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Abstract. A general convergence analysis of the cascade algorithm, for the determination of

a refinable function from its mask, is applied to box splines in which case certain difficulties

adherent to the general case can be resolved completely and even elegantly. In the process, the

understanding of the convergence of the adjoint process, subdivision, is also enhanced.

1. Introduction

Let ϕ ∈ L1(R
d) be a compactly supported refinable function. The adjective refinable

means the existence of a sequence a ∈ Q1 such that

(1.1) ϕ = Dϕ∗a :=
∑

k∈Z1

ϕ(2(· − k))a(k).

Here,
D : f 7→ f(2·)

is (dyadic) dilation, with

Qk := C
Zk and Zk := 2−k

Z
d,

and, for any h and any discretely defined v,

(1.2) h∗v :=
∑

s∈supp v

h(· − s)v(s).

The mesh-function a ∈ Q1 in the refinement equation (1.1) is called the mask of
ϕ, and we assume it throughout to be finitely supported. We also assume that ϕ̂(0) = 1.

In most cases, the mask a is known explicitly, while the refinable function is only
known implicitly, as the solution of (1.1). This raises the problem of computing ϕ from
its mask a. To this end, we note that ϕ is a fixed point of the corresponding cascade
operator

C : f 7→ Df∗a,

hence is, in principle, constructible by the power method, i.e., as the limit of

(1.3) Ckf = Dkf∗Dk−1a∗ · · · ∗D0a =: Dkf∗a[k]
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as k → ∞, assuming f is a suitable initial guess.
This process is called the cascade algorithm. We say that it converges in the

p-norm (for some p ∈ [1 . .∞]) on the set of functions G at a rate α (for some α > 0)
if, for every g ∈ G,

(1.4) ‖Ckg − ϕ‖Lp(Rd) ≤ constg 2−αk.

As (1.3) makes clear, the cascade iterations produce a function Ckg that lies in the space
DkS(g), with

S(g) := span{g(· − k) : k ∈ Z
d}

the principal shift-invariant (PSI) space generated by g. The iterations can be recast,
[NRS], in the language of quasi-interpolation, the latter being a standard approach for
approximating smooth functions from dilates of PSI spaces. In doing so, one identifies
several conditions that are necessary for α-rate convergence starting with an initial seed g.

(1.5)Assumptions. We consider the following four assumptions on the triplet (ϕ, g, α):
(a) The refinable function ϕ lies in the Sobolev space Wα

p (Rd).

(b) The Fourier transform â :=
∑

k∈Z1
a(k)e−ik· of the mask a of ϕ has a zero of some

order m > α at each point in {0, 2π}d\0.
(c) For some m > α, the PSI space S(g) provides approximation order m in the p-norm,

viz., for each sufficiently smooth f , as k → ∞,

dist Lp
(f,DkS(g)) = O(2−km).

(d) The convolution operators g∗ and ϕ∗ coincide on the space Πα of polynomials of
degree ≤ α. In other words, ĝ − ϕ̂ has a zero of order m > α at the origin.

The smoothness assumption (a) on ϕ implies (at least for p = 2, [R1]) that ϕ satisfies
the Strang-Fix (SF) conditions of order m := ⌊α + 1⌋:

ϕ̂ has a zero of order m at each γ ∈ 2πZ
d\0.

In the context of the cascade iterations, the slightly stronger condition (b) needs to be
imposed on the refinable ϕ. Condition (b) is usually referred to as “the SF condition of
order m of the mask a of ϕ”. The satisfaction of the SF condition by the mask a implies
the satisfaction of the SF condition of the same order by the refinable ϕ, but not vice versa.
That said, refinable functions that violate this converse implication are quite pathological:
the simplest example is, in 1D, the support function χ

[0..2]
of the interval [0 . . 2].

As to condition (c) above, it is well-known that, at least for a compactly supported
g ∈ Lp(R

d), that condition is equivalent to g satisfying the SF condition of order m.

