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ABSTRACT
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and quite unexpected connection between L2(IR) representations and AP representations.

AMS (MOS) Subject Classifications: Primary 42C40, Secondary 42A75

Key Words: frames, time frequency representations, almost-periodic functions, Weyl-Heisenberg systems,
affine systems, dual Gramian, fiberization of time frequency representations, AP-frames.

This work was supported by the US National Science Foundation under Grants ANI-0085984 and DMS-
0602837, and by the National Institute of General Medical Sciences under Grant NIH-1-R01-GM072000-01.

1



Time frequency representations of almost-periodic functions
Yeon Hyang Kim and Amos Ron

1. Introduction

1.1. General

Our paper is devoted to the possible representations and characterization of (univariate) almost periodic
(AP) functions via L2(IR)-frames. Our analysis deals with the two leading time-frequency representation
methods that exist in the L2-setup: Weyl-Heisenberg (WH, known also as Gabor) representations, and affine

(aka wavelet) representations. We are not the first to consider this problem. We are particularly aware of the
two earlier studies, [PU] and [G], and the results established in those articles. It was the reading of these two
papers that motivated us to look into this problem, too, and we will review their main results in the sequel.
Our initial reading of [PU] and [G] made it clear that the assumptions made there on the representation
system (whether WH or affine) imply that the system is an L2(IR)-frame. We wanted to understand whether
this is an artifact of the specific approaches that were chosen in those articles or, perhaps, there is a deeper
connection between L2-representations and AP-representations. To this end, we investigated the problem
using the fiberization tools that were developed in the context of general shift-invariant systems, [BDR94],
[RS95], and the specific results that followed for WH systems, [RS97a] and wavelet systems, [RS97b].

As the two main results of our paper make clear, there is, indeed, a fundamental connection between
WH and affine representations in L2(IR) and the corresponding representations for AP functions using such
systems. Moreover, the approach we have chosen, viz., the aforementioned fiberization techniques of the
underlying operators, was found to be exactly the right tool for revealing this intriguing and unexpected
connection. Specifically, we were able to show that the same fiber operators that were employed in the
analysis of L2-representations can be utilized in the analysis of AP representations. The final result is a
quantitative equivalence between the notion of WH L2(IR)-frame (affine L2(IR)-frame, respectively) and
the notion of WH AP-frame (affine AP-frame, respectively). We refer to the connection as “quantitative”,
since the sharpest possible bounds in the L2-representations are also the sharpest possible bounds in the
AP-representations.

In order to state our results, we will need first to introduce the notions of L2-frames and AP-frames as
well as those of WH systems and wavelet systems. We begin with the definition of an AP function.

Definition 1.1. Let f be a complex-valued function defined on IR and let ǫ > 0. An ǫ-almost period of
f is a number τ such that

sup
t

|f(t+ τ) − f(t)| < ǫ.

A function f is almost periodic (AP) on IR if it is continuous and if for every ǫ there exists a number
L = L(ǫ, f) such that every interval of length L on IR contains an ǫ-almost period of f . As said, we denote
by AP the space of AP functions on IR.

The AP space admits an inner product. The inner product of the AP space is defined by

(1.2) 〈f, g〉AP := lim
T→∞

1

2T

∫ T

−T

f(t)g(t)dt.

Let ‖f‖AP denote the AP norm that is induced by this inner product.

Next, we define the notions of a WH system and an affine system, and start with the former. A WH
system is obtained by applying discrete translations and modulations to a subset Ψ ⊂ L2(IR) of window
functions defined on IR. (The set is usually a singleton, and we assume it to be finite; in principle, a
countable Ψ could have been allowed by our results, as well.) We then choose two positive numbers t0 and
w0, and define the Weyl-Heisenberg system generated by Ψ to be the set

(1.3) X := X(Ψ, t0, w0) := {ψk,l := ψ(· − k)eil(·−k) : k ∈ K, l ∈ L, ψ ∈ Ψ},
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where
K := t0ZZ, L := w0ZZ.

We also denote
D := 2πZZ/t0.

An affine system is obtained when the discrete modulations are replaced by discrete dilations. Our
results in this paper treat only the case of integral dilations. Thus, given a positive integer α > 1 and a finite
subset Ψ of L2(IR) of mother wavelets, we define

ψm,n := α−mψ(α−m · −n), ψ ∈ Ψ, m, n ∈ ZZ.

The affine system generated by Ψ is the set

(1.4) X := X(Ψ, α) := {
√
αm ψm,n : ψ ∈ Ψ, m, n ∈ ZZ}.

(Note that the wavelets ψm,n are normalized in L1, not L2, i.e., ‖ψm,n‖L1(IR) = ‖ψ0,0‖L1(IR). This is the
right normalization in the AP-setup. The definition of an affine system is geared at an L2-setup, hence the
renormalization of the wavelets.)

1.2. Main results

We first recall the notion of an L2-frame, and then introduce a corresponding notion of an AP-frame.

Definition 1.5. Let 〈·, ·〉 be the usual inner product in L2(IR), and let X ⊂ L2(IR) be countable. X is
called a fundamental frame for L2(IR) (L2-frame for short) if there exist two positive constants A,B such
that

(1.6) A ‖f‖2
L2(IR) ≤

∑

x∈X

|〈f, x〉|2 ≤ B‖f‖2
L2(IR), ∀f ∈ L2(IR).

The sharpest possible constants are known as the upper frame bound and the lower frame bound. A
frame whose upper and lower bounds coincide is a tight frame for L2(IR). In particular, an orthonormal
basis is a tight frame. If only the right inequality in (1.6) is valid, X is called a Bessel system, and the
sharpest B in (1.6) is then referred to as the Bessel bound.

