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Abstract Han’s ‘multinode higher-order expansion’ in [H] is shown to be a special
case of an asymptotic error expansion available for any bounded linear map on C([a . . b])
that reproduces polynomials of a certain order. The key is the formula for the divided
difference at a sequence containing just two distinct points.

In [H], Han shows that, for linear maps on C([a . . b]) of the form L : f 7→
∑

i ϕif(xi)
that reproduce polynomials of degree ≤ m, and for a specific choice of coefficients aj , inde-
pendent of L and f but depending on m and r, the following asymptotic error expansion

f(x) = Lf(x) +
r

∑

j=0

aj

j!
L

(

(x − ·)jDjf
)

(x) + E(f, x)

holds, with E(f, x) explicitly given as an integral involving Dm+r+1f . Since, for his partic-
ular choice of L, the sum involves the derivatives of f at the points or nodes xi associated
with L, Han thinks of this as a ‘multinode’ expansion for f .

It is the purpose of this note to point out that this asymptotic error expansion, prop-
erly interpreted, holds for any bounded linear map L on C([a . . b]), with the same formula
for E(f, x). The key is the formula for the divided difference at a sequence containing just
two distinct points.

It is easy to verify, for example by induction on r and m, particularly for the special
case x = 0, y = 1, that, for any x 6= y,

(−1)m+1(y − x)r+m+1∆(x[r+1], y[m+1]) =
r

∑

j=0

(

m+r−j

r−j

)

(y − x)j ∆(x[j+1]) −
m

∑

k=0

(

r+m−k

m−k

)

(x − y)k∆(y[k+1]),

with ∆(x[r+1], y[m+1]) denoting the divided difference at the point sequence that contains
x exactly r + 1 times and y exactly m + 1 times.

The Peano kernel for the divided difference ∆(t0, . . . , tn) at the sequence (t0, . . . , tn)
is well-known to be the B-spline with knot sequence (t0, . . . , tn) that is normalized to
integrate to 1/n!, hence (cf. (5) below), for arbitrary x and y,

(y − x)r+m+1∆(x[r+1], y[m+1])f =

∫ y

x

[[t − x]]
m

[[y − t]]
r
Dr+m+1f(t) dt,

with

[[s]]
n

:= sn/n!

a handy notation for the normalized power.
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Consequently, for any smooth f and any x and y, and using the fact that ∆(z [n+1])f =
Dnf(z)/n!,

(1)

−

∫ y

x

[[x − t]]
m

[[y − t]]
r
Dr+m+1f(t) dt =

r
∑

j=0

(

m+r−j

r−j

)

[[y − x]]
j
Djf(x) −

m
∑

k=0

(

r+m−k

m−k

)

[[x − y]]
k
Dkf(y).

If now L is any bounded linear map on C([a . . b]) that reproduces polynomials of
degree ≤ m, then, on applying 1 − L to both sides of (1) as functions of x, we find, for
arbitrary y, that

(2)

∫ b

a

(1 − L)([[(· − t)+]]
m

)(x)[[y − t]]
r
Dr+m+1f(t) dt =

(

m+r

m

)

(f − Lf)(x) + (1 − L)





r
∑

j=1

(

m+r−j

r−j

)

[[y − ·]]
j
Djf



 (x),

using the facts that (i) the second sum on the right of (1) is a polynomial of degree ≤ m
in x, hence is annihilated by 1 − L; that (ii) for any (integrable) g and any x, y ∈ [a . . b],

−

∫ y

x

g(t) dt =

∫ b

a

((x − t)0+ − (y − t)0+)g(t) dt

(with z+ equal to z for positive z and 0 otherwise), hence

−

∫ y

x

[[x − t]]
m

[[y − t]]
r
g(t) dt =

∫ b

a

([[(x − t)+]]
m

[[y − t]]
r
− [[x − t]]

m
[[(y − t)+]]

r
) g(t) dt,

while (iii) [[x − t]]
m

[[(y − t)+]]
r

is of degree ≤ m in x, hence annihilated by 1 − L. Now

notice that [[y − x]]
j

= 0 for y = x and j > 0. So, after setting y = x in (2), we can (and
will) replace (1 − L) on the right by −L, then divide both sides by

(

m+r

m

)

and rearrange
to arrive at the sought-for expansion

(3) f(x) − Lf(x) =
r

∑

j=1

(

m+r−j

r−j

)