We will not prove formally the necessity of the four assumptions listed in (1.5) for the
convergence of the cascade iterations at order α. We focus on the converse problem, i.e.,
whether these conditions are sufficient. To this end, we restrict a priori our attention to
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initial seeds g that satisfy (c), (d) above, and, for convenience, given a compactly supported
refinable ϕ, a positive α, and p ∈ [1 . . ∞], denote by

Gp,α(ϕ)

the set of all compactly supported functions g ∈ Lp(R
d) that satisfy (c) and (d) above.

Now, it is quite easy to show that the four assumptions alone are not sufficient for an
α-rate convergence. This leads us to the following problem:

(1.6)Problem. Let ϕ be, as before, compactly supported and refinable. Given α > 0,
and p ∈ [1 . . ∞], assume that ϕ satisfies (a) and (b) of (1.5). What additional conditions
need one to assume on ϕ in order to obtain α-rate convergence of the cascade iterations
to ϕ (in the p-norm) for every initial seed g ∈ Gp,α(ϕ)?

In this paper, after describing in some detail the general approach that was developed
in [NRS] for the analysis of this problem, we will establish a complete solution to (1.6) in
case ϕ is a box spline. To this end, we continue now with a more detailed description of
the [NRS] approach, and the additional structure that is available in the box spline case.

Given a compactly supported function g ∈ Lp(R
d) (or, even better, in Gp,α(ϕ)), we

apply the cascade algorithm to functions of the form

f = g∗u =
∑

j∈Z
d

g(· − j)u(j) for some u ∈ Q := Q0.

We assume the sequence u to have finite support (hence f is of compact support, too).
The motivation here is that certain careful choices of u lead to functions f for which the
convergence analysis of the cascade iteration is simpler. Specifically, our approach hinges
on a decomposition of g into the sum g = g∗(u1 + u2) in a way that the cascade iterations
converge at α-rate to ϕ on the initial seed g∗u1, and converge at that same rate to 0 on
the initial seed g∗u2.

We begin by writing

Ckf = Dk(g∗u)∗a[k] = Dkg∗Cku,

with
Cu := Du∗a =

∑

j∈Z1

u(2(· − j))a(j)

the corresponding discrete cascade operator, and so

(1.7) Cku = Dku∗a[k].

In particular, the key quantity here, namely the mesh-function a[k] ∈ Qk, equals

a[k] = Ck−1a = Ckδ0,
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with
δj := (δjn : n ∈ Z

d)

the delta-sequence centered at j ∈ Z
d.

The specific choices for u for which the cascade iterations are easily trackable are of
the form

u = (ν∗ϕ)|

for some distribution ν, and with

f|j := f Zj
, f| := f|0,

the restriction of f to the lattice Zj , respectively to the integer lattice

Z := Z0 = Z
d.

Then,
Du = (D(ν∗ϕ))|1 = 2d(Dν∗Dϕ)|1,

and one derives by induction that, for u = (ν∗ϕ)|,

Ck(g∗u) = 2dkDkg∗(Dkν∗ϕ)|k.

This places Ck(g∗u) into the dilate DkS(g) of the PSI space S(g) generated by g. More
precisely, it identifies Ck(g∗u) as the quasi-interpolant

Ikϕ := DkI(D−kϕ)

to ϕ from DkS(g), with the underlying quasi-interpolator I specified by the distribution ν
in the sense that

Ih := g∗(ν∗h)|.

Convergence of Ikh to h is well-understood (see, e.g., [BR]): we will show later that, once
we are given a sequence u = (ν∗ϕ)|, and once we adopt (1.5)Assumptions, we only need
to assume further that 1 − û has a zero at the origin of order α in order to conclude that

‖ϕ − Ikϕ‖p = O(2−kα).

