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1. Introduction

Let S be a function space consisting of complex (or real) valued functions defined on IRd. We
say that S is shift-invariant (SI, for short) if S is invariant under all integer translations (referred
to hereafter as shifts), i.e.,

(1.1) ∀α ∈ ZZd (f ∈ S ⇐⇒ f(· − α) ∈ S).

In this paper we consider SI spaces which are subspaces of

Lp := Lp(IR
d),

for some 2 ≤ p ≤ ∞. The simplest type of shift-invariant spaces is the PSI space (“P” for
“principal”) which is the case when S is closed (usually in the underlying p-norm, but sometimes
in a weaker topology) and the shifts of a single function φ (=the generator) are fundamental
in S. Approximation from PSI and other shift-invariant spaces is pertinent to the theory and
applications of several subareas of analysis, and in particular to Multivariate Splines, Radial Basis
Approximation, Wavelets and Sampling Theory.

In many actual approximations, the SI space S is refined to yield another approximating
space Sh with, presumably, better approximation properties. The standard (known as stationary)
refinement is by scaling, that is, Sh is obtained by dilating the functions in S:

Sh = σhS := {σhf := f(·/h) : f ∈ S}.

Sometimes (cf. [DR]) it is necessary to refine S by means other than dilation.
The basic way for measuring the approximation “power” of S is via the tool of approximation

orders. Roughly speaking, the collection of spaces {Sh}h>0 is said to provide approximation
order k > 0, if, for all sufficiently smooth f ,

dist(f, Sh) = O(hk).

Here, dist is measured by the relevant p-norm or one of its relatives (a Sobolev norm, a local p-norm,
etc.). For some time, the analysis of approximation orders of PSI spaces was largely dominated
by the Strang-Fix conditions, [SF]. These conditions assert that, if S is generated by a compactly

supported φ, if φ̂(0) 6= 0, and if the scale {Sh}h is stationary, then the approximation orders provided

by {Sh}h are determined by the order of the zero φ̂ has at each of 2πZZd\0. The standard method for
converting the information about these zeros into approximation order results is the polynomial
reproduction / quasi-interpolation argument; (cf. the book [C], the survey [B], and the
references therein). However, several important PSI spaces that were introduced and studied in
recent years do not satisfy the requirements imposed above on the PSI space. One difficulty arises
in the area of radial basis functions, since there the typical generator φ is not compactly supported.
A totally different difficulty arises in the area of box splines: while the box spline is compactly
supported, its corresponding {Sh}h is not a stationary one (unless the generator φ is a polynomial

box spline). The attempts to cover those cases by generalized quasi-interpolation arguments led
to some remarkable achievements, but did not solve the problem in its entirety. In retrospect, it
seems that the quasi-interpolation approach fails to realize the approximation order of general PSI
spaces, a fortiori of general SI spaces.
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New approaches that circumvent quasi-interpolation were recently developed in [BR2] (p = ∞)
and [BDR1] (p = 2). While the two methods differ in the approximation scheme they employ as
well as in their error analysis, they both perform the entire error analysis on the Fourier domain,
hence, in turn, avoid the imposition of decay rates on the generator φ. Also, importantly, both
characterizations do not require {Sh}h to be stationary, and, furthermore, [BDR1] even dispense

with the regularity assumption φ̂(0) 6= 0. Extensive discussions of the various applications of the
results of [BR2] and [BDR1] to radial function approximation can be found in §3 of [BR2] and
[R3] respectively. Further discussion of the literature can be found in §3.2.

In the present paper, we revisit PSI spaces generated by compactly supported functions (such
spaces were coined local in [BDR2]). Primarily, we aim at establishing results on the approximation
order of box spline spaces, and providing explicit approximation schemes that realize that order.
The main findings here with respect to box spline spaces are as follows:

(a): We determine exactly (in Theorem 3.4) the approximation order of box spline spaces in
the L2-norm. In no norm has such result been known before, although, for p = ∞, [BR2] came
very close to the mark. We also show that no smooth function can be approximated any better (cf.
Theorem 3.7).

(b): We present (in §3.3) an explicit approximation scheme in the form

f ≈
∑

α∈ZZd

φ(· − α)(Jf)(α),

for a suitably chosen convolution operator J . We prove that the scheme realizes the L2-approximation
order, and, as a matter of fact, maintain the same approximation order in Lp-norms, 2 < p < ∞
(Theorem 3.13). The results also apply to the L∞-case, if a mild smoothness condition is imposed
on φ (φ ∈ A, with A the Wiener algebra).

(c): We develop a new error analysis method which differs from the two of [BR2] and [BDR1].
With the aid of that approach, we show that for 2 ≤ p ≤ ∞ (with some additional smoothness
conditions required of the box spline φ, in the p = ∞ case) the approximation scheme used provides
simultaneous approximation to functions and their derivatives (Theorem 3.17).

Most of the analysis that is developed to deal with box spline spaces was found to apply
also to general local PSI spaces. Due to that reason, we first present, in §2, results that concern
approximation orders of local PSI spaces, and only then apply these results, in §3, to the box spline
case. Most of the proofs are collected in §4.

Soon after completing the present paper, I received a preprint of Kyriazis’ paper [K]. The
paper [K] deals with similar problems to those considered in the present paper, and to a limited
extent employs similar analysis (primarily, both papers invoke the approximation scheme of [BR2],
and also both paper apply the Hausdorff-Young theorem), However, the foci of the two papers seem
to be different, hence they are quite complementary one to the other. [K] focuses on stationary

refinements, and attempts to impose as mild as possible decay conditions on the generator φ.
Therefore, a substantial effort is devoted there to proving that various constructed approximants
are indeed taken from the underlying PSI space. The paper [K] succeeds in providing satisfactory
results also to Lp norms where p < 2, its class of smooth functions is larger than here, and it
establishes Strang-Fix-like conditions similar to those derived in [BDR1]. The present paper focuses
on box spline spaces, hence avoids on the one hand questions of decay rates of the generator, but
needs on the other hand to deal with non-stationary refinements. Also, we present here results on
simultaneous approximation to functions and derivatives, a topic which was not considered in [K],
and, finally, our results apply to p = ∞, as well ([K] relies on the Michlin multiplier theorem, hence
deals with p <∞).
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Notations: we have already used the notation σh for the dilation operator

σh : f 7→ f(·/h).

Norms of vectors x ∈ IRd are denoted by |x|p, namely,

|x|p := (
d∑

j=1

|xj |
p)1/p,

with the default notation |x| := |x|2. The function

x 7→ |x|,

which is used extensively in the paper, is denoted by (the essentially self-understood notation)

|·|.

For θ ∈ Cd, the notation eθ stands for the exponential function

eθ : ω 7→ eiθ·ω.

Unless otherwise stated, all domains of functions in this paper are taken to be IRd. Thus, Lp =

Lp(IR
d), S ′ = S ′(IRd) (the space of all d-dimensional complex-valued tempered distributions),

W k
p = W k

p (IRd) (the Sobolev space of all functions whose derivatives up to order k are in Lp), etc.
We also abbreviate

‖f‖p := ‖f‖Lp
.

