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SIGNIFICANCE AND EXPLANATION

This lecture was given at the IMA/SIAM conference on “State of the Art in Numerical

Analysis” held April 14–18, 1986, in Birmingham, England. The lecture reviews develop-

ments in Multivariate Approximation in the last ten years. The selection of topics is quite

subjective; it reflects entirely the author’s research experience during that time.∗

∗ The responsibility for the wording and views expressed in this descriptive summary

lies with MRC, and not with the author of this report.



MULTIVARIATE APPROXIMATION

Carl de Boor

1. The set-up

The talk concerns the approximation of

f : G ⊆ R
d −→ IR,

i.e., of some real-valued function f defined on some domain G in d-dimensional space.

While my first publication dealt with such multivariate (actually, bivariate) approxi-

mation, I have concerned myself seriously with multivariate approximation only in the last

ten years. This talk reflects some of the experiences I have had during that time.

The approximating functions are typically polynomials or piecewise polynomials, and

just how one describes them will have an effect on one’s work with them. Papers on

multivariate approximation often sink under the burden of cumbersome notation. As a

preventive measure against such a sad fate, I shall follow the “default” convention whereby

symbols are left out if they can reasonably be guessed from the context. For example, if

x =
(

x(1), . . . , x(d)
)

has just been declared to be a point in R
d, I will feel free to write

∑

i

x(i) instead of

d
∑

i=1

x(i).

For polynomials, multi-index notation is standard. With x = (x(1), . . . , x(d)) the

generic point in R
d, one uses the abbreviation

xα :=
∏

i

x(i)α(i), x ∈ R
d , α ∈ Z

d
+.

The function x 7→ xα is a monomial of degree α, or, of (total) degree

|α| :=
∑

i

α(i)

if only the exponent sum matters. More generally, a polynomial of degree ≤ α is, by

definition, any function of the form

x 7→
∑

β≤α

xβc(β),
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with real coefficients c(β). The collection of all such polynomials is denoted by

Π≤α = Π≤α(Rd),

the collection of all polynomials of total degree at most k by

Π≤k = Π≤k(R
d),

and the collection of all polynomials, of whatever degree, by

Π = Π(Rd).

Many expressions simplify if one makes use of the normalized power function, i.e.,

the function

[[]]
α

: x 7→ xα/α! :=
∏

i

x(i)α(i)/α(i)!.

For example, with α, ξ, υ, . . . , ζ ∈ Z
d
+, the Multinomial Theorem takes the simple form

[[x+ y + · · ·+ z]]
α

=
∑

ξ+υ+···+ζ=α

[[x]]
ξ
[[y]]

υ
· · · [[z]]

ζ
. (1.1)

At times, it pays to give up on the power form altogether. In some contexts, it is very

convenient to describe polynomials in terms of the particular homogenous polynomials

〈Y, ·〉 : x 7→
∏

y∈Y

〈y, x〉,

with

〈y, x〉 :=
∑

i

y(i)x(i)

and Y a finite subset of R
d. I will make use of this form in Section 3. A particular instance

is the B(ernstein-ézier)-form, which is the form of choice when dealing with piecewise

polynomials on a triangulation (see Section 4).
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2. Approximation by functions of fewer variables

The simplest approach to multivariate approximation uses tensor products, i.e.,

linear combinations of functions of the form

x 7→
∏

i

gi
(

x(i)
)

,

each gi being a univariate function. This neatly avoids dealing with the realities of multi-

variate functions, but its effectiveness depends on having the information about f corre-

spondingly available in (cartesian) product form, e.g., as function values on a rectangular

grid parallel to the coordinate axes. The recent book by Light and Cheney (1986) provides

up-to-date material on this practically very important choice of approximating function

and certain ready extensions.

The book also deals with the situation when the information about f is not in product

form. In that case, tensor product approximants still are attractive since they are composed

of univariate functions. The general question of how to approximate a multivariate function

by functions of fewer variables has received much attention. A reference with a Numerical

Analysis slant is Golomb (1959).