This clearly provides us with many choices of sequences u = (ν∗ϕ)| that yield convergence

of Ck(g∗u) to ϕ to O(2−kα). But, it falls short of justifying the use of the initial seed
g = g∗δ0: While the choice u := δ0 trivially satisfies the “flatness condition” 1−û = O(|·|α),
the quasi-interpolation argument further requires u to be of the form u = (ν∗ϕ)|.

Now, as is pointed out in Proposition 3.2.7 of [R2] (from which the above discussion is
taken which culminates there in Theorem 3.2.4), u = (ν∗ϕ)| for some smooth, compactly
supported function ν iff u∗Kϕ = 0, with

Kϕ := {q ∈ Q : ϕ∗q = 0}
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the space of ϕ’s dependence relations and, as before,

Q = Q0 = C
Z .

Thus, if ϕ or, more precisely, (ϕ(· − j) : j ∈ Z
d) is linearly independent, then the above

quasi-interpolation approach allows the choice u := δ0, hence the cascade iterations con-
verge as desired even when the initial seed is taken to be the function g ∈ Gp,α(ϕ) itself.

This paper concerns the contrary case. In that case, choosing an appropriate u :=
(ν∗ϕ)|, we have that, with v := δ0 − u, v̂ = O(| · |α). Thus, we “only” need to prove that,
for any given finitely supported v, if v̂ = O(| · |α) near the origin, then

(1.8) Ckv = O(2−αk),

hence
Ck(g ∗ v) = O(2−αk),

too. Moreover, by restricting the support of the distribution ν to a small neighborhood of
the origin, we can ensure that the support of the sequence v is not only finite but lies in
a well-defined finite subset Ω ⊂ Z. Let Uα ⊂ Q be the space of all sequences v supported
in Ω and satisfying 1 − v̂ = O(| · |α). Our sought-for result is that (1.8) holds for every
v ∈ Uα. The quest for this result is the core of our analysis in this paper.

The main tool in this search is Theorem 3.3 of [NRS], which is called there the
Double-Tree Theorem. The theorem is stated and proved (in the full generality of
[NRS]) in §4 of the current article. As for now, we will briefly discuss some of the pertinent
ingredients of that tool.

The Double-Tree Theorem relies on identifying a space V ⊂ Q of finitely supported
sequences that is shift-invariant and C-invariant (we explain that latter notion later), and
such that (1.8) is valid for every v ∈ V ∩ Uα. It then extends the validity of (1.8) from
V ∩Uα to all of Uα by examining the iterations of the subdivision operator S on a suitably
defined orthogonal complement V ⊥ ⊂ Q:

(1.9) V ⊥ := {q ∈ Q :
∑

j

v(j)q(j) = 0, v ∈ V }.

Here, S is the subdivision operator

(1.10) S : Q → Q : q 7→
∑

j∈Z
d

ã(
·

2
− j)q(j) = D−1(ã∗q),

with ã the “involution” or adjoint (or, more flippantly, the flip) of a, i.e.,

(1.11) ã(j) := a(−j), j ∈ Z
d.

The Double-Tree Theorem extends (1.8) from V ∩Uα to all of Uα, upon assuming that the
iterations of S converge suitably fast to 0 on V ⊥; see §4 for the details. The application
of the Double-Tree Theorem envisioned in [NRS] corresponds to the choice

V := {(ν∗ϕ)| : supp ν compact},
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and the entire analysis of convergence is then shifted, thanks to the Double-Tree Theorem,
to the study of the action of subdivision on V ⊥. In [NRS], this is brought to a satisfactory
conclusion only in case Kϕ is finite-dimensional , using the natural embedding of V ⊥ in
Kϕ that exists in that case.