2. Approximation from local PSI spaces

Our model is as follows. We are given an indexed set Φ := {φh}h ⊂ Lp. The locality assumption
usually means that each φh is supported in some bounded, h-independent domain Ω, but, while
such an assumption holds indeed in the box spline case, we do not need it here. We only assume
that each φh is compactly supported. Regardless of the value of p, we define, for any compactly
supported φ, the PSI space S(φ) to be the infinite span of the shifts of φ:

S(φ) := {
∑

α∈ZZd

φ(· − α)c(α)}.

The convergence of the infinite sums can be taken pointwise, since the sum is actually finite on
compact domains. No a-priori growth condition is imposed on the coefficients {c(α)}α∈ZZd . Al-
though this definition slightly deviates from the one given in the introduction (our space is not a
subspace of Lp, nor S(φ) ∩ Lp needs be closed), that difference would not matter in subsequent
discussions.

The scale of spaces {Sh}h is obtained by dilating the PSI spaces S(φh):

Sh := {σhf = f(·/h) : f ∈ S(φh)},
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and the approximation orders provided by {φh}h are concerned with the rate of decay of

(2.1) distp(f, Sh) := inf{‖f − s‖p : s ∈ Sh}

as h→ 0. More precisely, we say that {φh}h provides approximation order k, if for every f in some
smoothness space Vp,k and small enough h,

distp(f, Sh) ≤ consthk‖f‖p,k,

with ‖f‖p,k some norm of f . The scale {Sh}h is stationary if φh = φh′ for all h, h′. In such a
case, {Sh}h are all dilates of one basic PSI space S(φ).

The space Vp,k of “smooth enough” test functions is defined as follows. For two conjugate
exponents 1 ≤ q ≤ p ≤ ∞, and k ≥ 0,

(2.2) Vp,k := {f : ‖f‖p,k := ‖(1 + |·|)kf̂‖Lq(IRd) <∞}.

Note that, for an integer k, the Hausdorff-Young Theorem implies that Vp,k is continuously embed-
ded into the Sobolev space W k

p .
Given f ∈ Vp,k, we seek an approximant for f from Sh. Since Sh is the h-dilate of S(φh), we

can define the approximant for f in terms of an element Ah(f) ∈ S(φh), i.e., approximate f by
σh(Ah(f)). Ah(f) is, necessarily, a (possibly infinite) linear combination of the shifts of φh. We
obtain the coefficients in this combination as the restriction to ZZd of a continuous (in fact, entire)
function Jh(f). In summary, we approximate f by σhAh(f), where

(2.3) Ah(f) =
∑

α∈ZZd

φh(· − α)Jh(f)(α).

Thus, the particular details of our approximation scheme rely on the choice of the maps

f 7→ Jh(f).

As it turns out, the results below on approximation orders require four conditions of the maps
{Jh}h, and any collection that satisfies these four properties will do here. Three of these conditions
are independent of the specific approximation order we are after, and are listed now.

(2.4) Conditions required from the maps {Jh}h:
(a) Each Jh is a dilation followed by convolution, that is

(2.5) Jh(f) = (Th
̂σ1/hf)∨.

(b) Each Th is a function supported in some h-independent origin-neighborhood B ⊂ [−π dπ]d.
(c) For some h0 > 0, {Th}h<h0

are uniformly bounded on B (hence on IRd).

Note that we do not impose smoothness conditions on Th, and therefore Jh needs not map Lp

into itself. However, {σhJh}h are uniformly bounded endomorphisms on each Vp,k.

Theorem 2.6. Let 2 ≤ p ≤ ∞ be given and let q be its conjugate exponent. For k > 0, let Vp,k be
as in (2.2). Let {φh}h be a family of compactly supported functions, and B an origin-neighborhood.
Assume that the collection of sequences

mk,h : (2πZZd\0) 3 β 7→ ‖(h+ |·|)−kφ̂h(· + β)‖L∞(B), h < h0,

lies in `q(2πZZd\0) and is bounded there. Suppose that {Jh}h<h0
satisfy conditions (a), (b) and (c)

of (2.4) (with respect to the present B), and, in addition,

(d) sup
h<h0

‖(h+ |·|)−k(1 − φ̂hTh)‖L∞(B) <∞.

Let Ah be defined by (2.3). Then:

‖f − σh(Ah(f))‖Lp(IRd) ≤ consthk‖f‖p,k, f ∈ Vp,k.

Proof: cf. §4.1.
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We remark that the proof of Theorem 2.6 provides the following bound on the error:

‖f − σhAh(f)‖Lp(IRd) ≤

(2.7) consthk‖f‖p,k (‖Th‖L∞(B)‖mk,h‖`q(2πZZd\0) + ‖(h+ |·|)−k(1 − φ̂hTh)‖L∞(B) + o(1)),

with the o(1) expression always bounded by 1, decays to 0 with h, and otherwise depends only on
f , p, k and B, and with const depending only on p. Therefore, assuming that B is fixed, one might
try to choose Jh such that the sum ‖Th‖L∞(B)‖mk,h‖`q(2πZZd\0) + ‖(h+ |·|)−k(1 − φ̂hTh)‖L∞(B) is
minimized.

A natural choice for Jh is given by Th := χ/φ̂h, with χ a characteristic function of some

0-neighborhood B. In this case (h + |·|)−k(1 − φ̂hTh) vanishes on B, hence condition (d) in the
theorem trivially holds. The only condition that needs be checked then is condition (c), viz., the

uniform boundedness of {Th}, which amounts to the uniform boundedness of 1/φ̂h. Hence we have:

Corollary 2.8. Assume that the Fourier transforms of the family Φ := {φh}h<h0
of compactly

supported functions are uniformly bounded away from 0 on some origin-neighborhood B. Then,
for every 2 ≤ p ≤ ∞, every k > 0 and h < h0,

distp(f, Sh) ≤ consthk‖f‖p,k(‖mk,h‖`q(2πZZd\0) + o(1)), ∀f ∈ Vp,k,

with {mk,h} defined as in Theorem 2.6, with const independent of k and f , the o(1) expression
bounded by 1, and with q the conjugate of p. Hence, {φh}h provides approximation order no
smaller than k whenever {‖mk,h‖`q(2πZZd\0)}h are uniformly bounded for sufficiently small h.

In order for this corollary to be useful in the derivation of approximation orders, we need find
conditions which guarantee the boundedness of the sequences {mk,h}h. In the next section, we will
see how this is done in the case of box splines. At present, we note that the essential part in the
boundedness assumption on {mk,h}h is the pointwise boundedness, that is, for every β ∈ 2πZZd\0
the function

h 7→ ‖(h+ |·|)−kφ̂h(· + β)‖L∞(B), h < h0

should be bounded, and the bound should be uniform in β. The fact that we assume more than
that pointwise boundedness in the theorem, is due to the technical details of the proof, and, in
most practical examples is translated to smoothness conditions on {φh}h. Note also that in the
stationary case, φh does not change with h, and the pointwise boundedness condition thus can be
easily seen to be equivalent to φ̂ having a k-fold zero at each of β ∈ 2πZZd\0.

Under additional smoothness conditions on {φh}h, the approximants {Ah(f)}h can be shown
to approximate f in Sobolev norms as well. We mention that such results (concerning simultaneous
approximation from SI spaces) are a rarity, especially since there is no standard way to derive them
from quasi-interpolation arguments. The most notable exception is [SF] that states such results in
the L2- and L∞-norm (for the stationary case), and proves the L2-statement.