The linear map
T ∗ : L2(IR) → ℓ2(X) : f 7→ (〈f, x〉)x∈X ,

which is known as the analysis map, underlies the notion of an L2-frame in the sense that X is a frame if
and only if T ∗ is bounded and has closed range. From this simple point of view, it looks like one has very
little hope to use the same system X for analysing AP-functions: it is well known that the AP space is
non-separable, and, therefore, no collection of countably many elements of its dual space can be total on it.
However, the linear functionals in X are unbounded on the AP-space, and, as we will shortly see, can be
used to capture the AP-norm. To this end, we follow [PU] and [G] and employ a suitable averaging process
that is described separately in the WH case and in the affine case.

Definition 1.7. Let X := X(Ψ, t0, w0) be a WH representation system as in (1.3). We say that X is a
(WH) AP-frame if Ψ ⊂ L1(IR) and there exist positive constants A,B such that, for every AP-function f ,

(1.8) A ‖f‖2
AP ≤

∑

l∈L

lim
N→∞

1

2Nt0

∑

k∈K(N)

∑

ψ∈Ψ

|〈f, ψk,l〉|2 ≤ B ‖f‖2
AP ,

where K(N) := {nt0 ∈ K : −N ≤ n ≤ N}. The definition includes among its conditions the convergence
of the above averaging process. Given a WH AP-frame, the sharpest possible constants in (1.8) are called
the upper AP frame bound and the lower AP frame bound. A frame whose upper and lower bounds
coincide is a (WH) tight frame for AP. Moreover, if only the right-hand side inequality is valid, then X is
a WH AP Bessel system and the sharpest constant B in this bound is then the AP Bessel bound.
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Definition 1.9. Let X := X(Ψ, α) be an affine representation system as in (1.4). We say that X is an
(affine) AP-frame if Ψ ⊂ L1(IR) and there exist positive constants A,B such that every AP-function f that

satisfies f̂(0) := limT→∞

∫ T
−T f(t) dt = 0, satisfies also the following inequalities:

(1.10) A ‖f‖2
AP ≤

∑

m∈ZZ

lim
N→∞

1

2N

N∑

n=−N

∑

ψ∈Ψ

|〈f, ψm,n〉|2 ≤ B ‖f‖2
AP .

The definition includes among its conditions the convergence of the above averaging process. Given an affine
AP-frame, the sharpest possible constants in (1.10) are called the upper AP frame bound and the lower
AP frame bound. A frame whose upper and lower bounds coincide is a (affine) tight frame for AP.
Moreover, if only the right-hand side inequality is valid, then X is an affine AP Bessel system and the
sharpest constant B in this bound is then the AP Bessel bound.

We note that Definitions 1.7 and 1.9 are new, and are made in anticipation of our results on the matter.
One of the main results in this paper says, essentially, that the notions of WH L2-frame (WH L2-Bessel
system, respectively) and WH AP-frame (WH AP-Bessel system, respectively) are the same. The stronger,
quantitative, version of this equivalence is that the L2 frame bounds coincide with the AP frame bounds
(with a similar assertion in the Bessel case). Further, an identical set of statements is established in the
affine case, too.

However, as our reader will shortly see, we do impose some a priori conditions on the window func-
tions/mother wavelets (i.e., the set Ψ.) We believe (though do not have a formal proof for it) that those
restrictions are essential, and are due to the fact that the AP setup is associated with the discrete topology on
the frequency domain, while the L2 setup is associated with the Lebesgue measure on the frequency domain.
As a result, while our characterization of L2 frames (in terms of the fiber operators that we introduce later)
is the same as the characterization of AP frames, the former is slightly weaker since it is required to be
valid a.e. on the frequency domain while the latter is required to be valid everywhere. By imposing a mild
condition on the window functions, we can bridge this small gap and get unconditional equivalence. Here
are our two main results.

Theorem 1.11. Let X = X(Ψ, t0, w0) ⊂ L1(IR) be a WH system. Set D := 2πZZ/t0, L := w0ZZ. Assume
that

(1.12) for each ψ ∈ Ψ and each d ∈ D,
∑

l∈L ψ̂(· − l)ψ̂(· − d− l) is continuous.

Then:
(a) X is an L2-frame if and only if it is an AP-frame. Moreover, the L2 upper frame bound of X is identical

to the AP upper frame bound of X . The same holds for the two lower frame bounds.
(b) X is an L2 Bessel system if and only if it is an AP Bessel system. The two Bessel bounds are then

identical as well.
(c) The “if” implications in (a) and (b) are valid even without assumption (1.12).
(d) X is a tight L2-frame if and only if it is a tight AP-frame.

In the affine counterpart of the above result, we use the following α-adic valuation function κ:

κ : IR → ZZ : λ 7→ inf{m ∈ ZZ : αmλ ∈ 2πZZ}.

(Thus, κ(0) = −∞, and κ(λ) = ∞ unless λ ∈ αm2πZZ for some integer m, i.e., λ is a 2π-α-adic integer.)

Theorem 1.13. Let X = X(Ψ, α) ⊂ L1(IR) be an affine system. Set Q := ∪m∈ZZ2πZZ/αm. Assume that

(1.14) for each ψ ∈ Ψ and each γ ∈ Q,
∑∞

m=κ(γ) ψ̂(αm·)ψ̂(αm(· + γ)) is continuous on IR\{0,−γ}.

Then:
(a) X is an L2 affine frame if and only if it is an AP affine frame. Moreover, the L2 upper frame bound of

X is the same as the AP upper frame bound of X . The two lower frame bounds coincide as well.
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(b) X is an L2 Bessel system if and only if it is an AP Bessel system. The two Bessel bounds are then
identical as well.

(c) The “if” implications in (a) and (b) are valid even without assumption (1.14).
(d) X is a tight L2-frame if and only if it is a tight AP-frame.