In this paper, we take for ϕ a box spline MΞ; see the Appendix for the definition of
MΞ and a list of its pertinent properties. In the box spline case, it is possible to have an
infinite-dimensional KMΞ

, hence the analysis of [NRS] cannot be applied here verbatim.
Our successful analysis of this case relies on the special structure of the mask aΞ of the box
spline: it allows us to choose for the space V ⊂ Q (that serves as the cornerstone of the
[NRS]-approach) one that is larger than the space V of “quasi-interpolation sequences”
that was detailed above. Specifically, in the box spline case, we have available the following
alternative choice for V , namely the shift-invariant space Vm generated by the convolution
products

uY := (δ0 − δξ) ∗ · · · ∗ (δ0 − δζ), Y := [ξ, . . . , ζ] ⊂ Ξ, #Y = m,

indexed by the m-column submatrices Y of Ξ. For this choice of V , we will show (with
relative ease) that (1.8) holds for every v ∈ V , provided that α ≤ m. This means that
in the box spline case convergence of the cascade iterations is guaranteed on a far larger
domain than the one captured by the quasi-interpolation approach of [NRS].

In the above discussion, the space V := Vm depends on the choice of the integer m: a
larger m results in a smaller V , leading thereby to a larger V ⊥ in the Double-Tree Theorem
(hence to a more demanding condition on the subdivision side). Moreover, the analysis
works only if we assume that

(1.12) m ≤ m(Ξ) + 1 := min{#Y : rank(Ξ\Y ) < d}.

We note that this limitation is natural since the number m(Ξ)+1/p captures the smooth-
ness of MΞ in the Lp-norm (MΞ ∈ Wα

p (Rd) for every α < m(Ξ) + 1/p), hence is an upper
bound on the rate of convergence of the cascade iterations in the p-norm.

Our analysis in this article shows that, with m restricted as above, we have one of the
two cases:

Case I: The space V ⊥ is a nilpotent space of S (in the sense that Sk(V ⊥) = 0 for
some finite k). In this case, the Double-Tree Theorem applies to yield that (1.8) extends
from V ∩ Uα to Uα.

Case II: The space V ⊥ is not a nilpotent subspace of S. In this case, our analysis
shows that, for p = ∞, the largest α for which (1.8) can hold is α = m − 1.

Identifying the minimal m for which V ⊥ is not nilpotent is an entirely algebraic task.
To this end, we define, given the direction matrix Ξ (see the Appendix) of the box spline
MΞ, and t ∈ [0 . . 2π)d\0, the submatrix Ξt of Ξ by

Ξt := [ξ ∈ Ξ : et(ξ) = 1],

with
et : R

d → C : x 7→ exp(i
∑

k

x(k)t(k)).
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We are only interested in the case when Ξt is of full rank d, and mention that, regardless
of the choice of Ξ, only finitely many t ∈ [0 . . 2π)d\0 satisfy this full-rank assumption.
Moreover, among those finitely many t that correspond to a full rank Ξt, we are interested
only in those whose corresponding exponential, et, is malignant (with respect to Ξ) in the
sense that its corresponding exponential sequence et| = (et(j) : j ∈ Z

d) is not a nilpotent
sequence of the subdivision S.

Our precise result reads as follows:

(5.1)Theorem. Let ϕ = MΞ be the box spline with direction matrix Ξ of full rank. Let
(i) m0 be the minimum over all #(Ξ\Ξt) as t ∈ [0 . . 2π)d\0 ranges over all vectors for

which Ξt is of full rank and et| is malignant with respect to Ξ (setting m0 := #Ξ + 1
in case there is no such t);

(ii) mp := m(Ξ) + 1/p, with p ∈ [1 . . ∞] given and fixed, and m(Ξ) defined as in (1.12);
and

(iii) ms be the largest integer m for which (b) of (1.5) is valid.
Then, given α > 0, the cascade iterations converge to MΞ at rate α in the p-norm on every
initial seed g ∈ Gp,α(MΞ), provided that α < mp, and that α ≤ min{m0, ms}.