The most remarkable result along this line is

Kolmogorov’s Theorem (Kolmogorov, 1957)

∃λ ∈]0 . . 1]d, ∃Φ ⊆ Lipα[0 . . 1] ∩ strictly monotone, #Φ = 2d+ 1, such that

∀f ∈ C[0 . . 1]d ∃g ∈ C[0 . . d]

f(x) =
∑

ϕ∈Φ

g
(

∑

i

λ(i)ϕ
(

x(i)
)

)

. (2.1)

(Here and below,

#A := the number of elements in A.)

The theorem claims the existence of a set Ψ of 2d+ 1 ‘universal’ maps ψ : [0 . . 1]d →

[0 . . d] so that, for each continuous function f on the unit cube [0 . . 1]d, a continuous
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function g on the interval [0 . . d] can be found for which

f =
∑

ψ∈Ψ

g ◦ ψ.

Moreover, each function ψ ∈ Ψ is of the form

ψ(x) :=
d

∑

i=1

λ(i)ϕ(x(i)),

with each of the 2d + 1 functions ϕ ∈ Φ strictly increasing and in Lipα[0 . . 1] for some

positive α, and λ some d-vector with positive entries all bounded by 1.

The work of Kolmogorov and his pupil Arnol’d which culminated in this theorem

was motivated by Hilbert’s Thirteenth Problem which contained (implicitly) the conjec-

ture that not all continuous functions of three variables could be written as superpositions

of continuous functions of two variables. The version quoted here reflects further sim-

plifications, chiefly by Lorentz (1962). For a proof and further discussion, see (Lorentz,

1966;pp.168ff).

Practical use of Kolmogorov’s Theorem seems elusive since the ’universal’ functions

ϕ ∈ Φ have a fractal ’derivative’ (see Section 8) and g need not be smooth even if f is

smooth. But it remains a challenge to develop a practical Approximation Theory which can

handle approximating functions of the form (2.1). In any case, it suggests a nontraditional

form of approximation which is motivated by computational or algorithmic simplicity.

Perhaps we have been too accepting of traditional approximation techniques in which we

choose the approximating family according to linear degrees of freedom. Perhaps we should

consider instead approximating families which are classified by the number of floating-point

operations required for their evaluation. Approximation Theory as it now exists has little

to offer in this direction, but Computer Science may have something to teach us.

A special case has had much exposure in the times before electronic computers, viz.,

the approximation by nomographic functions. These are functions of two variables of

the specific form

IR2 −→ IR : x 7→ g
(

ϕ(x(1)) + ψ(x(2))
)

.

For recent algorithmic work, see von Golitschek (1984).
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3. Loss of Haar

The traditional approaches to approximation all start with polynomials, and so will I.

Perhaps the greatest change when going to the multivariate set-up is the loss of the Haar

property.

To recall, interpolation from a linear space S of functions on some G ⊆ R
d at a point

set T ⊂ G can be viewed as the task of inverting the restriction map

S −→ IRT : p 7→ p|T .

We are to (re)construct some element p ∈ S from its prescribed values p|T at the points in

T . In these terms, S has the Haar property if every T ⊆ G with #T = dimS is correct

for S, i.e., is such that

S −→ IRT : p 7→ p|T is 1-1 and onto.

In other words, we can interpolate, and uniquely so, from S to any function values given

on T .

If d = 1, then Π≤k has the Haar property (for any G with more than k points), but

Mairhuber’s switching yard argument (cf., e.g., the cover of Lorentz (1966)) shows that

this property cannot hold for any S of dimension > 1 on a multidimensional set G.

