Best Approximation Properties of Spline Functions of Odd Degree

CARL DE BOOR

Communicated by Garrett Birkhoff

Introduction. In [4], interpolation by cubic spline functions is discussed, and some best approximation properties of the cubic spline fit are described. This note extends the results of [4], in a somewhat modified form, to spline functions of odd degree m = 2k - 1, $k \ge 2$.

Definition. A spline function of degree m with joints $\xi_1 < \xi_2 < \cdots < \xi_n$ is defined as a function F(x) with the following two properties ([2], p. 67):

- a. In each of the intervals $(-\infty, \xi_1)$, $[\xi_1, \xi_2)$, \cdots , $[\xi_n, \infty)$, F(x) is a polynomial of degree m;
- b. F(x) has continuous derivatives through the $(m-1)^{st}$, or, for short, $F(x) \in \mathbb{C}^{m-1}$.

The class of functions F(x) with these properties will be denoted by $S_m(\xi_1, \dots, \xi_n)$.

The following lemma establishes the existence and uniqueness of a spline function of degree (2k-1) with (n-1) joints which coincides with a given function f(x) at (n+1) prescribed points. The lemma is a consequence of Theorem 2 in [3], p. 258.

Lemma 1. Let f(x) be any function of class $C^k[a, b]$. For each choice of n+1 abscissae x_i , $a = x_0 < x_1 < \cdots < x_n = b$, there exists exactly one spline function in $S_{2k-1}(x_1, \dots, x_{n-1})$, denoted by $\bar{s}(x)$, such that

(1)
$$\bar{s}(x_i) = f(x_i), \quad i = 0, \dots, n,$$

(2)
$$\bar{s}^{(k+j)}(x_i) = 0, \quad i = 0, n; \quad j = 0, \dots, k-2,$$

where $\bar{s}^{(m)}(x)$ denotes the m^{th} derivative of $\bar{s}(x)$.

It has been known for some time (cf., e.g. [2], p. 67) that in the case k = 2 of cubic splines the interpolating function $\bar{s}(x)$ minimizes $\int_a^b [u''(x)]^2 dx$ among all functions $u(x) \in C^2$ which coincide with f(x) at the points x_i , $i = 0, \dots, n$. The

cubic spline function $\bar{s}(x)$ gives therefore, approximately, the shape of a thin beam or "spline", which is forced to go through the points $\{x_i, f(x_i)\}, i = 0, \dots, n$. This result can be seen by considering the integral $\int [u''(x)]^2 dx$ as a linearized approximation to the strain energy of a thin beam, which is $\int u''^2/(1+u'^2)^{5/2} dx$. Thus $\bar{s}(x)$ minimizes the strain energy subject to the geometrical constraints stated (cf. [1], p. 92–98). The corresponding nonlinear problem was first considered by L. Euler and D. Bernoulli.

The inner product

(3)
$$(f, g)_k = \int_a^b f^{(k)}(x)g^{(k)}(x) dx$$

is defined for any two functions f, g which have square-integrable k^{th} derivatives on [a, b]. It defines a pseudo-norm

$$(4) ||f||_k = [(f, f)_k]^{1/2}$$

on the linear space $C^k[a, b]$, in which $||f||_k = 0$ if and only if f(x) is a polynomial of degree (k-1) or less.

Theorem 1. Among all the functions $u(x) \in C^k[a, b]$, which satisfy (1') $u(x_i) = f(x_i)$, $i = 0, \dots, n$, the presudo-norm $||u||_k$ is minimized by $\bar{s}(x)$.

In this sense, the spline function $\bar{s}(x)$ is the smoothest function interpolating f(x) at the points x_i , $i = 0, \dots, n$.

This theorem is a direct consequence of the following lemma.

Lemma 2. If $f(x) \in C^k[a, b]$, and $\bar{s}(x) \in S_{2k-1}(x_1, \dots, x_n)$ satisfies (1) and (2), then

(5)
$$||f||_k^2 - ||\bar{s}||_k^2 = ||f - \bar{s}||_k^2.$$

Proof. Let $\eta(x) \equiv f(x) - \bar{s}(x)$. The right-hand side of (5) may be written as (6) $||\eta||_k^2 = ||f||_k^2 - ||\bar{s}||_k^2 - 2(\eta, \bar{s})_k$.