Discussion. The highlight of the above result is that all its parameters are algebraic. It
even avoids the need to identify the spectrum of a related finite-rank operator. Ideally,
the convergence rates of the cascade iteration should only be saturated by the smoothness
of the refinable function, i.e., by mp here. The theorem identifies two “obstacles” on the
road to this optimal convergence rate. One is a possible suboptimal SF order of the mask
aΞ (i.e., the situation when ms < m(Ξ) + 1). The hampering of the cascade convergence
rate by such suboptimal SF orders is not peculiar to box splines (see the discussion around
(1.5)Assumptions). On the other hand, our theorem here identifies the remaining obstacle
for optimal convergence rates as the existence of malignant exponentials. We note that
the existence of such malignant exponentials associated with Ξ is rare. Thus, optimal
convergence rates for box splines are the rule, not the exception.

Example. As an illustration, let us consider the case of linear or sublinear convergence
(i.e., α ≤ 1 in (5.1)Theorem). The theorem makes three assumptions to this end. The
first is that the Fourier series of the mask aΞ of the box spline vanishes on π(Zd\2Z

d),
or, equivalently, that the sum of the values of the restriction of aΞ to any coset γ + Z

d,
γ ∈ {0, 1/2}d, is 1. This condition is a standard necessary condition for convergence
analysis of cascade and subdivision algorithms.

The second assumption is that the box spline has positive p-smoothness. In the case
1 ≤ p < ∞ this means that the set Ξ is of full rank d. For p = ∞, the assumption means
that Ξ remains of full rank even after removing from it (any) one of its vectors.

The most interesting condition is the third one, concerning the existence of malignant
exponentials. Note that, in the notations of (5.1)Theorem, if m0 ≥ 1, then the existence
of malignant exponentials does not hamper sublinear convergence. However, our theorem
fails to establish positive convergence rates once m0 = 0. This case can happen only when
there exists t ∈ R

d\Z
d for which Ξt is an integer vector, which is exactly the case when ΞZ

Ξ

is a proper sublattice of Z
d. The condition ΞZ

Ξ = Z
d was identified in [BHR: (VII.23)] as
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a sufficient condition (once the continuity of MΞ and the satisfaction of the SF conditions
of order 1 are assumed) for the L∞-convergence of the subdivision algorithm. Our results,
when restricted to this special case, produce a stronger version: convergence happens even
when ΞZ

Ξ is a proper sublattice, provided that none of the non-constant exponentials et|

in the joint kernel of the first-order difference operators ∇ξ, ξ ∈ Ξ, is malignant.

The paper is laid out as follows. In §2, subdivision applied to exponentials is studied
for general ϕ, then specialized to box splines; this reveals the side effects the box spline
suffers from the existence of malignant exponentials. The basic facts about the cascade
tree and its dual are stated and proved in §3. Discussion and proof of the Double-Tree
Theorem are brought in §4. §5 is devoted to a proof of (5.1)Theorem. This is followed
by an appendix which recalls, for the reader’s convenience, information about box splines
from [BHR].

2. Subdivision applied to exponentials

We consider, first for general refinable ϕ and then for ϕ = MΞ, the action of the
subdivision operator

Sv := D−1(ã∗v) = D−1ã∗D−1v : j 7→
∑

ν∈Z

a(ν −
j

2
)v(ν)

on et|, the ‘discrete exponential’ with ‘frequency’ t, aware of the fact that et| = es| if

t − s ∈ 2πZ
d hence restricting attention to t ∈ [0 . . 2π)d.

Note that S is upsampling, preceded by convolution with the (properly dilated) adjoint
mask.

For the upsampling, observe that, with

Γ := {0, 1/2}d,

for any sequence c ∈ Q1,

Q ∋ D−1c = 2−dc(·/2)(
∑

γ∈Γ

e2πγ)|.

With this, consider subdivision applied to the exponential v = eη |. We have

(2.1) Seη | = 2−dã(·/2) ∗ (
∑

γ∈Γ

e2πγ+η/2)| = 2−d
∑

γ∈Γ

̂̃a(4πγ + η)e2πγ+η/2|.