Theorem 2.9. Adopting the notations and assumptions of Theorem 2.6, assume, in addition, that
for some positive integer r < k, the sequences

mr
k,h : (2πZZd\0) 3 β 7→ |β|r‖(h+ |·|)−kφ̂h(· + β)‖L∞(B), h < h0

lie in `q(2πZZd\0) and are uniformly bounded there. Then,

‖f − σh(Ah(f))‖W r
p
≤ constp,r‖f‖p,kh

k−r.

Proof: cf. §4.1.
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3. Approximation from box spline spaces

3.1. Statement of the problem and its L2-solution

To define a box spline, we let Ξ be a rational matrix of d rows which is also considered as the
multiset of its columns {ξ}ξ∈Ξ, with each column ξ ∈ Ξ (referred to sometimes as “a direction”) is

assumed to be a non-zero vector. The matrix Ξ is augmented by a row vector λ = λΞ ∈ CΞ, and
the resulted matrix, denoted by (Ξ, λ), is used to define the box spline M := MΞ,λ whose Fourier
transform is

(3.1) M̂(ω) =
∏

ξ∈Ξ

eλξ−iξ·ω − 1

λξ − iξ · ω
, ω ∈ IRd.

In general M is a compactly supported measure defined on IRd, but upon assuming that

(3.2) rank Ξ = d

(as we always do hereafter), the box spline is a bounded compactly supported piecewise-exponential-
polynomial function supported in the zonotope

(3.3) ZΞ := {
∑

ξ∈Ξ

tξξ : tξ ∈ [0 d1]}.

Polynomial box splines correspond to the choice λ = 0. Exponential B-splines are obtained when
d = 1 and ξ = 1, all ξ. Tensor splines are obtained whenever all the directions are standard unit
vectors. The box spline is positive in the interior of ZΞ whenever λ is real-valued.

We now define the scale {Sh}h of box spline spaces. For this, we fix M (i.e., fix Ξ and λ), and
define, for a given refinement parameter h > 0, the box spline Mh as

Mh := MΞ,hλ.

The rest of the definition is as in the introduction, i.e., Sh := σhS(Mh). Our space of “test
functions” remains the space Vp,k defined in (2.2).

Since the ladder of spaces {Sh}h is determined as soon as M is chosen (in affect, as soon as
Ξ and λ are chosen), we refer to the relevant approximation orders as provided by M , rather than
“provided by {Mh}”. Note that each Sh is “spanned” by the hZZd-shifts of the dilated function
σhMh. Furthermore, in case λ = 0, Mh = M , all h, and the scale {Sh}h becomes stationary.
The motivation behind the particular definition of Sh in the non-stationary case, is that, while Sh

becomes invariant under finer and finer shifts as h → 0, the functions in Sh are always piecewise
in some finite-dimensional h-independent space H (of exponential-polynomials).

We have seen in the last section that approximation orders from PSI spaces can be understood
in terms of the behaviour of the various generators around 2πZZd\0. In the box spline case, however,
such results cannot be considered as satisfactory: the immediately available information on the box
spline is the matrix (Ξ, λ), and therefore we wish to characterize the approximation order of box
spline spaces in those terms; that is, given k > 0, we need to find all (Ξ, λ) whose corresponding
box spline MΞ,λ provides an approximation order k.

For the L2-norm, we provide in this paper the following complete answer to the above problem.

Theorem 3.4. The L2-approximation order provided by the box spline MΞ,λ is the number

(3.5) k′(Ξ) := min{#Kβ : β ∈ 2πZZd\0},

with

(3.6) Kβ := Kβ(Ξ) := {ξ ∈ Ξ : ξ · β ∈ 2πZZ\0}.

In particular, the approximation order is independent of λ.

Proof: cf. §4.3.
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Note that for p = 2 and integer k, V2,k = W k
2 , and hence the above stated approximation

orders apply to the entire Sobolev space.
We will also show that no smooth function can be approximated to a better rate. Precisely,

we have:

Theorem 3.7. Let {Sh}h be the box spline space scale associated with a box spline MΞ,λ. Let
k := k′(Ξ), and let f ∈W k

2 \{0}. Then, for every sequence hj → 0
j→∞

,

dist2(f, Shj
) 6= o(hk

j ).

Proof: cf. §4.3.

The definition of k′(Ξ) is entirely in terms of the matrix Ξ (i.e., does not require any information
on the underlying box spline MΞ,λ), and, moreover k′(Ξ) can be computed by a finite algorithm.

In the important special case when Ξ is an integer matrix, Theorem 3.4 implies the following
(known) result:

Corollary 3.8. Assume that Ξ is an integer matrix. Then the L2-approximation order provided
by the box spline MΞ,λ is

(3.9) k(Ξ) := min{#X : X ⊂ Ξ, rank(Ξ\X) < d}.

Here and hereafter, X ⊂ Ξ means that X is obtained from Ξ by the deletion of some columns,
and #X is the number of columns in X.

Proof: In view of Theorem 3.4, it suffices to show that, for an integer matrix Ξ, k′(Ξ) =
k(Ξ). Let ξ ∈ Ξ. Since ξ is integer, ξ · β ∈ 2πZZ for every β ∈ 2πZZd\0, hence Kβ of (3.6) can
equivalently be defined here as

(3.10) Kβ = {ξ ∈ Ξ : ξ · β 6= 0}.

Thus, (Ξ\Kβ)Tβ = 0 and hence rank(Ξ\Kβ) < d. This shows that k(Ξ) ≤ #Kβ , and consequently
k(Ξ) ≤ k′(Ξ). The reverse inequality does not require the integrality of Ξ, but only its rationality:
assume that, for some X ⊂ Ξ, rank(Ξ\X) < d. Since Ξ is a rational matrix, (Ξ\X) is rank-deficient
if and only if there exists a non-zero integer vector α perpendicular to all ξ ∈ (Ξ\X). In view of
(3.6), we have K2πα ⊂ X, and hence k′(Ξ) ≤ #K2πα ≤ #X. It follows that k′(Ξ) ≤ k(Ξ).

3.2. Further literature discussion

Now that the two numbers k(Ξ) and k′(Ξ) are introduced and their connection to approxima-
tion orders is revealed, we are able to discuss the history of the problem in further detail. In this
regard, it seems instructive to separate the discussion of the polynomial box spline case (λ = 0) from
the general exponential case. As mentioned before, the problem of the former case is stationary, i.e.,
the spaces {Sh} are all obtained from the original space S(M) by dilation, and there is a variety of
papers (including, but not restricted to, [SF], [DM1,2], [BJ], and [JL]) which treat such setting for
a general compactly supported φ, and links restrictive (hence stronger) notions of approximation
order (known as “controlled” and “local”) to the polynomials in S(M). Further, more recently,
it was shown in [R2] (L∞-norm) and [BDR1] (L2-norm) that whenever φ is compactly supported

and φ̂(0) 6= 0 (which is certainly the case for a polynomial box spline φ = M) the polynomials
in S(M) characterize the unconstrained approximation order (i.e., the one defined and analyzed
in the present paper). Thus, at least in essence, the characterization of the approximation order
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provided by a polynomial box spline amounts to the identification of the polynomials in S(M).
These polynomials were characterized by de Boor and DeVore in [BD] for the three-directional
polynomial box spline (d = 2, λ = 0, ξT ∈ {(1, 0), (0, 1), (1, 1)}, ∀ξ ∈ Ξ) which were also introduced
there. Polynomial box splines associated with a general integer Ξ were introduced and studied
by de Boor and Höllig in [BH], with the identification of the underlying polynomial space being
among the highlights of that paper. The abstract argument provided in [BH] for the conversion
of the knowledge on the polynomials into lower bounds on the approximation order has become
a standard tool since then. Another proof of that result is included in the subsequent work of
Dahmen and Micchelli, [DM1]. The characterization of the approximation order of a polynomial
box spline associated with a general Ξ was only recently established in [RS], where, again, the main
result is concerned with the identification of the polynomials in S(M).