Next, we review the main results of [PU] and [G]. We believe that [PU] is the first paper to introduce
time frequency representations of almost-periodic functions by WH systems and affine systems. In [G], given
a WH system X(Ψ, t0, w0), the following inequalities are established:

Ã ‖f‖2
AP ≤ lim

N→∞

1

2Nt0

∑

k∈K(N)

∑

l∈L

∑

ψ∈Ψ

|〈f, ψk,l〉|2 ≤ B̃ ‖f‖2
AP ,

under the following assumptions:
(1) Ψ = {ψ} is a singleton;
(2) ψ is a bounded function and ψ(t) = O(1/t2) as t→ ±∞;
(3)

Ã := inf
λ∈IR

∑

l∈L

|ψ̂(λ− l)|2 −
∑

d∈D\{0}

(Γ(d)Γ(−d))1/2 > 0

and
B̃ := sup

λ∈IR

∑

l∈L

|ψ̂(λ − l)|2 +
∑

d∈D\{0}

(Γ(d)Γ(−d))1/2 <∞,

where
Γ(d) := sup

λ∈IR

∑

l∈L

|ψ̂(λ− l)ψ̂(λ− d− l)|.

One finds that the conditions Ã > 0 and B̃ < 0 are the hypotheses used by [D] in the construction of
L2-frames. These assumptions are sufficient conditions for X to be an L2-frame. However, they are not
necessary.

In the affine case, [PU] established the following identity, with ψ the Haar wavelet:

lim
k→∞

k∑

m=−∞

2k−m−1∑

n=−2k−m

2−m−k−1|〈f, ψm,n〉|2 = ‖f‖2
AP .

The reference [G] extended the aforementioned result to a wider family of affine systems. It proved that
X := X(Ψ, α) is an (affine) AP-frame under the following assumptions:
(1) α > 1 and β > 0;
(2) Ψ = {ψ} is a singleton and ψm,n := α−mψ(α−m · −βn);
(3) ψ ∈ L1(IR) ∩ L2(IR) and

∫
IR |ψ(λ)|2/|λ| dλ <∞;

(4)

Ã := inf
λ∈IR

∑

m∈ZZ

|ψ̂(λαm)|2 −
∑

n∈ZZ\{0}

(Γ(n)Γ(−n))1/2 > 0

and
B̃ := sup

λ∈IR

∑

m∈ZZ

|ψ̂(λαm)|2 +
∑

n∈ZZ\{0}

(Γ(n)Γ(−n))1/2 <∞,

where
Γ(n) := sup

λ∈IR

∑

m∈ZZ

|ψ̂(λαm)ψ̂(λαm − n/β)|.

Again, the assumptions made in [G] on the affine system are sufficient conditions for the system to be an

L2-frame, [D]. Once again, those conditions are not necessary. Moreover, the constants Ã, B̃ (either those
from the WH case or those from the affine case) are known to be valid frame bounds; however they are
generally (and generically) different from the sharpest bounds, i.e., the frame bounds.
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We conclude the introductory section with some notations as well as background material on AP func-
tions. That latter material can be found, for example, in [B] and [K].

1.3. Notations and background material

For λ ∈ IR, the exponential eλ is the function

eλ : IR → C|| : t 7→ eiλt.

A trigonometric polynomial in this paper is not restricted to periodic functions, i.e., it is a finite
combination of arbitrary bounded exponentials:

f =
n∑

k=1

akeλk
, ak ∈ C, λk ∈ IR, n ∈ IN.

The exponentials (eλ)λ∈IR are AP functions and form an orthonormal system in the AP space. Thus, every
trigonometric polynomial is an AP function and satisfies

‖
n∑

k=1

akeλk
‖2
AP =

n∑

k=1

|ak|2.

The exponentials actually form an orthonormal basis for the AP space, i.e., the above Parseval’s identity
extends to the entire AP space:

‖f‖2
AP =

∑

λ∈IR

|af (λ)|2,

where

(1.15) af (λ) := f̂(λ) := 〈f, eλ〉AP .

In particular, the trigonometric polynomials are dense in the AP space. They are even dense in it in
the stronger uniform norm; as a matter of fact, the AP space is the uniform closure of the trigonometric
polynomials.

The norm spectrum of f ∈ AP is defined as

σ := σ(f) := {λ : 〈f, eλ〉AP 6= 0}.

It follows from the above that σ is (at most) countable.
Next, we define in this paper the Fourier transform on L1(IR) by

f̂(λ) :=

∫

IR

f(t)e−iλtdt,

and extend it in the usual way to an isometry from L2(IR) onto itself.
Finally, we use the following shorthand notations for some of the quantities that appear in Theorems

1.11 and 1.13, respectively:

H(f,Ψ) :=
∑

l∈L

lim
N→∞

1

2Nt0

∑

k∈K(N)

∑

ψ∈Ψ

|〈f, ψk,l〉|2,

F (f,Ψ) :=
∑

m∈ZZ

lim
N→∞

1

2N

N∑

n=−N

∑

ψ∈Ψ

|〈f, ψm,n〉|2.
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2. WH representations of almost periodic functions

Our goal in this section is to prove Theorem 1.11. Our tool to this end is the fiberization of the analysis
operator that is associated with the given WH system, [RS97a]. We discuss this topic in the first subsection,
and present the aforementioned proof in the second and last subsection.

2.1. Fiberization of WH systems

Let Ψ be a finite subset of L2(IR), and let X := X(Ψ, t0, w0) be a WH system. For each λ ∈ IR, the

fiber G̃(λ) of the dual Gramian G̃ of X is defined as

G̃(λ) :=
(
G̃(λ)(d, d′)

)

(d,d′)∈D2

, G̃(λ)(d, d′) :=
1

t0

∑

ψ∈Ψ

∑

l∈L

ψ̂ (λ− d− l) ψ̂ (λ− d′ − l) ,

where D := 2πZZ/t0 and L := w0ZZ. Each fiber G̃(λ) is a non-negative definite self-adjoint operator and is
considered as an endomorphism of ℓ2(D) with norm denoted by G∗(λ) and inverse norm G∗−(λ). It is tacitly
assumed, hence understood, that G∗(λ) := ∞ whenever G̃(λ) does not represent a bounded operator; for

example, since we only know that Ψ ⊂ L2, the sum that defines G̃(λ)(d, d′) converges merely locally in L1,
hence is defined only a.e. Thus, there exists a nullset of fibers with entries that are not even well-defined.
The convention G∗(λ) := ∞ automatically applies to each of these matrices. A similar remark applies to
G∗−(λ); moreover, in this case we automatically have G∗−(λ) = ∞ whenever G∗(λ) = ∞. A more detailed
discussion of the dual Gramian fibers of X is provided in [RS95] (for a general shift-invariant X), and in
[RS97a] (for the current WH case). The following result is quoted from [RS97a]:

Result 2.1. Let X = X(Ψ, t0, w0), Ψ ⊂ L2(IR), be a WH system. Let G̃ be the associated dual Gramian,
and let G∗ and G∗− be the dual Gramian norm functions that are defined as above. Then:
(a) The following conditions are equivalent:

(a1) X is a Bessel system;
(a2) G∗ ∈ L∞(IR).
Furthermore, ‖G∗‖∞ is the Bessel bound of X .