Now, for a finite T ⊂ [0 . . 2π)d, let

spect(
∑

t∈T

c(t)et|) := {t : c(t) 6= 0}
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denote the spectrum of such an exponential sum. Then we now know that

spectSv ⊂ 2πΓ + (spect v)/2 ⊂ [0 . . 2π)d, ∀v ∈ ExpT := ran[et| : t ∈ T ].

Hence, if spect Sv and spectSw have a point in common, say the point s, then 2πγv +
sv/2 = s = 2πγw + sw/2 (for some γr ∈ Γ and some sr ∈ spect r, r = u, w), hence
sv − sw = 0 mod2π, therefore sv = sw. Put the other way,

spect v ∩ spect w = ∅ =⇒ spectSv ∩ spectSw = ∅.

By the linear independence (over Z) of exponentials with different frequencies in
[0 . . 2π)d, we conclude that, given v ∈ ExpT ,

Snv = 0 =⇒ ∀{t ∈ spect v} Snet| = 0.

Now assume that ExpT is an invariant subspace of S. Then, for any t in

T0 := {t ∈ T : ∃n Snet| = 0},

also spectSet| ⊂ T0, while the converse is obviously true. In particular, for any t in

T1 := T\T0,

also spectSet| ∩ T1 6= ∅. Consequently,

(spectSet| ∩ T1 : t ∈ T1)

is a partition of T1 into non-empty sets, hence, since T1 is finite, must consist of 1-sets.
So, the prescription

spectSet| ∩ T1 =: {σt}, ∀t ∈ T1,

defines a permutation on T1. Thus, each t ∈ T1 has an order, nt say, namely the length of
the orbit under σ to which it belongs, i.e., the smallest n for which σnt = t, with nt ≤ #T1

trivially. More than that, with (2.1),

(2.2) Set| ∈ 2−d̂̃a(2σt)eσt| + ExpT0
, ∀t ∈ T1,

with ̂̃a(2σt) 6= 0. Hence any nonzero eigenvalue λ of S as a map on the smallest S-invariant
space that contains et| must have an eigenvector of the form

v =
∑

s∈T

es|c(s),

in which c(s) 6= 0 for s ∈ {t, σt, . . . , σnt−1t}, hence (assuming, without loss, that c(t) = 1)
λnt must be the coefficient of et| in Sntet|. But this says, with (2.2), that

(2.3) λnt =

nt∏

j=1

2−d̂̃a(2jt),

using the fact that σ−1t = 2t mod2π hence, as σntt = t, also

2σjt = 2σj−ntt = 21+j−ntt mod4π, j = 1, . . . , nt,

while ̂̃a is 4π-periodic.
The discussion so far was generic, in the sense that it applies to any refinable function

and any finite-dimensional exponential space that is invariant under the corresponding
subdivision operator. Our interest is in the particular case when the refinable function is
a box spline, and the invariant subspace contains a malignant exponential. In this case,
the above discussion leads to the following result:
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(2.4)Proposition. Let ϕ = MΞ be the box spline with direction matrix Ξ, of full rank.
Let et| be malignant with respect to Ξ, i.e., t ∈ [0 . .2π)d\0, Ξt is of full rank, and Snet| 6= 0
for all n ∈ N. Then the convergence rate of the cascade algorithm in the ∞-norm cannot
exceed

m := #(Ξ\Ξt).

Proof: Suppose that the cascade iterations converge at rate α > 0 on G∞,α(ϕ).
Choose a compactly supported continuous g ∈ G∞,α(ϕ) whose shifts are ∞-stable (equiv-

alently, these shifts form a Riesz basis in L2(R
d), [BDeR]). Then

‖(Ckg) ∗ et|‖L∞
= ‖g ∗ Sket|‖L∞

∼ ‖Sket|‖ℓ∞ .