Exponential box splines were introduced in [R1], and that paper also contained the first result
on their approximation order (showing that for λ ⊂ IR and an integer Ξ, the approximation order
in the L∞-norm is at least 1). The first comprehensive discussion of approximation orders for
exponential box splines is found in [DR], where, for general λ but integer Ξ, k(Ξ) was proved to be
a lower bound on the L∞-approximation order. (It was further shown there that the exponential
reproduction argument cannot provide better bounds). The extension of these results to p < ∞
was done by Lei and Jia in [LJ], where, in addition, the local structure of the spline space was used
to provide matching upper bounds (Thus, Corollary 3.8 is [LJ]’s).

As already alluded to before, all the aforementioned results employed the quasi-interpolation
argument: first, the space H(M) of all exponential-polynomials (polynomials, if λ = 0) in ∩hSh is
computed (either explicitly or as the kernel of explicit differential operators) and then the approx-
imation power of H(M) around the origin is studied. This local approximation order of H(M) is
then converted to lower bounds on the approximation orders via the quasi-interpolation argument
(for this argument, in the exponential case, see [DR], [LJ], [R2], [BR1] and [CW]). However, in
contrast with the stationary case, there is no general theory that can be applied to the exponential
box spline to show that the lower bounds obtained by quasi-interpolation are the best approxima-
tion orders. Indeed, we draw (in §3.3) an example of a box spline M (necessarily with a non-integer
Ξ and a non-zero λ) such that k′(Ξ) = 1 while the corresponding H(M) is trivial. We stress,
however, that examples of this type are the exception rather than the rule.

The only reference that we are aware of which treats the approximation order provided by MΞ,λ

for a rational Ξ and general λ is [BR2], where approximation in ∞-norm is considered. The ap-
proach in that paper is based on the theory for L∞-approximation orders developed there, a theory
which indeed circumvents quasi-interpolation. Theorem 3.13 is similar to its L∞-counterpart from
[BR2], with one important difference: while the results of [BR2] require some minimal smoothness
conditions of the basis function under consideration (here the box spline M), hence exclude box
splines of low smoothness, no such exclusion exists in L2-analogous results from [BDR1]. We will
elaborate on this point in the next subsection, since Theorem 3.13 and its proof provide a better
understanding of the nature of the smoothness restriction on M which was required in [BR2].

3.3. Approximation orders of box spline spaces in Lp, p ≥ 2

In order to derive approximation orders for box spline spaces we invoke Theorems 2.6 and 2.9.
For that task we need first to find, for the given box spline scale {φh = Mh}h, corresponding maps
{Jh}h that satisfy the four requirements specified in Theorem 2.6. Upon completing that part, we
will turn our attention to the main problem: identifying the largest integer k for which the uniform
boundedness of the sequences {mk,h}h is satisfied.

Lemma 3.11. Let {Mh}h be any box spline scale, and let χ be the characteristic function of a
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0-neighborhood B. Then, for sufficiently small B, the operators

Jh : f 7→ (χ ̂σ1/hf/M̂h)∨

satisfy the four requirements of Theorem 2.6.

Proof: Jh certainly has the form required in (2.5), with Th = χ/M̂h. Condition (b) there
can be satisfied by ensuring suppχ ⊂ [−π dπ]d. Condition (d) (listed in Theorem 2.6) holds, since

on B := suppχ, 1 − M̂hTh = 0. It remains to deal with condition (c) of (2.4). For that, we first
observe that since

M̂h(ω) =
∏

ξ∈Ξ

∫ 1

0

e(hλξ−iξ·ω)t dt,

{M̂h}h converges uniformly on suppχ to

∏

ξ∈Ξ

∫ 1

0

e(−iξ·ω)t dt,

and this latter expression is bounded away from zero on, say, [−π..π]d. Thus, for sufficiently small

h0, {Th = χ/M̂h}h<h0
are uniformly bounded, as required.

In order to deal with the essential requirement of Theorem 2.6, that is the uniform boundedness
in `q(2πZZd\0) of the sequences {mk,h}h, we will prove the following:

Lemma 3.12. Let {Mh}h be a box spline scale generated by M = MΞ,λ, and let M0 be the
corresponding polynomial box spline, i.e., M0 = MΞ,0. Given an origin-neighborhood B ⊂ [−π..π]d,
define, as in Theorem 2.6,

mk,h : (2πZZd\0) 3 β 7→ ‖(h+ |·|)kM̂h(· + β)‖L∞(B).

If, for 1 ≤ q ≤ ∞, M̂0 ∈ Lq(IR
d), then, for small enough h0, the sequences {mk,h}h<h0

are uniformly

bounded in `q(2πZZd\0), for k := k′(Ξ).

Proof: cf. §4.2.

With the aid of the two last lemmas, we establish the following theorem:

Theorem 3.13. Let {Mh}h be the box spline scale associated with the box spline M := MΞ,λ.
Consider the approximation maps

f ≈ σhAh(f),

with

Ah(f) =
∑

α∈ZZd

Mh(· − α)Jh(f)(α),

where

Jh(f) := (χf̂/M̂h)∨,

and χ is the support function of some origin-neighborhood B ⊂ [−π dπ]d. Then, for k = k′(Ξ), and
2 ≤ p <∞,

‖f − σhAh(f)‖p ≤ constp‖f‖p,kh
k,
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for every f ∈ Vp,k and every small enough h. The result is valid for p = ∞, as well, provided that

M̂0 ∈ L1, with M0 = MΞ,0 the associated polynomial box spline.

Proof: The claim of the present theorem with respect to p = ∞ follows by an application
of Lemma 3.12 and Lemma 3.11 to Theorem 2.6. The same is true also for 2 ≤ p <∞, as soon as
we show that for such p, M̂0 necessarily lies in Lq. Since we assume that the rank condition

rank Ξ = d

holds, we can find a d× d invertible submatrix X ⊂ Ξ. Then

M0 = M1 ∗M2,

with M1 := MX,0 and M2 = M(Ξ\X),0. The trivial bound

|

∫ 1

0

e−iξ·ωt dt| ≤ 1, ξ, ω ∈ IRd,

proves that φ̂ ∈ L∞ for any polynomial box spline φ, and therefore M̂2 ∈ L∞. Consequently, it
suffices to prove that M̂1 ∈ Lq. By applying a linear change of variables, we may assume without

loss that X is the identity matrix, and thus M̂1 becomes the tensor product of the univariate
function

ω 7→

∫ 1

0

e−iωt dt =
1 − e−iω

iω
,

which lies in Lq(IR) for q > 1. It follows that M̂1, hence also M̂0 are in Lq(IR
d).