(b) Assume X to be a Bessel system. Then the following conditions are equivalent:
(b1) X is an L2-frame;
(b2) G∗− ∈ L∞(IR).
Furthermore, ‖G∗−‖−1

∞ is the lower L2 frame bound of X .

Next, we define, for each l ∈ L and each λ ∈ IR,

(2.2) G̃l(λ) :=
(
G̃l(λ)(d, d

′)
)

(d,d′)∈D2

, G̃l(λ)(d, d
′) :=

1

t0

∑

ψ∈Ψ

ψ̂ (λ− d− l) ψ̂ (λ− d′ − l) .

Then we have the following lemma.

Lemma 2.3. If X := X(Ψ, t0, w0) is a WH Bessel system, then, for each a ∈ ℓ2(D) and a.e. λ ∈ IR,
∑

l∈L

a∗G̃l(λ)a = a∗G̃(λ)a.

Proof. First, note that, in view of (a) of Result 2.1, the claim trivially holds for any finitely supported
sequence a0 ∈ ℓ2(D). Since X is a Bessel system for L2(IR), then, [RS95], for each l ∈ L and a.e. λ ∈ IR,
G̃l(λ) : ℓ2(D) → ℓ2(D) is a non-negative definite self-adjoint operator and ‖∑

l∈I G̃l(λ)‖ ≤ ‖G∗‖∞, for any

finite I ⊂ L. So, for each M ∈ IN and a.e. λ ∈ IR, EM (λ) := G̃(λ) − ∑
|l|≤M G̃l(λ) is also a non-negative

definite self-adjoint operator and ‖EM (λ)‖ ≤ 2‖G∗‖∞. Therefore, given a finitely supported a0 ∈ ℓ2(D) such
that ‖a0‖ℓ2 ≤ ‖a‖ℓ2,

a∗EM (λ)a = (a0 + (a− a0))
∗EM (λ)(a0 + (a− a0)) ≤ a∗0EM (λ)a0 + 6‖a‖ℓ2‖a− a0‖ℓ2‖G∗‖∞.

This, together with the fact that limM→∞ a∗0EM (λ)a0 = 0 easily implies that, given ε > 0, we have that
a∗EM (λ)a < ε for all sufficiently large M .
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We also need the following corollary of Result 2.1:

Corollary 2.4. If X := X(Ψ, t0, w0) is a WH Bessel system, then the functions

(2.5)
∑

l∈L

∑

ψ∈Ψ

∣∣∣ψ̂(· − l)ψ̂(· − t− l)
∣∣∣ , t ∈ L,

lie, each, in L∞(IR), and form a bounded set there.

Proof. Since X is a Bessel system, Result 2.1 implies that G∗ is essentially bounded, say by C/t0.
Thus, for a.e. λ ∈ IR, ∑

l∈L

∑

ψ∈Ψ

|ψ̂(λ− l)|2 = t0G̃(λ)(0, 0) ≤ t0G∗(λ) ≤ C.

The requisite boundedness follows then by Schwarz’ inequality.

Remark. Note that the last corollary clarifies the context of assumption (1.12) in Theorem 1.11: that
condition is used in the proofs of the “only if” implications in (a) and (b) of the theorem. Thus, whenever
it is needed, X is always known to be a Bessel system. In this event, Corollary 2.4 guarantees that the sum
in (2.5) converges absolutely (a.e.). Assumption (1.12) in Theorem 1.11 then merely asserts that this sum
is well-defined everywhere and is also continuous. Similar remark can be applied to the affine case too.

2.2. WH-based Characterization of AP functions

We are now ready to prove Theorem 1.11.
Proof of Theorem 1.11. First, we prove the “only if” implication in (a). The proof of the “only if”

implication of (b) is omitted, since that proof uses a subset of the arguments that we use in the proof of (a).
We begin with the analysis of the case when f ∈ AP is a trigonometric polynomial of the following specific
form:

f :=
∑

d∈D

a(d)e(λ−d).

Here, λ ∈ IR is arbitrary. Since Ψ ⊂ L1(IR), for each ψ ∈ Ψ, each k ∈ K, and each l ∈ L,

〈f, ψk,l〉 =
∑

d∈D

a(d)ψ̂(λ − d− l)eik(λ−d)

is finite and hence, since t0(D −D) ⊂ 2πZZ,

|〈f, ψk,l〉|2 =
∑

(d,d′)∈D2

a(d)a(d′)ψ̂(λ− d− l)ψ̂(λ− d′ − l).

Thus |〈f, ψk,l〉|2 is independent of k, and we conclude that

t0H(f,Ψ) =
∑

l∈L

∑

(d,d′)∈D2

∑

ψ∈Ψ

a(d)a(d′)ψ̂(λ− d− l)ψ̂(λ− d′ − l).