For the case of polynomials, it is possible to identify various point sets T ⊂ R
d which

are correct for Π≤k. A particularly nice example is provided by Chung and Yao (1977)

who prove the following: Suppose that V is a finite subset of R
d\0, and that V ∪ 0 is in

general position, which means that Π1 has the Haar property on V ∪ 0. This implies

that for every W ⊂ V with #W = d, xW ∈ R
d is defined uniquely by the equations

1 + 〈w, xW 〉 = 0, w ∈W,

since these state that the linear polynomial 1 + 〈·, xW 〉 is to vanish on W and take the

value 1 at 0. Further, since 1 + 〈·, xW 〉 already vanishes on the d points in W , it cannot

vanish anywhere on V \W , by the Haar property. It follows that the functions
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ℓW : x 7→
∏

v∈V \W

1 + 〈v, x〉

1 + 〈v, xW 〉

are well-defined, are made up of #V −d linear factors, and satisfy ℓW (xW ′) = δWW ′ (since,

for W ′ 6= W , at least one v ∈ V \W is in W ′, making the corresponding linear factor zero at

xW ′), hence in particular xW ′ 6= xW for W ′ 6= W , while #T =
(

#V
d

)

= dim Π#V−d(R
d).

This proves

Theorem (Chung and Yao, 1977) T := {xW } is correct for Π#V−d.

The following result has a different flavor:

Theorem (Hakopian, 1983) If T ⊂ Z
d
+ ‘contains its shadow’, i.e., β ≤ α ∈ T

implies β ∈ T , then T is correct for span
(

[[]]
α
)

α∈T
.

A totally different approach to the correctness problem has been taken by Kergin

(1978). Kergin is interested in extending to a multivariate setting H. Whitney’s (1957)

characterization of functions on some subset T of IR which have extensions to a smooth

function on all of IR. Since Whitney uses divided differences in an essential way, Kergin

looks for a viable generalization of the divided differences. His approach retains the uni-

variate choice of interpolating from Π≤k at an arbitrary (k+1)-set T in R
d and deals with

the many more degrees of freedom available from Π≤k by enforcing certain mean-value

conditions. These conditions are that, for every sufficiently smooth f , the interpolant Pf

should be in Π≤k and, for every r ≤ k, for every homogeneous polynomial q of degree

r, and for every (r + 1)-subset W of T , there should exist a point in the convex hull of

W at which q(D)f and q(D)Pf agree. Here (to be more explicit) q(D) is an r-th order

homogeneous constant coefficient differential operator, i.e.,

q(D) =
∑

|α|=r

a(α)Dα

for certain coefficients a(α). Surprisingly, there exists exactly one linear map P with

these properties. This linear map can be characterized by the fact that, for every plane

wave, i.e., every function f of the form f := g ◦ λ : x 7→ g(〈x, λ〉), P reduces to univariate
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interpolation at the projected point set 〈T, λ〉 = {〈t, λ〉 : t ∈ T} ⊂ IR, i.e., P (g ◦ λ) =
(

PλT g
)

◦ λ, with PλT univariate interpolation from Π≤k(IR) at λT = 〈T, λ〉. In other

words, for a plane wave f , Pf(x) is the value at 〈x, λ〉 ∈ IR of the univariate polynomial

of degree at most k which matches the value f(t) at 〈t, λ〉, all t ∈ T , where Hermite

interpolation is used in case of coincident points. Full understanding of this process (see

Micchelli, 1980) led to an understanding of multivariate B-splines, of which more anon.

It seems more promising to give up on polynomials altogether and to choose the

interpolating function space S to depend on the point set T at which data are given. The

simplest general model has the form

∑

t∈T

ϕ(· − t)c(t),

with ϕ : R
d → IR a function to be chosen ‘suitably’. Duchon’s thin plate splines (see,

e.g., Meinguet, 1979) use

ϕ(x) := |x|2m−d

{

ln|x|, n even;
1, n odd,

motivated by a variational argument, while Hardy’s multiquadrics correspond to the

choice

ϕ(x) :=
√

1 + |x|2.

A good source of up-to-date information about such interpolation methods and, in par-

ticular, about the question of their correctness, is the recent survey article of Micchelli

(1986).