As mentioned in the introduction, results similar to Theorem 3.4 were derived in [BR2], but
with respect to ∞-norm. It is shown there that the L∞-approximation order provided by M is
always bounded above by k′(Ξ), and this bound is proved there to be the exact approximation
order under the additional assumption

(3.14)
∑

β∈ZZd\0

∏

ξ∈Ξ,ξ·β 6=0

|ξ · β|−1 <∞.

In comparison, Theorem 3.13 requires the more verifiable condition M̂0 ∈ L1 (which is shown to
imply (3.14)). For example, the latter condition is satisfied whenever Ξ can be partitioned into two
matrices Ξ = X ∪ Y both of rank d. Indeed, the full rank assumption on X and Y implies that
MX,0,MY,0 ∈ L2, and hence their convolution product MΞ,0 is in the algebra A := {f̂ : f ∈ L1}.

Example 3.15. Let d = 2. Then one easily checks that Ξ can always be partitioned into two
matrices of rank 2 unless Ξ = X ∪ {ξ} with X is a rank-1 matrix, or, in terms of k(Ξ) (cf. (3.9)) if
and only if k(Ξ) = 1. As observed in the proof of Corollary 3.8, k′(Ξ) ≤ k(Ξ), hence in such a case
k′(Ξ) ∈ {0, 1}. Now, if k′(Ξ) = 0, then, since the L∞-approximation order is proved in [BR2] to
be bounded above by k′(Ξ), we conclude that M provides approximation order 0. Therefore, the
only bivariate box splines whose ∞-approximation order cannot be decided directly by the results
here are those associated with a matrix Ξ that satisfies k(Ξ) = k′(Ξ) = 1.

Next, we want to show, with the aid of an example, that the approximation order k′(Ξ) can
exceed in times the local approximation order of the space H(M) (cf. the third paragraph of §3.2):

10



Example 3.16. Let d = 2,

Ξ =

(
1/2 0 1/2 1 1/2 1/2
0 1/2 1/2 1/2 1 −1/2

)
,

and λ yet to be determined. It is easily verified that k′(Ξ) = 1 < k(Ξ) = 5, and hence, by Theorem
3.4, and in view of the previous example, the Lp-approximation order provided by MΞ,λ is 1, for
every 2 ≤ p ≤ ∞ (and regardless of the choice of λ). The choice λ = 0 leads to a stationary
situation, and the approximation order 1 must then imply that the shifts of MΞ,0 partition the
unity, as one can verify, with the aid of Poisson’s summation formula, from the fact that

M̂Ξ,0(2πβ) = δβ,0, β ∈ ZZd.

On the other hand, for a generic choice of λ, H(M) = {0}. This can be proved as follows: if H(M)
is non-trivial, then by Lemma 3.1 of [BAR], it contains an exponential ω 7→ eiθ·ω. The frequency
iθ of that exponential must satisfy the following two conditions:

(a) λX + iXT θ = 0, for some 2 × 2 X ⊂ Ξ of rank 2 ; and

(b) M̂Ξ,λ(θ + 2πβ) = 0, β ∈ ZZ2\0. (cf. [R1:§4] for (a) and [BR1:§2] for (b).)

To see that the above (a) and (b) can hold only in exceptional circumstances, we proceed as follows:
we fix the above Ξ, X and λX . This determines a unique θ (see (a) above). We now try to define λξ,
ξ ∈ Ξ, so that (b) above is valid. For that, one verifies first (directly) that, regardless of the specific

choice of the 2 × 2 X ⊂ Ξ, M̂X,λX
(θ + ·) can vanish only on a subset of some proper sublattice

LX of 2πZZ2. Selecting β ∈ 2πZZ2\{0} in the complement of this sublattice, (b) above implies the

existence of ξ ∈ Ξ\X such that
∫ 1

0
e(λξ−iξ·(θ+β))t dt = 0, or, equivalently,

λξ − iξ · (θ + β) ∈ 2πiZZ\0.

This shows that one of λξ, ξ ∈ Ξ must be chosen from the countable set −iξ · (θ + 2πZZ2) + 2πiZZ,
and thererfore, generically, H(M) = {0}, as claimed.

Finally, we state our result concerning simultaneous approximation.

Theorem 3.17. In the notations of Theorem 3.13, and for 2 ≤ p <∞,

‖f − σhAh(f)‖W r
p
≤ constp,r h

k−r‖f‖p,k,

for every f ∈ Vp,k, every small enough h, and every integer r < k. The same holds for p = ∞,
provided that M0 and all its derivatives up to order r inclusive lie in the Wiener algebra A (or,

equivalently, | · |rM̂0 ∈ L1.)

Proof: cf. §4.4.
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4. Proofs

4.1. Proofs of Theorems 2.6 and 2.9

The approximation maps {Ah}h that we employ are intimately related to those used in [BR2].
In fact, the latter, albeit a special case of the present schemes, seem to be their most natural choice.
In contrast, the error analysis of [BR2] cannot be adopted here: that analysis makes use of the
optimal approximation to the exponential functions

eθ : x 7→ eiθ·x, θ ∈ IRd

of [R2], and synthesize those optimal approximations on the Fourier domain to yield optimal
approximation to other smooth functions. However, when p < ∞ the above exponentials are not
in Lp any more, hence the [BR2] approach cannot go through. Instead, we use here the following
identity

(4.1)
∑

α∈ZZd

ψ(· − α)g(α) =
∑

β∈2πZZd

ψ ∗ (eβ g),

which is valid for any compactly supported distribution ψ provided that g is sufficiently smooth,
say, g ∈ C∞(IRd) (cf. Theorem 2.6 of [RS]). The convergence of the right hand side of (4.1) is valid
in the topology of tempered distributions (and in most circumstances, in much stronger topologies),
provided that g and all its derivatives grow no faster than polynomially at ∞.

Proof of Theorem 2.6. Fix 2 ≤ p ≤ ∞, and let f ∈ Vp,k. We try to estimate the error

(4.2) ‖f − σh(Ah(f))‖p = hd/p‖σ1/hf −Ah(f)‖p,

with the right hand side in (4.2) obtained from the left hand side by scaling. Invoking (4.1) with
respect to Ah(f) (i.e, with g := Jh(f) and ψ := φh), we obtain that

(4.3)

‖σ1/hf − Ah(f)‖p =‖σ1/hf − φh ∗ Jh(f) −
∑

β∈2πZZd\0

φh ∗ (eβJh(f))‖p

≤‖σ1/hf − φh ∗ Jh(f)‖p + ‖
∑

β∈2πZZd\0

φh ∗ (eβJh(f))‖p.

We estimate each of the two terms in the last line of (4.3) with the aid of the Hausdorff-Young
inequality:

(4.4) ‖f‖p ≤ constp‖f̂‖q, 1/p+ 1/q = 1,

valid for 2 ≤ p ≤ ∞, provided that f̂ ∈ Lq(IR
d).

We first estimate in the proposition below the second term in the second line of (4.3). For
later use, we derive that estimate in a slightly more general setup than needed here.

Proposition 4.5. Let w be some sequence defined on 2πZZd\0 and having (at most) polynomial
growth. Then, in the notations of Theorem 2.6, and under the assumptions there,

hd/p‖
∑

β∈2πZZd\0

w(β)φh ∗ (eβJh(f))‖p ≤ consthk‖f‖p,k‖mk,hw‖`q(2πZZd\0).
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Proof: There is nothing to prove in case ‖mk,hw‖`q(2πZZd\0) = ∞. Otherwise, by (4.4) it
suffices to bound

(4.6) hd/p‖(
∑

β∈2πZZd\0

w(β)φh ∗ (eβJh(f)))̂ ‖q = hd/p‖
∑

β∈2πZZd\0

w(−β)φ̂h
̂Jh(f)(· + β)‖q.