By assumption (1.12) of the present theorem,

∑

ψ∈Ψ

∑

l∈L

ψ̂(· − l)ψ̂(· − d− l)

converges everywhere for each d ∈ D. This justifies the change in the summation order in the first equality
of the following derivation:

∑

l∈L

∑

(d,d′)∈D2

∑

ψ∈Ψ

a(d)a(d′)ψ̂(λ − d− l)ψ̂(λ− d′ − l)

=
∑

(d,d′)∈D2

a(d)a(d′)
∑

l∈L

∑

ψ∈Ψ

ψ̂(λ− d− l)ψ̂(λ− d′ − l)

= t0 a
∗G̃(λ)a.
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Thus, for this special type of AP functions, the averaging process H(f,Ψ) coincides with the action of the

quadratic form G̃(λ) on the coefficient vector a.

Now, let f be a general trigonometric polynomial, say, f =
∑

λ∈σ a(λ)eλ, with σ ⊂ IR finite. We define an
equivalence relation ∼ on σ by λ ∼ λ′ ⇐⇒ λ− λ′ ∈ D. Let Λ ⊂ σ be a set of representers of the equivalence
classes. For λ ∈ Λ, denote by σλ ⊂ σ the corresponding equivalence class. Further, set

Σ1 := ∪λ∈Λσλ × σλ, Σ2 := (σ × σ) \Σ1.

Now, for each λ ∈ Λ, we define a sequence

(2.6) aλ : D → C|| , d 7→
{
a(λ− d), if λ− d ∈ σλ,
0, otherwise.

The argument used in the first part of the proof can be repeated now to yield that

H(f,Ψ) −
∑

λ∈Λ

a∗λG̃(λ)aλ =
∑

l∈L

lim
N→∞

1

2Nt0

∑

k∈K(N)

∑

ψ∈Ψ

∑

(λ,λ′)∈Σ2

a(λ)a(λ′)ψ̂(λ− l)ψ̂(λ′ − l)eik(λ−λ
′),

provided that we can show that the limit in the right-hand-side above exists for every l and ψ. Here, we used
again Corollary 2.4 (as well as assumption (1.12) in the current theorem), this time for the choice t := λ−λ′.
We will show that the right-hand-side in the last display equals 0. To this end, we fix l ∈ L and ψ ∈ Ψ, and
examine the expression

1

2N

∑

k∈K(N)

∑

(λ,λ′)∈Σ2

a(λ)a(λ′)ψ̂(λ− l)ψ̂(λ′ − l)eik(λ−λ
′).

The above sum is actually finite, hence equals

∑

(λ,λ′)∈Σ2

a(λ)a(λ′)ψ̂(λ− l)ψ̂(λ′ − l)
1

2N

∑

k∈K(N)

eik(λ−λ
′).

Since, by our definition of Σ2, λ− λ′ 6∈ D, we have that

lim
N→∞

1

2N

∑

k∈K(N)

eik(λ−λ
′) = 0.

Consequently,

(2.7) H(f,Ψ) =
∑

λ∈Λ

a∗λG̃(λ)aλ.

Since we assume that X is an L2-frame, we know from Result 2.1 that, for a.e. λ ∈ IR, and for any aλ ∈ ℓ2(D),

(2.8)
‖aλ‖2

ℓ2

‖G∗−‖∞
≤ a∗λ G̃(λ) aλ ≤ ‖G∗‖∞‖aλ‖2

ℓ2 .

However, assumption (1.12) in the current theorem guarantees the entries of the dual Gramian to be pointwise
continuous, and hence (2.8) is valid everywhere, hence also at every λ ∈ Λ. Thus,

(2.9)
‖a‖2

ℓ2

‖G∗−‖∞
=

∑

λ∈Λ

‖aλ‖2
ℓ2

‖G∗−‖∞
≤

∑

λ∈Λ

a∗λ G̃(λ) aλ ≤
∑

λ∈Λ

‖G∗‖∞‖aλ‖2
ℓ2 = ‖G∗‖∞‖a‖2

ℓ2.
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Therefore, for a trigonometric polynomial f , we obtain the requisite inequalities:

‖f‖2
AP

‖G∗−‖∞
≤ H(f,Ψ) ≤ ‖G∗‖∞‖f‖2

AP .

Next, let f be a general almost periodic function and let σ be the norm spectrum of f . Since σ is
countable, we can enumerate its elements: σ = {λ1, λ2, · · ·}. We set σs := {λ1, · · · , λs} for each s ∈ IN.
Then, [K], there is a trigonometric polynomial sequence {fs}∞s=1 which converges uniformly to f such that
for each s ∈ IN the norm spectrum of fs is σs. We denote, for each s ∈ IN,

fs =
∑

λ∈σs

as(λ)eλ.

Since lims→∞ fs = f in L∞(IR), 〈fs, ψk,l〉 converges to 〈f, ψk,l〉 uniformly in k, l as s→ ∞. So, it is easy to
check that

(2.10) lim
s→∞

lim
N→∞

1

2Nt0

∑

k∈K(N)

∑

ψ∈Ψ

|〈fs, ψk,l〉|2 = lim
N→∞

1

2Nt0

∑

k∈K(N)

∑

ψ∈Ψ

|〈f, ψk,l〉|2.

Consequently,

(2.11) H(f,Ψ) =
∑

l∈L

lim
s→∞

lim
N→∞

1

2Nt0

∑

k∈K(N)

∑

ψ∈Ψ

|〈fs, ψk,l〉|2.

This, together with Fatou’s lemma implies that

(2.12)

H(f,Ψ) ≤ lim sup
s→∞

∑

l∈L

lim
N→∞

1

2Nt0

∑

k∈K(N)

∑

ψ∈Ψ

|〈fs, ψk,l〉|2

= lim sup
s→∞

H(fs,Ψ)

≤ lim
s→∞

‖G∗‖∞‖as‖2
ℓ2

= ‖G∗‖∞‖a‖2
ℓ2.

Now, with the equivalence relation ∼, and the set of representers Λ as before, we define, for each s ∈ IN,

Λs := {λ ∈ Λ : λ−D ∩ σs 6= ∅}.

Given λ ∈ Λs, we also define a sequence

asλ : D → C|| , d 7→
{
as(λ− d), λ− d ∈ σs,
0, otherwise.

