is essentially bounded near 0,
and ϕ̂ ∈ W ρ

2 (U) for some ρ > k + d/2 and some nbhd U of 2πZd\0, and if ϕ
satisfies SFk, then ao(S(ϕ)) ≥ k.

For a general closed shift-invariant subspace of L2(R d), there is the fol-
lowing result.

Theorem 7.3. ([6]). Let S be a closed shift-invariant subspace of L2(R d),
and let f, g ∈ L2(R d). Then

dist(f, S) ≤ dist(f,S(PSg)) ≤ dist(f, S) + 2 dist(f,S(g)) .

This theorem shows that the approximation power of a general shift-
invariant subspace of L2 is already attained by some PSI subspace of it,
provided we can, for given k, supply an element g ∈ L2(R d) for which
ao(S(g)) > k. But that is easy to do:
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Lemma 7.4. There are simple functions g (e.g., the inverse Fourier transform
of the characteristic function of some small neighborhood of the origin) for
which, for any k,

dist(f, σhS(g)) = o(hk‖f‖Wk
2 (Rd )) .

§8. The Babuška Conjecture Revisited

Theorem 7.1 is used in [7] to provide a proof of the Babuška Conjecture
5.3, as follows.

Let S = S(Φ), where Φ is a finite subset of L2(R d)c.
(i) Since each ϕ ∈ Φ is compactly supported, hence ϕ̂ is analytic, it can

be assumed, after going to a subset of Φ if need be, that, for almost every
x ∈ T

d , the set of `2(Zd)-vectors

ϕ̂‖x := (ϕ̂(x+ 2πα))α∈Zd , ϕ ∈ Φ ,

is linearly independent, hence is a basis for Ŝ‖x.

(ii) For any g ∈ L2(R d),

P̂Sg =
∑
ϕ∈Φ

detGϕ(g)
detG(Φ)

ϕ̂

where
G(Φ) :=

(
[ϕ̂, ψ̂])ϕ,ψ∈Φ

and Gϕ(g) is obtained from this by replacing the row [ϕ̂, · ] by the row [ĝ, · ].
(iii) Since

[f̂ , ĝ] =
∑
j∈Zd

〈f, g( · + j)〉 ej ,

each entry of G(Φ) is a trigonometric polynomial, hence so is detG(Φ), and
detG(Φ) 6= 0 a.e. (by (i)).

(iv) If g ∈ L2(R d)c, then S(PSg) = S(g?) (it is shown in [6] that
S(ψ′) = S(ψ) in case ψ′ ∈ S(ψ) and supp ψ̂′ ⊇ supp ψ̂), where

ĝ? := detG(Φ) P̂Sg =
∑
ϕ∈Φ

detGϕ(g) ϕ̂ ,

by (ii), hence g? ∈ S0(Φ), by (iii).
(v) By Theorem 7.3 and Lemma 7.4, we can choose g so that

dist(f,S(g?)) ∼ dist(f,S(Φ)) ,

hence Babuška was right.
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