(

m+r

m

) L
(

[[x − ·]]
j
Djf

)

(x) + E(f, x),

with

(4) E(f, x) :=

∫ b

a

(1 − L)
(

(· − t)m
+

)

(x) (x − t)rDm+r+1f(t) dt/(m + r)! ,

in which
(

m+r−j

r−j

)

/
(

m+r

m

)

could be rewritten as r!(m+r−j)!
(m+r)!(r−j)! . Thus, when L takes the

particular form Lf :=
∑

i ϕif(xi) for some functions ϕi and some points xi in [a . . b], we
now have in hand Theorem 2 of [H].
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As a check, for L : f 7→ f(a), hence m = 0, we obtain

f(x) − f(a) =
r

∑

j=1

[[x − a]]
j
Djf(a) +

∫ b

a

(x − t)r
+Dr+1f(t) dt/r! ,

i.e., the truncated Taylor series with integral remainder.
Consider now the error E(f, x) in the asymptotic error expansion (3) for general L.
To be sure, (4) is correct offhand only for m > 0. Even when m = 0, it is correct in

Han’s context, i.e., when L is of the form f 7→
∑

i ϕif(xi). For more general L, t 7→ (L(·−
t)0+)(x) is not defined (since L(· − t)0+ is not defined) and so must be interpreted properly,
namely as the function k(x, ·) of bounded variation that vanishes at b and represents the
linear functional λ : g 7→ −(L

∫

·

a
g(t) dt)(x) in the sense that λf =

∫

f dk(x, ·) for all
f ∈ C([a . . b]), with the existence of such k(x, ·) guaranteed by the Riesz Representation
Theorem.

With that concern set to rest, assume that f ∈ C(r+m+1)([a . . b]) and that, for a given
x ∈ [a . . b],

[a . . b] : t 7→ (1 − L)
(

(· − t)m
+

)

(x)

is of one sign (as it is, for any x ∈ [a . . b], when Lf is the Bernstein polynomial for f , or
the Lagrange polynomial interpolant). Then (see (4)) the Peano kernel for E(·, x) is of one
sign on [a . . x] and on [x . . b]. Correspondingly,

E(f, x) = c1(x)Dm+r+1f(ξ1) + c2(x)Dm+r+1f(ξ2), some ξ1 ∈ [a . . x], ξ2 ∈ [x . . b],

with

c1(x) := E((−1)m+r+1[[(x − ·)+]]
m+r+1

, x) and c2(x) := E([[(· − x)+]]
m+r+1

, x)

readily computable by retracing the steps that brought us to (3) but choosing, specifically,

f = (−1)m+r+1[[(x − ·)+]]
m+r+1

, i.e., Dm+r+1f = (x − ·)0+, to get c1(x) and choosing

f = [[(· − x)+]]
m+r+1

, i.e., Dm+r+1f = (· − x)0+, to get c2(x). For this, we note that

(5) −

∫ y

x

[[x − t]]
m

[[y − t]]
r
dt = (−1)m+1[[y − x]]

m+r+1
,

for arbitrary x and y, hence, e.g.,

−

∫ y

x

[[x − t]]
m

[[y − t]]
r
(x − t)0+ dt = (−1)m+1(x − y)0+[[y − x]]

m+r+1
.

Recalling that we obtained from this the corresponding error term by applying 1−L to it
as a function of x, then setting y = x and dividing by

(

m+r

m

)

, we get

c1(x) = (−1)m+1(1 − L)([[(x − ·)+]]
m+r+1

)(x)/
(

m+r

m

)

= (−1)mL([[(x − ·)+]]
m+r+1

)(x)/
(

m+r

m

)

.
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In the same way, we find that

c2(x) = (−1)mL([[(x − ·)
−

]]
m+r+1

)(x)/
(

m+r

m

)

.

If now r is even, then c1(x) and c2(x) are of the same sign and, in that case,

E(f, x) = c(x)Dm+r+1f(ξ), some ξ ∈ [a . . b],

with

c(x) := c1(x) + c2(x) = E([[ · ]]
m+r+1

, x) = (−1)mL([[x − ·]]
m+r+1

)(x)/
(

m+r

m

)

.

Thus, when L takes the particular form Lf :=
∑

i ϕif(xi) for some functions ϕi and some
points xi in [a . . b], we now have in hand Theorem 3 of [H].
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