An asymptotic expansion for the error in a linear map that reproduces polynomials of a certain order
Carl de Boor

Abstract Han’s ‘multinode higher-order expansion’ in [H] is shown to be a special
case of an asymptotic error expansion available for any bounded linear map on C([a .. b))
that reproduces polynomials of a certain order. The key is the formula for the divided
difference at a sequence containing just two distinct points.

In [H], Han shows that, for linear maps on C([a .. b]) of the form L : f — Y. v f(x;)
that reproduce polynomials of degree < m, and for a specific choice of coefficients a;, inde-
pendent of L and f but depending on m and r, the following asymptotic error expansion

f(x) Z — YD f) (z) + E(f, )

holds, with E(f, z) explicitly given as an integral involving D™*"*1 f. Since, for his partic-
ular choice of L, the sum involves the derivatives of f at the points or nodes z; associated
with L, Han thinks of this as a ‘multinode’ expansion for f.

It is the purpose of this note to point out that this asymptotic error expansion, prop-
erly interpreted, holds for any bounded linear map L on C([a..b]), with the same formula
for E(f,x). The key is the formula for the divided difference at a sequence containing just
two distinct points.

It is easy to verify, for example by induction on r and m, particularly for the special
case x = 0, y = 1, that, for any = # y,
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with A(x[”“] , y[mH]) denoting the divided difference at the point sequence that contains
x exactly r + 1 times and y exactly m + 1 times.

The Peano kernel for the divided difference A(ty,...,t,) at the sequence (to,...,t,)
is well-known to be the B-spline with knot sequence (to,...,%,) that is normalized to
integrate to 1/n!, hence (cf. (5) below), for arbitrary = and y,
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with
[s]" := s"/n!

a handy notation for the normalized power.



Consequently, for any smooth f and any x and y, and using the fact that A(z*+1)f =
D" f(z)/n,
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If now L is any bounded linear map on C([a .. b]) that reproduces polynomials of
degree < m, then, on applying 1 — L to both sides of (1) as functions of z, we find, for
arbitrary y, that
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using the facts that (i) the second sum on the right of (1) is a polynomial of degree < m
in x, hence is annihilated by 1 — L; that (ii) for any (integrable) g and any z,y € [a .. b],
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(with z4 equal to z for positive z and 0 otherwise), hence
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while (iii) [z — t]™[(y — t)4+]" is of degree < m in z, hence annihilated by 1 — L. Now
notice that [y — z]’ = 0 for y = = and j > 0. So, after setting y = 2 in (2), we can (and
will) replace (1 — L) on the right by —L, then divide both sides by (mntr) and rearrange
to arrive at the sought-for expansion
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(4) E(f,x) = / (1=L)(( =1)7F) (@) (@ = )" D" () dt/(m + 1),

in which (mjfj_J) /(™*7) could be rewritten as % Thus, when L takes the

particular form Lf := ). ¢;f(x;) for some functions ¢; and some points x; in [a .. b], we
now have in hand Theorem 2 of [H].



As a check, for L: f +— f(a), hence m = 0, we obtain
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i.e., the truncated Taylor series with integral remainder.

Consider now the error E(f,z) in the asymptotic error expansion (3) for general L.

To be sure, (4) is correct offhand only for m > 0. Even when m = 0, it is correct in
Han’s context, i.e., when L is of the form f +— ) . ¢; f(x;). For more general L, t — (L(-—
))(z) is not defined (since L(- — )9 is not defined) and so must be interpreted properly,
namely as the function k(z,-) of bounded variation that vanishes at b and represents the
linear functional A : g — —(L [ g(t)dt)(x) in the sense that A\f = [ fdk(z,-) for all
f € C([a..b]), with the existence of such k(z,-) guaranteed by the Riesz Representation
Theorem.

With that concern set to rest, assume that f € C"+™+1 ([q..b]) and that, for a given
x € la..b,

la..b]:t— (1—L)((-—1t)7) (z)

is of one sign (as it is, for any « € [a .. b], when Lf is the Bernstein polynomial for f, or
the Lagrange polynomial interpolant). Then (see (4)) the Peano kernel for E(-, z) is of one
sign on [a .. z] and on [x .. b]. Correspondingly,

E(f, ) = c1(2) D™ F(61) + ea(2) D™ HLF(E,),  some & € [a..x], & € [x.. 0],
with
c(z) = E((-1)™ T (. — )] 2) and  ex(z) = E([(- —2)4 ] 2)

readily computable by retracing the steps that brought us to (3) but choosing, specifically,
f= (0"t (@ = ) )" de, DL = (2 — )9, to get ¢i(x) and choosing
F=1C—-2) " ie, D™ HLf = (- — 1), to get ca(x). For this, we note that

(5) - /y [x — ][y — ¢]" dt = (—1)™ [y — 2] ",

for arbitrary x and y, hence, e.g.,

o /y [[.CB - t]]m[[y - t]]r(-%' — t)g_ dt = (—1)m+1(1~ _ y)g_[[y N x]]m+r+1.

Recalling that we obtained from this the corresponding error term by applying 1 — L to it
as a function of x, then setting y = x and dividing by (m”), we get
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In the same way, we find that

ea(e) = (1" L([(w — )Ty @)/ ().
If now 7 is even, then ¢ (z) and co(z) are of the same sign and, in that case,
E(f,x) = (@) D™+ £(¢), some € € [a..b,
with
() = (@) + eala) = B 1" @) = (D)™ L(le - 1) @)/ ().

Thus, when L takes the particular form Lf := )", ¢; f(x;) for some functions ¢; and some
points z; in [a .. b], we now have in hand Theorem 3 of [H].
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