On the other hand, by (6.7)Proposition, 0 = ϕ ∗ et|, hence

‖(Ckg) ∗ et|‖L∞
= ‖(Ckg − ϕ) ∗ et|‖L∞

≤ const‖Ckg − ϕ‖L∞
,

with const dependent only on supp g, hence independent of k. Thus

(2.5) ‖Sket|‖ℓ∞ ≤ const‖Ckg − ϕ‖L∞
,

hence our desired result will follow once we estimate (from below) the spectral radius of
the restriction of S to the smallest S-invariant space that contains et|.

By (6.7)Proposition, the smallest S-invariant space containing et| is finite-dimensional,
hence (2.3) is available to us. We need to estimate the value |λ| in (2.3). For this evaluation
in our special situation, we infer from (6.5) and (6.3) that, for a = aΞ,

(2.6) ̂̃a = 2d
∏

ξ∈Ξ

1 + eξ/2

2
.

With that, (2.3) gives, since our t is in T1 and with n := nt,

λn =

n∏

j=1

2−d̂̃a(2jt) =

n∏

j=1

∏

ξ∈Ξ

1 + eξ(2
jt/2)

2
=

∏

ξ∈Z

n∏

j=1

1 + eξ(2
jt/2)

2
,

with
Z := Ξ\Ξt = [ξ ∈ Ξ : eξ(t) 6= 1].

For ξ ∈ Z, we have eξ(t) 6= 1, hence

n∏

j=1

1 + eξ(2
jt/2)

2
= 2−n

2n−1∑

r=0

eξ(rt) = 2−n eξ(2
nt) − 1

eξ(t) − 1
= 2−n,

the last equality since ξ ∈ Z
d and, by choice of n, 2nt = t mod2π. Therefore, altogether,

λn = (2−n)#Z = 2−mn, hence
|λ| = 2−m.

We conclude that
‖Sket|‖ℓ∞ 6= o(2−km),

hence, with (2.5), that the convergence rate of the cascade iterations in the ∞-norm is not
faster than m.
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We close this section with an additional technical property concerning the subdivision
operator. This property is well-known for convolution operators and, since the extension
from convolution operators to subdivision operators involve routine arguments, we only
sketch the proof, detailing the parts that are less routine.

(2.7)Lemma. Let W ⊂ Q be finite-dimensional, S-invariant, and shift-invariant. Then
W is S-nilpotent (i.e., SkW = 0 for some k) if and only if every sequence et| ∈ W , t ∈ C,
is S-nilpotent.

Proof: The “only if” implication is trivial. For the proof of the “if” implication,
we first note that, since W is shift-invariant and finite-dimensional, it is spanned by se-
quences of the form (etq)|, with t ∈ C and q a polynomial. It is sufficient, therefore, to
prove that any such sequence in W is S-nilpotent. We prove this claim by negation: we
assume that there exists in W a sequence as above that is not S-nilpotent, and seek a
contradiction. Among all those sequences that violate the nilpotency property, we choose
one whose polynomial factor is of (necessarily positive) minimal degree.

Now, the key in the proof is the similarity between the subdivision S and the more
standard convolution operators. Recall that a convolution operator b∗ (with b, say, some
finite sequence) satisfies

b ∗ (etq)| = q(·)(b ∗ et|) + (etr)|,

with r some polynomial of degree < deg q. Using this in the derivation of (2.1) but applied
there to v = (etq)| rather than just to et|, one derives an analogous property for subdivision,
viz.,

S(etq)| = q(·/2)Set| + l.o.t,

with “l.o.t” a linear combination of exponential polynomials of the form (eηr)|, with η ∈ C

(actually, η ∈ t/2 + 2πΓ), and with the η-dependent r a polynomial of degree < deg q.
Now, if we assume that (etq)| lies in W , then the shift-invariance, finite dimensionality and
S-invariance of W can be combined to yield that the above-mentioned summands (eηr)|
in S(etq)| are in W , too, hence, by the minimality assumption on deg q, are S-nilpotent.
Thus, S(etq)| − q(·/2)Set| is nilpotent, too.