(The justification for the term-by-term application of the Fourier transform is given in the sequel).

Substituting h−df̂(·/h)Th for ̂Jh(f) (cf. (2.5)) we obtain from (4.6) the equivalent expression

(4.7) h−d/q‖φ̂h

∑

β∈2πZZd\0

w(−β)f̂((· + β)/h)Th(· + β)‖q.

Here, the infinite sum in the above expression trivially converges (since suppTh ⊂ B ⊂ [−π dπ]d),
and the limit is supported in (2πZZd\0) + B. Also, since the weights {w(β)} are of polynomial
growth, the convergence holds in S ′. In retrospect, this justifies the term-by-term application of
the Fourier transform in (4.6), as well as the changing of the order of summation and multiplication
by φh is the display afterwards.

We fix α ∈ 2πZZd\0, and compute that

‖φ̂h

∑

β∈2πZZd\0

w(−β)f̂((· + β)/h)Th(· + β)‖q
Lq(α+B)

= ‖w(α)φ̂hf̂((· − α)/h)Th(· − α)‖q
Lq(α+B)

≤w(α)q‖Th‖
q
L∞(IRd)

‖(h+ |·|)kf̂(·/h)‖q
Lq(B) ‖(h+ |·|)−kφ̂h(· + α)‖q

L∞(B)

=hd+kqw(α)q ‖Th‖
q
L∞(IRd)

‖(1 + |·|)kf̂‖q
Lq(B/h) ‖(h+ |·|)−kφ̂h(· + α)‖q

L∞(B).

Summing over all α ∈ 2πZZd\0 and using the uniform boundedness of {Th} we obtain the bound

h−d‖φ̂h

∑

β∈2πZZd\0

w(−β)f̂((· + β)/h)Th(· + β)‖q
Lq(IRd)

≤ consthkq‖f‖q
p,k‖mk,hw‖

q
`q(2πZZd\0)

,

and the required result follows.

In view of (4.2), (4.3) and the claim of the last proposition for the choice w = 1, the proof of
Theorem 2.6 is reduced to the study of the first term on second line of (4.3). Here we have, for
some positive const,

const‖σ1/hf − φh ∗ Jh(f)‖p ≤

(4.8) ‖ ̂σ1/hf − φ̂h
̂Jh(f)‖q ≤ ‖ ̂σ1/hf(1 − φ̂hTh)‖Lq(B) + ‖ ̂σ1/hf‖Lq(IRd\B),

with the first inequality by (4.4) and the second equality because ̂Jh(f) = Th
̂σ1/hf and Th is

supported in B. Changing variables, the term ‖ ̂σ1/hf‖Lq(IRd\B) can be bounded as follows:

‖ ̂σ1/hf‖Lq(IRd\B) =h−d‖σhf̂‖Lq(IRd\B)

=h−d+d/q‖f̂‖Lq(IRd\(B/h))

≤h−d/p(1 + c/h)−k‖(1 + |·|)kf̂‖Lq(IRd\(B/h)) = h−d/phk‖f‖p,k o(1),
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with the o(1) expression uniformly bounded in h and f ∈ Vp,k. As for the other term in (4.8),

‖ ̂σ1/hf(1 − φ̂hTh)‖Lq(B) ≤ ‖(h+ |·|)k ̂σ1/hf‖Lq(B)‖(h+ |·|)−k(1 − φ̂hTh)‖L∞(B).

By assumption (d), ‖(h+ |·|)−k(1− φ̂hTh)‖L∞(B) is bounded independently of h, while a change of
variables yields

‖(h+ |·|)k ̂σ1/hf‖Lq(B) = h−d‖(h+ |·|)kσhf̂‖Lq(B) = hk−d/p‖(1 + |·|)kf̂‖Lq(B/h) ≤ hk−d/p‖f‖p,k.

Thus, we have shown that each of the two terms in the last line of (4.3) is of order O(hk−d/p), and
the claim of Theorem 2.6 then follows.

Proof of Theorem 2.9. The proof of Theorem 2.9 closely follows that of its special case, The-
orem 2.6. We thus only outline the proof, emphasizing parts of the proof that deviate from their
counterparts in Theorem 2.6.

We let P ∈ Πr be a homogeneous polynomial, and P (D) being its associated constant-
coefficient differential operator. We want to establish the bound

(4.9) ‖P (D)(f − σhAh(f))‖p ≤ consthk−deg P ‖f‖p,k‖m
r
k,h‖.

Such an estimate leads to the desired result, since we may range P over some fixed homogeneous
basis for Πr. Here, const should be independent of h and f , but may depend on P , p, and r.

For the proof of (4.9), we consider

P (D)(f − σhAh(f)) = P (D)f − h− deg PσhP (D)Ah(f).

By (4.1) (with ψ := φh and g := Jh(f)),

(4.10) P (D)Ah(f) = P (D)
∑

β∈2πZZd

φh ∗ (eβJh(f)) =
∑

β∈2πZZd

φh ∗ (P (D)(eβJh(f))),

with the changing of order of summation and differentiation justified by the S ′-convergence of the
sum. The term corresponding to β = 0 is φh ∗ (P (D)Jh(f)) = hdeg Pφh ∗ Jh(P (D)f), and we first
estimate

P (D)f − σh(φh ∗ Jh(P (D)f)).

Since f ∈ Vp,k, P (D)f ∈ Vp,k−deg P , and hence the proof of Theorem 2.6 yields that for small
enough h we have

‖P (D)f − σh(φh ∗ Jh(P (D)f))‖p ≤ consthk−deg P ‖P (D)f‖p,k−deg P .

It remains to bound the expression

∑

β∈2πZZd\0

φh ∗ P (D)(eβJh(f)).

Here, we fix β 6= 0, and expand

P (D)(eβJh(f)) =
∑

α≥0

1

α!
(DαP )(D)(eβ) DαJh(f) = eβ

∑

α≥0

1

α!
(DαP )(iβ)DαJh(f),
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and use summation by parts (allowed, since the range of α is actually finite, and since, for any fixed
α, the Fourier transform of the various β-summands have pairwise disjoint supports) followed by
the triangle inequality to estimate the norm of that part as follows:

(4.11)

‖
∑

β∈2πZZd\0

φh ∗ P (D)(eβJh(f))‖p

≤
∑

α≥0

1

α!
‖

∑

β∈2πZZd\0

(DαP )(iβ)φh ∗ (eβ(DαJh(f)))‖p

=
∑

α≥0

h|α|1

α!
‖

∑

β∈2πZZd\0

(DαP )(iβ)φh ∗ (eβJh(Dαf))‖p

Invoking Proposition 4.5 with w(β) := wα(β) := (DαP )(iβ) (and with f , k replaced by Dαf and
k − |α|1 respectively), we obtain that

(4.12)

h|α|1‖
∑

β∈2πZZd\0

(DαP )(iβ)φh ∗ (eβJh(Dαf))‖p =

h|α|1‖
∑

β∈2πZZd\0

wα(β)φh ∗ (eβJh(Dαf))‖p ≤ consthk‖Dαf‖p,k−|α|1‖mk,hwα‖`q(2πZZd\0).