4. The B-form

I now come to a discussion of piecewise polynomial functions, or pp functions for

short. I have learned from the people in Computer-Aided Geometric Design that, in dealing

with smooth pp functions on some triangulation, it is usually advantageous to write the

polynomial pieces in barycentric-Bernstein-Bézier form, or B-form for short. This

form relates polynomials to a given simplex. It is hard to appreciate the power and beauty
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of this form because, even with carefully chosen notation, it looks forbidding at first sight.

Still, I want to point out its structure at least.

One starts with a (d+1)-subset V of R
d in general position and considers the barycen-

tric coordinates with respect to it, i.e., the Lagrange polynomials for linear interpolation

at V . The typical Lagrange polynomial ξv takes the value 1 at the vertex v and vanishes

on the facet spanned by V \v. The B-form for p ∈ Π≤k employs all possible products of k

of these linear polynomials. Explicitly,

p =:
∑

|α|=k

Bα c(α) (4.1)

with

Bα(x) := |α|![[ξ(x)]]
α

= |α|!
∏

v∈V

[[ξv(x)]]
α(v)

. (4.2)

Here

ξ(x) :=
(

ξv(x)
)

v∈V
(4.3)

is the (d+ 1)-vector containing the barycentric coordinates of x with respect to V .

Note that the vector ξ(x) and the multi-index α appearing here are conveniently and

appropriately indexed by the elements of V (rather than by the numbers 1, 2, . . . , d+ 1 or

the numbers 0, 1, . . . , d, which would require an arbitrary indexing of the points in V ).

The factor |α|! in the definition of the Bernstein basis element Bα is just right to

make
(

Bα
)

|α|=k
a partition of unity. Indeed,

∑

|α|=k

Bα(x) = k!
∑

|α|=k

∏

v∈V

[[ξv(x)]]
α(v)

= k![[
∑

v∈V

ξv(x)]]
k

= 1,

using the Multinomial Theorem (see (1.1)) and the fact that
∑

v ξv = 1. The numerical

analyst will delight in the alternative formulation of the form,

p(x) = 〈ξ(x), E〉kc(0) (4.4)

which makes use of the shift operator E given by the rule

Eβc(α) = c(α+ β).
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More explicitly,

〈z, E〉 =
∑

v∈V

z(v)Ev,

i.e.,

〈z, E〉c(α) =
∑

v∈V

z(v)c(α+ ev)

with ev the v-unitvector, i.e, ev(w) = δvw, w ∈ V . This form provides a most convenient

starting point for the derivation of efficient algorithms for the evaluation and differentiation

of the B-form. For details, see, e.g., Farin (1985) and de Boor (1986).

5. Smooth pp functions

The B-form is well suited to pp work since its typical term Bα vanishes α(v)-fold on

the facet spanned by V \v. This means that the form readily provides information about

the behavior of p at all the bounding faces of the simplex with vertex set V . This is being

increasingly exploited in studying the algebraic structure of the space

Πρ
k,∆

of pp functions of degree ≤ k on a given triangulation ∆ whose pieces join together

smoothly to provide a function all of whose derivatives of order ≤ ρ are continuous.

The problems being studied include: the dimension of such a space, a good basis for

such a space, and the approximation power of such a space. For recent results, see Chui

and his co-workers, and Schumaker. These results only deal with d = 2, and, even for this

case, we know relatively little. For example, despite considerable efforts, we still do not

know the dimension of the space of continuously differentiable piecewise cubic functions

on an arbitrary triangulation in the plane. While we do know that this dimension depends

on the quantitative details of the triangulation, we do not know exactly how.

As we understand these problems better and see some of their particular difficulties,

we wonder whether Πρ
k,∆ is really the right space to study. It now seems that it might

be more appropriate to seek out appropriate subspaces, e.g., the subspace spanned by

certain compactly supported smooth piecewise polynomials as was done already in Finite
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Elements. A particularly simple model is provided by approximation from a scale of pp

functions.