By successive integration by parts, one has

and this, by (1), is zero.

$$(7) \quad (\eta, \bar{s})_k = \left[\sum_{i=0}^{k-2} (-1)^i \eta^{(k-1-i)}(x) \bar{s}^{(k+i)}(x)\right]_a^b + (-1)^{k-1} \int_a^b \eta'(x) \bar{s}^{(2k-1)}(x) \ dx.$$

The first term of the right-hand side of (7) vanishes because of (2). Since $\bar{s}^{(2k-1)}(x)$ is a constant in each of the intervals $(x_i, x_{i+1}), i=0, \dots, n-1, (x_0=a, x_n=b),$ one has for the second term

(8)
$$\int_{a}^{b} \eta'(x)\bar{s}^{(2k-1)}(x) dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} \eta'(x)\bar{s}^{(2k-1)}(x) dx$$
$$= \sum_{i=0}^{n-1} [\eta(x_{i+1}) - \eta(x_{i})]\bar{s}^{(2k-1)}(i^{-th} \text{ interval}),$$

Remark. Lemmas 1 and 2 remain true, if condition (2) is replaced by

(2')
$$\bar{s}^{(i)}(x_i) = f^{(i)}(x_i), \quad i = 0, n; \quad j = 1, \dots, k-1.$$

Lemma 2'. If $f(x) \in C^k[a, b]$, and $\bar{s}(x) \in S_{2k-1}(x_1, \dots, x_{n-1})$ satisfies (1) and (2') then

(5)
$$||f||_k^2 - ||\bar{s}||_k^2 = ||f - \bar{s}||_k^2.$$

For the remainder of this note, let $\bar{s}(x)$ ε $S_{2k-1}(x_1, \dots, x_{n-1})$ denote the unique spline function of degree 2k-1 which satisfies (1) and (2'), and hence (5).

Theorem 1'. Among the functions $u(x) \in C^k[a, b]$, which satisfy (1) and (2'), (with $\bar{s}(x)$ replaced by u(x)), the norm $||u||_k$ is minimum for $\bar{s}(x)$.

Lemma 2' not only implies Theorem 1', but provides a characterization of the best approximation $s^*(x)$ to f(x) ε $C^k[a, b]$ by spline functions s(x) ε $S_{2k-1}(x_1, \dots, x_{n-1})$ with respect to the measure of approximation

$$(9) ||f-s||_k.$$

A best approximation $s^*(x) \in S_{2k-1}(x_1, \dots, x_{n-1})$ has to satisfy

(10)
$$||f - s^*||_k \le ||f - s||_k, \quad \text{for all } s \in S_{2k-1}(x_1, \dots, x_{n-1}).$$

Since $||f||_k = 0$ if and only if f(x) is a polynomial of degree (k-1), i.e., $f(x) \equiv P_{k-1}(x)$, best approximations are not unique; $(s(x) + P_{k-1}(x))$ is a best approximation, if s(x) is.

Theorem 2. For $f(x) \in C^k[a, b]$,

(11)
$$s^*(x) = \bar{s}(x) + P_{k-1}(x),$$

i.e., the spline function $\bar{s}(x)$ interpolating f(x) at the points x_i , $i=0, \dots, n$, and satisfying (2'), is a best approximation to f(x) by spline functions in $S_{2k-1}(x_1, \dots, x_{n-1})$ with respect to the measure of approximation (9).

Proof. Let s(x) be any function in $S_{2k-1}(x_1, \dots, x_{n-1})$. In Lemma 2', replace f(x) by (f(x) - s(x)). Then $(\bar{s}(x) - s(x))$ is the corresponding unique function in $S_{2k-1}(x_1, \dots, x_{n-1})$ satisfying (1) and (2'), so that

(12)
$$||f - \bar{s}||_k^2 = ||f - s||_k^2 - ||\bar{s} - s||_k^2.$$

Hence

$$||f - \bar{s}|| \leq ||f - s||,$$

with equality holding if and only if $||\bar{s}-s||_k = 0$,—i.e., when $s(x) = \bar{s}(x) + P_{k-1}(x)$.

References

- [1] T. L. SYNGE & B. A. GRIFFITH, Principles of mechanics, McGraw-Hill (1949).
- [2] I. J. Schoenberg, Approximation of equidistant data, Quart. Appl. Math., 4 (1946) 45-99.
- [3] I. J. Schoenberg & A. Whitney, On Polya frequency functions, III, Trans. A. M. S., 74 (1953) 246-259.
- [4] J. L. Walsh, J. H. Ahlberg & E. N. Nilson, Best approximation properties of the spline fit. J. Math. Mech., 11 (1962) 225-234.

General Motors Research Laboratories