Note that
∑

λ∈Λs
‖asλ‖2

ℓ2
= ‖as‖2

ℓ2
. Since Ψ ⊂ L1(IR), each entry of G̃l(λ) is also continuous for every λ ∈ IR

and each l ∈ L. Hence the argument used in the first part of the proof can be repeated here to yield that

H(f,Ψ) =
∑

l∈L

lim
s→∞

lim
N→∞

1

2Nt0

∑

k∈K(N)

∑

ψ∈Ψ

|〈fs, ψk,l〉|2

=
∑

l∈L

lim
s→∞

∑

λ∈Λs

(asλ)
∗
G̃l(λ)a

s
λ.

Now, for each λ ∈ Λ, asλ converges to aλ in ℓ2(D) as s→ ∞, where aλ is defined in (2.6) with infinite set σ
at this time. Thus,

lim
s→∞

(asλ)
∗
G̃l(λ)a

s
λ = a∗λG̃l(λ)aλ ≤ ‖aλ‖2

ℓ2‖G∗‖∞,
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and
∑

λ∈Λ ‖aλ‖2
ℓ2

= ‖a‖2
ℓ2

. So, by, e.g., dominated convergence argument,

H(f,Ψ) =
∑

l∈L

∑

λ∈Λ

a∗λG̃l(λ)aλ.

Since each term of this series is non-negative and H(f,Ψ) <∞ by (2.12), this series converges absolutely so
that

H(f,Ψ) =
∑

λ∈Λ

∑

l∈L

a∗λG̃l(λ)aλ.

By Lemma 2.3, we finally have

∑

λ∈Λ

∑

l∈L

a∗λG̃l(λ)aλ =
∑

λ∈Λ

a∗λG̃(λ)aλ ≥
∑

λ∈Λ

‖aλ‖2
ℓ2

‖G∗−‖∞
=

‖a‖2
ℓ2

‖G∗−‖∞
.

We therefore conclude that for any f ∈ AP ,

‖f‖2
AP

‖G∗−‖∞
≤ H(f,Ψ) ≤ ‖G∗‖∞‖f‖2

AP .

Now, we prove the “if” assertion in (a). We first choose f to be an exponential eλ, λ ∈ IR. The argument
in the first part of the proof applies to yield that

1

t0

∑

ψ∈Ψ

∑

m∈ZZ

|ψ̂(λ− l)|2 = H(f,Ψ).

By our current assumption, H(f,Ψ) <∞. Thus, all the diagonal entries of each dual Gramian G̃(λ) converge
absolutely to a finite limit, and hence, by Schwartz’ inequality, all the entries of all the dual Gramians are
finite. Next, for each λ ∈ IR, let

f :=
∑

d∈D

a(d)e(λ−d),

with a finitely supported (hence in ℓ2). We proved at the beginning of the proof that, for such a

(2.13) H(f,Ψ) = a∗G̃(λ)a.

Since we assume here that B‖f‖2
AP ≤ H(f,Ψ) ≤ A‖f‖2

AP , since we have that ‖f‖AP = ‖a‖ℓ2 , and since

the finitely supported sequence a is arbitrary, we conclude from (2.13) that the self-adjoint operator G̃(λ) is
bounded above by A and bounded below by B, which is exactly what we needed to prove. Result 2.1 can
be invoked now to yield that X is an L2-frame with upper frame bound ≤ A and lower frame bound ≥ B.

The proof of the “if” assertion in (b) is entirely analogous. That is, we proved (c). The statement in (d)
follows from the other statements.

3. Affine representations of AP functions

We move now to the proof of Theorem 1.13. Once again, we employ the fiberization of the analysis
operator that is associated with the given affine system, [RS97b]. We present the relevant details on this
fiberization in the first subsection, and prove the theorem in the second one.
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3.1. The dual Gramian of affine systems

Let X := X(Ψ, α) be an affine system. The dual Gramian G̃ of the system is based on the notion of
the affine product Ψ[·, ·], [RS97b], of X , which is defined as

Ψ[λ, λ′] :=

∞∑

m=κ(λ−λ′)

∑

ψ∈Ψ

ψ̂(αmλ)ψ̂(αmλ′), λ, λ′ ∈ IR,

where κ is the α-adic valuation

κ : IR → ZZ : λ 7→ inf{m ∈ ZZ : αmλ ∈ 2πZZ}.
Then, for (j, l) ∈ (2πZZ)2 and λ ∈ IR, the (j, l)-entry of the dual Gramian fiber G̃(λ), associated with the
affine system X , is defined, [RS97b],

G̃(λ)(j, l) := Ψ[λ− j, λ− l].

In an analogous way to the WH case, we consider each fiber G̃(λ) as an endomorphism of ℓ2(2πZZ). This
gives rise to the associated norm functions:

G∗ : IR → IR : λ 7→ ‖G̃(λ)‖,
G∗− : IR → IR : λ 7→ ‖G̃−1(λ)‖.

As in the WH case, these norm functions are defined conservatively, with an automatic definition G∗(λ) := ∞,
whenever the fiber operator fails to represent a bounded endomorphism, for whatever reason; similarly, for
G∗−.

The following result concerning the fiberization of affine systems is taken from [RS97b].ℵ

Result 3.1. Let X = X(Ψ, α) be an affine system, and let G̃, G∗ and G∗− be the associated dual Gramian
and the resulting norm functions, defined as above. Then:
(a) The following conditions are equivalent:

(a1) X is a Bessel system;
(a2) G∗ ∈ L∞(IR);
Furthermore, ‖G∗‖∞ is then the Bessel bound of X .

(b) Assume X to be a Bessel system. Then the following conditions are equivalent:
(b1) X is an L2-frame;
(b2) G∗− ∈ L∞(IR);
Furthermore, ‖G∗−‖−1

∞ is the lower frame bound of X .