6. Approximation from a scale

Associate with a given function space S the scale
(

Sh
)

, with

Sh := σhS,
(

σf
)

(x) := f(x/h),

and define the approximation order of S to be

max {r : ∀ smooth f dist(f, Sh) = O(hr)}.

This order may well be 0, as it is for S = Π≤k. But if S contains functions whose support

has diameter δ, then Sh contains functions with supports of diameter hδ, and, for such S,

one might hope to obtain closer approximations from Sh as h → 0. Work with specific

examples has suggested the following conjectures in case S ⊆ Πk,∆:

Conjectures: (i) The approximation order of S equals the approximation order of

Sloc := span {ϕ ∈ S : supp ϕ compact}.

(ii) S has approximation order ≥ 1 iff S contains a local partition of unity.

(iii) The approximation order is always realized by a good quasi-interpolant.

Here, a map Q into S is a good quasi-interpolant of order r in case it is a linear

map which is stable in the sense that, for any f and any x ∈ G,

|(Qf)(x)| ≤ const sup{|f(y)| : ‖y − x‖ ≤ R}

with const and R < ∞ independent of f or x, and which reproduces polynomials of

degree < r. For example, if Φ is a local and nonnegative partition of unity in S, i.e.,

supϕ∈Φ diam suppϕ <∞, ϕ ≥ 0 for all ϕ ∈ Φ, and
∑

ϕ∈Φ ϕ = 1, then

f 7→
∑

ϕ∈Φ

ϕ f(τϕ)
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is a good quasi-interpolant of order 1 (provided, e.g., that τϕ ∈ suppϕ for all ϕ ∈ Φ).

This abstract model can be completely analysed in the very special case when S is

spanned by the integer translates of one function ϕ, i.e.,

S := Sϕ := span
(

ϕ(· − j)
)

j∈Z
d

= {
∑

j∈Z
d

ϕ(· − j)c(j) : c(j) ∈ IR}.

For this case, the three conjectures are verified; in particular, Strang and Fix (1973) prove

that S has approximation order r iff Π<r ⊆ S.

Already for the slightly more general case when S is the span of integer translates of

several compactly supported functions, the situation becomes more complicated. A char-

acterization of the approximation order is not yet known for this case, but the somewhat

stronger (and practically more interesting) concept of local approximation order can be

characterized very simply (de Boor and Jia, 1985): S has local approximation order

r iff there exists ψ ∈ Sloc such that Sψ has approximation order r.

For the general case, even simple questions such as whether a pp space with positive

approximation order must contain a compactly supported element have so far remained

unanswered.

7. Multivariate B-splines

The abstract theory of approximation from a scale has found new interest recently

because of the advent of multivariate B-splines. These were introduced in 1976 in hopes

that they would perform the same service in the study of multivariate smooth pp functions

that the B-splines of Schoenberg and Curry provided so nicely for the theory of (univariate)

splines.

In retrospect, well, in any case, the idea is simple enough. It involves a body B ⊂ IRn

and the orthogonal projector P : IRn → R
d : x 7→ (x(1), . . . , x(d)). The map P is used to

extend a function ϕ on R
d to the function

ϕ ◦ P : u 7→ ϕ(Pu)
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on all of IRn. The B-spline MB is defined as the distribution on R
d which represents

integration over B of the extended function. In formulae:

MB : ϕ 7→

∫

B

ϕ ◦ P for all ϕ ∈ C0. (7.1)

Here, C0 = C0(R
d) is the collection of all continuous functions on R

d with compact support.

If PB (the projection of the body) is d-dimensional, this can also be written

MB(ϕ) =

∫

R
d

MBϕ =

∫

PB

dyφ(y)

∫

B∩P−1y

1 (7.2)

showing that MB(y) = voln−dB ∩ P−1y. This latter formula was the original definition,

motivated by a geometric characterization of the (univariate) B-spline due to Curry and

Schoenberg (1966) and illustrated, for n = 3, d = 1, in Figure 7.1.

Figure 7.1 The quadratic B-spline as the “shadow” of a 3-simplex.