Since (i): the actual range of α in (4.11) is finite (|α|1 ≤ degP ), (ii): ‖Dαf‖p,k−|α|1 ≤ ‖f‖p,k, and
(iii): |(DαP )(iβ)| ≤ const|β|r, we derive from (4.11) and (4.12) the inequality

‖
∑

β∈2πZZd\0

φh ∗ P (D)(eβJh(f))‖p ≤ consthk‖f‖p,k‖m
r
k,h‖`q(2πZZd\0),

from which (4.9) follows.

4.2. Proof of Lemma 3.12

Given β ∈ 2πZZd\0, our first goal is to estimate |M̂h(ω+β)|, for small ω. Initially, this is done

without using the assumption M̂0 ∈ Lq. We consider, one by one, the factors

(4.13) |

∫ 1

0

e(hλξ−iξ·(ω+β))t dt|

that form |M̂h|. For this, fixing β ∈ 2πZZd\0, we partition Ξ according to the behaviour of their
corresponding factors into three groups: the first of which is Kβ (cf. (3.6)) and the other two are
defined as follows

Lβ := {ξ ∈ Ξ : ξ · β 6∈ 2πZZ},

Oβ := {ξ ∈ Ξ : ξ · β = 0}.

Case I: ξ ∈ Oβ. In this case, for sufficiently small h, we have

|

∫ 1

0

e(hλξ−iξ·(ω+β))t dt| < 2.
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Case II: ξ ∈ Lβ. Here we use the estimate

(4.14) |

∫ 1

0

e(hλξ−iξ·(ω+β))t dt| <
3

|hλξ − iξ · (ω + β)|
,

valid for all ω and sufficiently small h. The rationality of Ξ implies the existence of n ∈ ZZ such
that nΞ is integral, and thus we have |ξ · β| ≥ 2π/n, and (4.14) shows that for sufficiently small h
and ω

|

∫ 1

0

e(hλξ−iξ·(ω+β))t dt| <
c

|ξ · β|
,

with c depending only on Ξ.
Case III: ξ ∈ Kβ. In this final case, we write

(4.15) |

∫ 1

0

e(hλξ−iξ·(ω+β))t dt| =
|ehλξ−iξ·(ω+β) − 1|

|hλξ − iξ · (ω + β)|
=

|ehλξ−iξ·ω − 1|

|hλξ − iξ · (ω + β)|
.

The denominator in the right hand side of (4.15) can be estimated as in the previous case, while
the numerator, for sufficiently small h and |ω|, can be bounded by c (h+ |ω|), hence we obtain in
this case the estimate

|

∫ 1

0

e(hλξ−iξ·ω)t dt| ≤ c′
(h+ |ω|)

|ξ · β|
.

Combining these various estimates we obtain that, for ω in some h-independent neighborhood
of the origin, for h sufficiently small and for some (h, ω, β)-independent const,

(4.16) |M̂h(ω + β)| ≤ const(h+ |ω|)#Kβ

∏

ξ∈Kβ∪Lβ

|ξ · β|−1 ≤ const(h+ |ω|)k′(Ξ)
∏

ξ∈Kβ∪Lβ

|ξ · β|−1,

the second inequality since k′(Ξ) ≤ #Kβ for every β ∈ 2πZZd\0.
For later use, we record this intermediate estimate:

Proposition 4.17. Let {Mh}h be a box spline scale associated with Ξ and λ. Then, for k := k′(Ξ),
for some origin-neighborhood B, for sufficiently small h, and for some (h, β)-independent const we
have

mk,h(β) := ‖(h+ | · |)−kM̂h(· + β)‖L∞(B) ≤ const
∏

ξ∈Kβ∪Lβ

|ξ · β|−1.

To complete the proof of Lemma 3.12, we need to show that the sequence

cβ =
∏

ξ∈Kβ∪Lβ

|ξ · β|−1, β ∈ 2πZZd\0

is in `q(2πZZd\0), whenever M̂0 ∈ Lq. A slightly more general assertion is proved in the following
proposition.

Proposition 4.18. Assume that, for the polynomial box spline M0 and for some r ≥ 0, |·|rM̂0 ∈
Lq. Then

(4.19)
∑

β∈2πZZd\0

|β|rq
∏

ξ∈Kβ∪Lβ

|ξ · β|−q <∞.
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Proof of the Proposition. Choose ω ∈ IRd that satisfies the following conditions:
(a) For every ξ ∈ Ξ, ξ · ω is not 2π-rational.
(b) The series

(4.20)
∑

β∈2πZZd\0

|β|rq|M̂0(ω + β)|q

converges.
(c)

|ξ · (ω + β)| ≤ 2|ξ · β|, ξ ∈ Ξ, β ∈ 2πZZd, β · ξ 6= 0.

It is clear that the set of points ω ∈ IRd that violate (a) is of measure 0. Also, because

|·|rM̂0 ∈ Lq(IR
d), the series ∑

β∈2πZZd\0

|ω + β|rq|M̂0(ω + β)|q

converges a.e. on [−π dπ]d, implying thereby the a.e. convergence of (4.20). On the other hand,
because ξ ∈ Ξ is rational, inf{|ξ · β| : β ∈ 2πZZd\0, ξ · β 6= 0} > 0, and hence condition (c) is
satisfied by all small enough ω. This proves that there is ω that satisfies all the above conditions.

The rationality of Ξ implies that for any fixed ξ ∈ Ξ the range of the map

(2πZZd\0) 3 β 7→ e−iξ·(ω+β) − 1

is finite, and, because of condition (a), this range does not contain 0. Condition (a) also implies

that
∫ 1

0
e−iξ·ωt dt 6= 0, for all ξ ∈ Ξ. Thus, we obtain from condition (c) the estimate

(4.21)

|M̂0(ω + β)| =
∏

ξ∈Oβ

∣∣
∫ 1

0

e−iξ·ωt dt
∣∣ ∏

ξ∈Kβ∪Lβ

∣∣e
−iξ·(ω+β) − 1

ξ · (ω + β)

∣∣

≥ const
∏

ξ∈Kβ∪Lβ

|ξ · β|−1.

Condition (b) then implies the desired result.

4.3. Proofs of Theorems 3.4 and 3.7

The positive statement in Theorem 3.4, i.e., that the approximation order provided by MΞ,λ

(to functions in V2,k′(Ξ) = W
k′(Ξ)
2 ) is at least k′(Ξ), follows from Theorem 2.6 when combined with

Lemma 3.11 and Lemma 3.12. Indeed, we only need to verify that the requirement M̂0 ∈ L2 (needed
for the application of Lemma 3.12) holds. That was proved in Theorem 3.13, but, as matter of
fact, also follows directly from the fact that M0 ∈ L2.

The negative statement of Theorem 3.4 will follow from Theorem 3.7. Indeed, Theorem 3.7
provides k′(Ξ) as an upper bound on the approximation order (and in the strongest possible sense).

Therefore, only Theorem 3.7 requires a proof.
For that proof, we need to borrow some of the general tools and results developed in [BDR1].