The fibers G̃(λ) in the affine case are inter-related: G̃(λ) is a submatrix of G̃(αλ). It is more convenient to
us to eliminate this redundancy in the fiber operators. To this end, we define, for each λ ∈ IR, an augmented
non-negative self-adjoint matrix G̃(λ) whose rows and columns are indexed by the set Q := ∪m∈ZZ2πZZ/αm

of all α-adic 2π-integers. The entry of (q, q′) ∈ Q2 of G̃(λ) is defined as before:

G̃(λ)(q, q′) := Ψ[λ− q, λ− q′].

Each matrix is considered as an endomorphism of ℓ2(Q) with norm denoted by G∗(λ) and inverse norm

G∗−(λ). We note that, given any positive integer m, the matrix G̃(αmλ) is obtained from G̃(λ) by deleting
all columns and rows indexed by Q\(2πZZ/αm).

Now, for any given finitely supported sequence a ∈ ℓ2(Q) with support σ, there exists a non-negative
integerM such that αMσ ⊂ 2πZZ. Since Ψ[λ−q, λ−q′] = Ψ[αM (λ−q), αM (λ−q′)] (for any (q, q′) ∈ 2πZZ/αM

and a.e. λ), we have that

a∗G̃(λ)a =
∑

(q,q′)∈Q2

a(q)a(q′)Ψ[λ− q, λ− q′] =
∑

(j,l)∈(2πZZ)2

b(j)b(l)Ψ[αMλ− j, αMλ− l] = b∗G̃(αMλ)b,

where b : 2πZZ → C, j 7→ a(α−M j), and, therefore, ‖a‖ℓ2(Q) = ‖b‖ℓ2(2πZZ).

Using the above, it is quite straightforward to infer from Result 3.1 the following fiberization result:

ℵ The proof of this result in [RS97b] imposes a mild smoothness condition on the mother wavelet set Ψ.
This condition was removed in [CSW].
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Corollary 3.2. Let X = X(Ψ, α) be an affine system, and let G∗ and G∗− be the norm functions defined
as above. Then:
(a) The following conditions are equivalent:

(a1) X is a Bessel system;

(a2) G ∗ ∈ L∞(IR);
Furthermore, ‖G∗‖∞ is then the Bessel bound of X .

(b) Assume X to be a Bessel system. Then the following conditions are equivalent:
(b1) X is an L2-frame;

(b2) G∗− ∈ L∞(IR);
Furthermore, ‖G∗−‖−1

∞ is the lower frame bound of X .

We also define, for each m ∈ ZZ and each λ ∈ IR, the following augmented non-negative self-adjoint
matrix:

G̃m(λ) := (Ψm[λ− q, λ− q′])(q,q′)∈Q2 , Ψm[λ, λ′] :=
∑

ψ∈Ψ

ψ̂(αmλ)ψ̂(αmλ′)χ(λ, λ′,m),

where

(3.3) χ(λ, λ′,m) :=

{
1, if αm(λ − λ′) ∈ 2πZZ,
0, otherwise.

Then for any finitely supported sequence a ∈ ℓ2(Q) and a.e. λ ∈ IR,

∑

m∈ZZ

a∗G̃m(λ)a = a∗G̃(λ)a ≤ ‖a‖2
ℓ2‖G∗‖∞.

In particular, for any given m ∈ ZZ, and any finite I ⊂ ZZ, a∗(
∑

m∈I G̃m(λ))a ≤ ‖a‖2
ℓ2
‖G∗‖∞. Hence, we

have, for that same I,

(3.4) ‖
∑

m∈I

G̃m(λ)‖ ≤ ‖G∗‖∞.

Since, for a.e. λ ∈ IR and each m ∈ ZZ, G̃m(λ) is a non-negative self-adjoint matrix, the proof of Lemma 2.3,
when combined with (3.4), yields the following observation:

Lemma 3.5. If X := X(Ψ, α) is an affine Bessel system, then for each a ∈ ℓ2(Q) and a.e. λ ∈ IR,

∑

m∈ZZ

a∗G̃m(λ)a = a∗G̃(λ)a.

Also, we have the following analogue of Corollary 2.4:

Corollary 3.6. If X := X(Ψ, α) is an affine Bessel system, then the functions

(3.7)

∞∑

m=κ(t)

∑

ψ∈Ψ

∣∣∣ψ̂(αm·)ψ̂(αm(· + t))
∣∣∣ , t ∈ Q,

lie, each, in L∞(IR), and form a bounded set there.
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3.2. Characterizations of AP functions with the aid of affine systems

Proof of Theorem 1.13. First, we prove the “only if” implication in (a). The proof provides all the
necessary details for the proof of (b), too. To begin with, we will establish the AP -frame inequalities for a

trigonometric polynomial f =
∑

σ a(λ)eλ with f̂(0) = 0, where σ is a finite subset of IR. Since f̂(0) = 0, we
know that 0 /∈ σ. First, since Ψ ⊂ L1(IR), for each m,n ∈ ZZ and each ψ ∈ Ψ,

〈f, ψm,n〉 =
∑

λ∈σ

a(λ)ψ̂(αmλ)eiα
mnλ

is finite, hence

|〈f, ψm,n〉|2 =
∑

(λ,λ′)∈σ2

a(λ)a(λ′)ψ̂(αmλ)ψ̂(αmλ′)eiα
mn(λ−λ′).

Since σ is finite, we have that

F (f,Ψ) =
∑

m∈ZZ

lim
N→∞

1

2N

N∑

n=−N

∑

ψ∈Ψ

|〈f, ψm,n〉|2

=
∑

m∈ZZ

lim
N→∞

1

2N

N∑

n=−N

∑

ψ∈Ψ

∑

(λ,λ′)∈σ2

a(λ)a(λ′)ψ̂(αmλ)ψ̂(αmλ′)eiα
mn(λ−λ′)

=
∑

m∈ZZ

∑

(λ,λ′)∈σ2

a(λ)a(λ′)
∑

ψ∈Ψ

ψ̂(αmλ)ψ̂(αmλ′) lim
N→∞

1

2N

N∑

n=−N

eiα
mn(λ−λ′).