The value of the B-spline at a point y equals the (n − d)-dimensional volume of the

intersection of the simplex with the hyperplane P−1y.

It is immediate that MB has compact support. Further, if B is polyhedral with

facets {Bi}, and if z ∈ IRn, then an application of Stokes’ Formula shows that the direc-

tional derivative of MB along Pz is

DPzMB = −
∑

i

〈z, ni〉MBi
. (8.1)
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with ni the outward unit normal to the facet Bi and MBi
the B-spline that is the “shadow”

of the “body” Bi. Repeated applications of this differentiation formula show that all

derivatives of MB of order n− d+ 1 must vanish identically away from the projections of

the (d− 1)-dimensional faces of B. Consequently,

MB ∈ Πρ
n−d,∆,

with ∆ the partition whose partition interfaces are the projections of (d− 1)-dimensional

faces of B, and where ρ is defined by the condition that n−ρ−2 equal the largest dimension

of a face of B projected entirely into one of the partition interfaces. Thus, in the generic

case, we have ρ = n−d−1, which is as large as it can possibly be, given that the polynomial

degree of MB is n− d.

This surprising smoothness is bought at a price. Since, for a generic partition ∆,

Πk−1
k,∆ does not contain any locally supported functions, the partition for MB must be

quite special. Figure 7.2 shows such a partition for a bivariate quadratic simplex spline,

i.e., a B-spline that is the “shadow” of a simplex.

Figure 7.2 The partition for a bivariate quadratic simplex spline

Thus we cannot expect to obtain B-splines for every partition. At best, we can find B-

splines whose partition refines a given one. For the case of simplex splines, such a collection

of B-splines of degree k can be constructed rich enough to provide a good quasi-interpolant

of order k + 1. There are even stable recurrence relations, found by Micchelli (1980), for

their evaluation. But it seems that their use is computationally quite expensive (see, e.g.,

Grandine, 1986). It is therefore not likely that simplex splines will be used as a basis for



14 Carl de Boor

a good subspace of a given smooth pp space of functions. Most likely, translates of a fixed

B-spline will find practical employment.

There is a bit more hope for the box splines, i.e., the multivariate B-splines associated

with the n-cube B = [0 . . 1]n. For their definition in terms of (7.1), one would allow P to

be, more generally, a linear map. Then, with ξi := Pei the image of the i-th unit vector

under P , the box spline can be characterized more explicitly by

∫

R
d

M(·|ξ1, . . . , ξn)ϕ =

∫

[0..1]n
ϕ
(

∑

i

ξiy(i)
)

dy, ϕ ∈ C0.

By choosing the ξi from ZZd appropriately, the resulting partition can be made to conform

to a regular grid; see Figure 7.3 for the supports of two very well known box splines, the

Courant element (d = 2, n = 3) and the Zwart-Powell element (d = 2, n = 4). Further,

their evaluation can be accomplished by subdivision.

Figure 7.3 The supports of a linear and a quadratic bivariate box spline

De Boor (1982) gives an introduction to multivariate B-splines. Dahmen and Mic-

chelli (1984) provide a survey of the literature available by 1983 to which they heavily

contributed. Höllig (1986a) gives a more up-to-date introduction, and Höllig (1986b) sum-

marizes what we know about box splines. In addition, I want to stress the beautiful, but

more theoretical, developments to which Dahmen and Micchelli were led by their intensive

study of box splines (see, e.g., Dahmen and Micchelli, 1985, 1986).
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8. Subdivision

I hate to finish on a pessimistic note. I therefore bring up a totally different approach

to the generation or approximation of surfaces which comes from Computer-Aided Design.

I think that this technique has real promise for the generation of ‘smooth’ surfaces which

fit to given points in 3-space of more or less arbitrary combinatorial structure. It is at

present being used to evaluate linear combinations of box splines (see, e.g., Höllig, 1986a,

for the relevant references). But since this idea has not yet been thoroughly studied, I will

discuss it only in its original context of curve generation.