We remark that the definition of the PSI space S(φ) in [BDR1] differs from the one given here:
it is defined there as the L2-closure of the algebraic span of the shifts of φ. However, as Theorem
2.13 of [BDR1] asserts, S(φ) ∩ L2 of the present paper is dense in S(φ) of [BDR1], hence the two
spaces share the same approximation orders, and to the same functions.
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We first define for every h ≥ 0

Nh := Mh ∗Mh(−·).

Note that
N̂h = |M̂h|

2.

Because of the rank assumption (3.2), Mh ∈ L2, and therefore Nh (which is clearly compactly
supported) is continuous, as any convolution product of two L2-functions is. We make a substantial

use of the symbol Ñh of Nh defined as

Ñh :=
∑

α∈ZZd

Nh(α)e−α.

A standard application of Poisson’s summation formula shows that

Ñh =
∑

β∈2πZZd

N̂h(· + β) =
∑

β∈2πZZd

|M̂h(· + β)|2.

Thus, we see that Ñh is a non-negative trigonometric polynomial, and, further, Ñh(y) = 0 only if

N̂h(y) = 0.
The L2-approximation orders provided by M are determined [BDR1], by the behaviour around

the origin of the functions

(4.22) Λh := (1 − N̂h/Ñh)1/2, h > 0

(here, 0/0 is defined as zero, but in any case, Ñh, as a trigonometric polynomial, vanishes only on
a null-set). Note that Λh is non-negative and bounded by 1. The precise result that we need here
follows from Theorem 2.20 and Corollary 3.10 of [BDR1], and reads as follows:

Result 4.23. Let f ∈W k
2 . Let {φh}h be a subset of L2. Then

(4.24) dist2(f, σh(S(φh))) = o(hk)

only if
h−d/2‖Λhσhf̂‖L2(B) = o(hk),

on some origin-neighborhood B.

We next attempt to replace Λh in this result by simpler expressions. It is clear that we might
replace Λh by (Ñh − N̂h)1/2 in case the ratio

(Ñh − N̂h)1/2

Λh
= Ñh

1/2

is bounded around the origin by h-independent positive constants. For this we need the following
lemma, in which we make use of the fact that every Nh, and in particular N0, is supported in the
symmetric region ZΞ∪(−Ξ) = ZΞ −ZΞ (which follows from the fact that M(−·) = M(−Ξ),λ; cf. (3.3)

for the definition of ZΞ).

Lemma 4.25. Nh →
h→0

N0 uniformly and hence Ñh → Ñ0 in any p-norm, 1 ≤ p ≤ ∞.

Proof: The first claim easily follows from the distributional definition of box splines (cf.
e.g. Definition 2.1 in [R1]. More specifically, one can apply to Nh −N0 the argument used in the
proof of Lemma 5.1 in [DR]). The second claim follows from the first, since all Nh are supported
in the same compact domain ZΞ − ZΞ.
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Thanks to Lemma 4.25, we know that {Ñh}h are uniformly bounded around the origin, hence
may replace {Λh}h in Result 4.23 by

(Ñh − N̂h)1/2 = (
∑

β∈2πZZd\0

|M̂h(· + β)|2)1/2.

Thus, if, for some f ∈W k
2 , dist2(f, σh(S(φh))) = o(hk), then we must have, for every β ∈ 2πZZd\0,

h−d/2‖M̂h(· + β)σhf̂‖L2(B) = o(hk),

which implies by scaling that

(4.26) ‖M̂h(h · +β)f̂‖L2(h−1B) = o(hk).

Let β ∈ 2πZZd\0 be chosen with #Kβ = k. Since f̂ ∈ L2, it is supported on a set of positive
measure, and therefore, for sufficiently small ε, the set

Aε := {ω ∈ IRd : |λξ − iξ · ω| ≥ ε, ∀ξ ∈ Ξ}

has a positive measure intersection with supp f̂ . We fix such ε, and we let Ω be any bounded
measurable subset of Aε for which ‖f̂‖L2(Ω) > 0.

A straightforward computation shows that, for any θ ∈ IRs and ξ ∈ Ξ\Kβ(Ξ),

(4.27)

∫ 1

0

e(hλξ−iξ·(hθ+β))t dt −→
h→0

∫ 1

0

e−iξ·βt dt 6= 0,

uniformly. Further, for ξ ∈ Kβ , we get that

h−1
∣∣∣
∫ 1

0

e(hλξ−iξ·(hθ+β))t dt
∣∣∣ −→

h→0

∣∣∣λξ − iξ · θ

ξ · β

∣∣∣ ≥ const > 0, ∀θ ∈ Aε,

with the convergence being uniform on compact sets, hence on Ω. Thus, for small enough h0,

inf{h−1
∣∣
∫ 1

0

e(hλξ−iξ·(hθ+β))t dt
∣∣ : θ ∈ Ω, h < h0} > 0, ∀ξ ∈ Kβ .

This, together with (4.27), implies, with

rh := inf{|Mh(hθ + β)| : θ ∈ Ω},

that, for small enough h,

h−krh = h−k inf{
∏

ξ∈Ξ

∣∣
∫ 1

0

e(hλξ−iξ·(hθ+β))t dt
∣∣ : θ ∈ Ω} > const > 0.

Thus, by (4.26),

o(hk) = ‖Mh(h · +β)f̂‖L2(Ω) ≥ ‖f̂‖L2(Ω)rh > const‖f̂‖L2(Ω)h
k,

a contradiction to the fact that ‖f̂‖L2(Ω) 6= 0.
This completes the proof of Theorem 3.7, and thereby the proof of Theorem 3.4.
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4.4. Proof of Theorem 3.17

The proof invokes Theorem 2.9 for the choice φh := Mh. Thus, we need to verify that for an
integer r < k (with k := k′(Ξ)), the sequences

mr
k,h : (2πZZd\0) 3 β 7→ |β|r‖(h+ |·|)−kM̂h(· + β)‖L∞(B), h < h0

lie in `q(2πZZd\0) and are bounded there.
For that, we first invoke Proposition 4.17 to conclude that

mr
k,h(β) ≤ const|β|r

∏

ξ∈Kβ∪Lβ

|ξ · β|−1.

Therefore, by Proposition 4.18, the uniform boundedness of {mr
k,h}h in `q(2πZZd\0) is implied by

the condition |·|rM̂0 ∈ Lq. For p = ∞ (i.e., q = 1) this latter condition is assumed in the present
theorem. We prove here the validity of the condition for q > 1.

We first observe that the condition |·|rM̂0 ∈ Lq is equivalent to the statement: “for each
homogeneous polynomial P of degree r, (P (D)M0)̂ ∈ Lq.” Here, r ≤ k′(Ξ) − 1 ≤ k(Ξ)− 1 (cf. the
proof of Corollary 3.8). On the other hand, it is known, [BH], that for any polynomial P of degree
< k(Ξ), P (D)M0 can be written as a finite sum

(4.28)
∑

X

cXMX(· − αX),

where each X in the above sum is a submatrix of Ξ of full rank d, where cX are some coefficients,
αX ∈ IRd, and MX = MX,0 is the polynomial box spline defined by X. Since each X above

satisfies rankX = d, then, as established in the proof of Theorem 3.13, M̂X ∈ Lq for every
q > 1. Therefore, the Fourier transform of the sum in (4.28) is in Lq, namely, (P (D)M0)̂ ∈ Lq.

Consequently, |·|rM̂0 ∈ Lq.
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