On the other hand,

lim
N→∞

1

2N

N∑

n=−N

eiα
mn(λ−λ′) = χ(λ, λ′,m) :=

{
1, if αm(λ − λ′) ∈ 2πZZ,
0, otherwise.

That is,

F (f,Ψ) =
∑

m∈ZZ

∑

(λ,λ′)∈σ2

a(λ)a(λ′)
∑

ψ∈Ψ

ψ̂(αmλ)ψ̂(αmλ′)χ(λ, λ′,m).

By assumption (1.14) of the present theorem,

(3.8)

∞∑

m=κ(γ)

∑

ψ∈Ψ

ψ̂(αm·)ψ̂(αm(· + γ))

converges everywhere for each γ ∈ Q. This justifies the change in the summation order in the first equality
of the following derivation:

∑

m∈ZZ

∑

(λ,λ′)∈σ2

a(λ)a(λ′)
∑

ψ∈Ψ

ψ̂(αmλ)ψ̂(αmλ′)χ(λ, λ′,m)

=
∑

(λ,λ′)∈σ2

a(λ)a(λ′)
∑

m≥κ(λ−λ′)

∑

ψ∈Ψ

ψ̂(αmλ)ψ̂(αmλ′)

=
∑

(λ,λ′)∈σ2

a(λ)a(λ′)Ψ[λ, λ′].

Consequently,

F (f,Ψ) =
∑

(λ,λ′)∈σ2

a(λ)a(λ′)Ψ[λ, λ′].
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Now, we define an equivalence relation ∼ on σ by λ ∼ λ′ ⇐⇒ λ − λ′ ∈ Q. Let Λ ⊂ σ be a set of
representers of the equivalence classes. For λ ∈ Λ, denote by σλ ⊂ σ the corresponding equivalence class.
Since Ψ[λ1, λ2] = 0 unless λ1 ∼ λ2,

F (f,Ψ) =
∑

(λ,λ′)∈σ2

a(λ)a(λ′)Ψ[λ, λ′] =
∑

λ∈Λ

∑

(λ1,λ2)∈σ2

λ

a(λ1)a(λ2)Ψ[λ1, λ2] =
∑

λ∈Λ

a∗λG̃(λ)aλ,

where aλ(λ
′) :=

{
a(λ′), if λ′ ∈ σλ,
0, otherwise.

By assumption (1.14), for each λ ∈ Λ, each entry of G̃(λ) is continuous unless λ− p = 0 for some p ∈ Q. If
λ− p = 0, then, since a(0) = 0, we know that aλ(p) = 0. In this case, we define G̃(λ)′ to be the submatrix
of G̃(λ) which is obtained by deleting the λ−p row and column from G̃(λ). That makes each entry of G̃(λ)′

continuous. Also, we define a′λ by a′λ : Q\{p} → C, q 7→ aλ(q). Then

a∗λG̃(λ)aλ = (a′λ)
∗G̃(λ)′a′λ.

Using the above argument, without loss of generality, we can assume that for each λ ∈ Λ, each entry of G̃(λ)
is continuous. Then, by the same reasonings as in (2.8) and (2.9), for each λ ∈ Λ and for any aλ ∈ ℓ2(Q),
we have

(3.9)
‖aλ‖2

ℓ2

‖G∗−‖∞
≤ a∗λG̃(λ)aλ ≤ ‖G∗‖∞‖aλ‖2

ℓ2 .

Therefore, for a trigonometric polynomial f ∈ AP with f̂(0) = 0, we have the requisite inequalities:

(3.10)
‖f‖2

AP

‖G∗−‖∞
≤ F (f,Ψ) ≤ ‖G∗‖∞‖f‖2

AP .

Next, let f be a general almost periodic function with f̂(0) = 0, and let σ = {λ1, λ2, · · ·} be the norm
spectrum of f . Then as in the WH case, there is a trigonometric polynomial sequence {fs}∞s=1 which
converges uniformly to f . Similarly to (2.11), we have

(3.11) F (f,Ψ) =
∑

m∈ZZ

lim
s→∞

lim
N→∞

1

2N

N∑

n=−N

∑

ψ∈Ψ

|〈fs, ψm,n〉|2.

Again, by the Fatou’s lemma, F (f,Ψ) is bounded above by ‖G∗‖2
∞‖f‖2

AP .
The proof of the lower bound of F (f,Ψ) is also similar to the WH case, hence is only sketched.

With the equivalence relation ∼, and the set of representers Λ as before, we define, for each s ∈ IN,

Λs := {λ ∈ Λ : λ−Q ∩ σs 6= ∅}.
Then,

F (f,Ψ) =
∑

m∈ZZ

lim
s→∞

∑

λ∈Λs

∑

(λ1,λ2)∈σ2

λ

as(λ1)as(λ2)Ψm[λ1, λ2]

=
∑

m∈ZZ

lim
s→∞

∑

λ∈Λs

(asλ)
∗G̃m(λ)asλ,

where asλ : Q→ C, q 7→
{
as(λ− q), if λ− q ∈ σsλ,
0, otherwise.

Also, lims→∞ asλ = aλ :=

{
a(λ− q), if λ− q ∈ σλ,
0, otherwise.

Thus, using (3.9) and Lemma 3.5, and invoking a dominated convergence argument, we obtain

(3.12) F (f,Ψ) =
∑

λ∈Λ

∑

m∈ZZ

a∗λG̃m(λ)aλ =
∑

λ∈Λ

a∗λG̃(λ)aλ ≥
∑

λ∈Λ ‖aλ‖2
ℓ2

‖G∗−‖∞
=

‖f‖2
AP

‖G∗−‖∞
.

Therefore, for any f ∈ AP with f̂(0) = 0,

1

‖G∗−‖∞
‖f‖2

AP ≤ F (f,Ψ) ≤ ‖G∗‖∞‖f‖2
AP .

The remaining parts of the proof here follow almost verbatim the reasonings of the WH case, hence are
omitted. (Note that for the “if” implication in (a) and (b), it is enough to show that (3.9) is valid a.e.
λ ∈ IR.)
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