Figure 8.1 The steps of the simple subdivision algorithm.

Here is a very simple version of subdivision, which generalizes Chaikin’s algorithm

(Chaikin, 1974). Start off with points aj in R
d, where j runs over all of ZZ, for simplicity.

Think of these points as the vertices of a broken line. From the algorithm, one obtains a

refined broken line in two steps. In the first step, one introduces the midpoints between

neighboring vertices as new vertices, thus roughly doubling the number of vertices:

b2j := aj, b2j+1 := (aj + aj+1)/2.

In the second step, one obtains each vertex of the refined broken line as an average of three

neighboring vertices:

cj := βbj−1 + αbj + γbj+1, with β + α+ γ = 1.
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In fact, for a curve of higher ‘smoothness’, one would repeat this averaging step one or

more times, but I will stick with this simple model. Repetition quickly leads to a broken

line which, for plotting purposes, is indistinguishable from the limiting curve.

Of course, it is not at all clear a priori that there is a limiting curve, though that is

easily proved for reasonable choices of the weights, e..g, for α, β, γ ≥ 0. Nor is it clear just

what the nature of that limiting curve might be. Chaikin’s algorithm corresponds to the

choice β = 0, α = γ = 1/2. For this choice, the limiting curve is a parametric quadratic

spline curve, viz. the curve

t 7→
∑

ZZ

M3(t− j)aj

with M3 a quadratic cardinal B-spline (i.e., a B-spline having integer knots). For the

symmetric choice β = γ = (1 − α)/2, the limiting curve is a parametric quadratic, resp.

cubic, spline curve in case α = 0, resp. 1/2, but for any other choice, the limiting curve

appears to be something unmentionable in standard terms, though this is not apparent

from the curves themselves; see, e.g., Figure 8.2.

Figure 8.2 Curve iterates with α = 1/4, β =≫

Since the limiting curve depends linearly on the initial data aj , it is sufficient for the

complete analysis of the process to consider a broken line with just one actual break, e.g.,

the data

aj := (j, j+), j ∈ ZZ (8.1)
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in IR2. The various curves generated will differ only on the segment between the two points

(−1, 0) and (1, 1). Some of the iterates as well as the limiting curve segment are shown in

Figure 8.3 for the particular choice α = 1/4, and we see nothing unusual.

Figure 8.3 Iterates and limiting curve for one-break broken line

It is only when we look at derivatives that we realize that something is amiss. For

our particular curve, the first component is just t 7→ t, so it makes sense to consider the

derivatives of the second component, t 7→ y(t) say, as an indication of the smoothness of

the curve. Since we do not have a formula for y(t), we cannot compute derivatives. But

since the iteration is so simple, we can compute y(t) for as many binary fractions t as we
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care to. That done, we can then compute second divided differences, and these tell the

story; see Figure 8.4: The second derivative of y appears to be a fractal.

Traditional Approximation Theory views such curves with horror. There is even the

seemingly practical objection that it would be difficult to machine curves with such a

‘bad’ second derivative. But I do not know of experiments which have established such a

difficulty nor is it clear a priori that there should be any difficulty. On the other hand, the

generation of such curves to plotting or machining accuracy is so swift, and their flexibility

so great, that this technique is worth exploring in detail. It is this apparent local flexibility

that makes subdivision techniques a promising tool for the generation of shape-controlled

surfaces of arbitrary combinatorial structure.

Figure 8.4 Wisconsin Winter

Second divided differences [t − h, t, t + h]y plotted against t, for

h = 2−8 (dots), and h = 2−9 (stars)

For literature, see Catmull and Clark (1978), Doo (1978), and Doo And Sabin (1978). I

am indebted to Professor Wanner for the surprising references to work by de Rham (1947,

1953, 1956, 1957, 1959) who, many years ago and, apparently, for pedagogical reasons,

investigated a related subdivision algorithm for curves. Professor Wanner referred to it

imaginatively as the ‘the woodcarver’s algorithm’.
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