The above argument, with some trivial modifications, can be extended to show that,
for every k, S(q Sket|)− q(·/2)Sk+1et| is S-nilpotent, hence, by induction, that Sk(qet)|−

q(·/2k)Sket| is S-nilpotent, too. This completes the proof since, by assumption, Sket| = 0
for some k.

3. The cascade tree and its dual

In this section, we give, for completeness, the definition of the cascade tree and derive
its basic properties. The cascade tree together with its dual, the subdivision tree, are used
in the proof of the Double-Tree Theorem in the next section. The cascade tree also forms
the backbone for the convergence analysis of subdivision schemes via the computation of
its joint spectral radius, [J], [HJ].
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With χ
A

the support function of the domain A, let

|A : f 7→ χ
A
f

and recall the translation map
Ey : f 7→ f(· − y).

Then
Ey|AE−y = |A+y,

hence, since
(Z + γ : γ ∈ Γk := [0 . . 1)d ∩ Zk)

is a partition of Zk, we have

|Zk
=

∑

γ∈Γk

Eγ|ZE−γ.

Therefore, since Ck(Q) ⊂ Qk, we have, on Q,

Ck = |Zk
Ck =

∑

γ∈Γk

EγCk,γ ,

with
Ck,γ : f 7→ (E−γCkf)|, γ ∈ Γk.

Claim. Ck,γ = Cγk
· · · Cγ1

, with

γ =:
k∑

j=1

γj2
j−k

and
Cε := C1,ε, ε ∈ Γ = Γ1 = {0, 1/2}d.

Proof: Let ε ∈ Γ and γ ∈ Γk and consider CεCk,γ = |ZE−εC|ZE−γCk. For any
q ∈ Qk (hence, in particular, for q = Ckf for any f ∈ Q),

(C|ZE−γq)(x) =
∑

{q(2(x + γ/2 − s))a(s) : s ∈ Z1, 2(x − s) ∈ Z},

with the sum nonempty iff x − s ∈ Z1 for some s ∈ Z1 iff x ∈ Z1. Hence

C|ZE−γq = |Z1
E−γ/2Cq.

Therefore, altogether,

CεCk,γ = |ZE−ε|Z1
E−γ/2Ck+1 = |Z |Z1−εE

−ε−γ/2Ck+1 = |ZE−ε−γ/2Ck+1 = Ck+1,ε+γ/2,

with |Z |Z1−ε = |Z since Z ⊂ Z1 = Z1 − ε.

12



It follows that Ck can be completely understood if one understands the maps Ck,γ ,
γ ∈ Γk, all of which are maps on the same k-independent space Q. Further, each map Ck,γ

gives rise to exactly 2d maps at the next level in this cascade tree, namely

CεCk,γ = Ck+1,ε+γ/2, ε ∈ Γ.

In particular, if U is a linear subspace of Q invariant under each Cε, ε ∈ Γ, then it is
invariant under every node of the cascade tree. We call any such U invariant with
respect to the cascade tree or, simply if slightly misleadingly, C-invariant, for short.

Since, as we assume, the mask, a, is finitely supported,

U = QΩ := {q ∈ Q : supp q ⊂ Ω}

is a C-invariant subspace with the choice

Ω = 2A, with A ⊇ conv(supp a − Γ)

a bounded convex set, since then, for u ∈ U and ε ∈ Γ,

supp Cεu ⊆ A + supp a − ε ⊆ A + A = Ω

(using the assumed convexity of A). This shows, more generally, that Cε is contractive
in the sense that supp Cεu is much smaller than supp u in case supp u is much larger than

Ω0 := 2 conv(supp a − Γ).

For example, with

(3.1) Ωr := Ω0 − r conv(Γ),

we have

(3.2) Cε(QΩ2r
) ⊂ QΩr

since, for u ∈ QΩ2r
,

supp Cεu ⊂ (Ω0 − 2r conv(Γ))/2 + supp a − ε ⊂ Ω0/2 − r conv(Γ) + Ω0/2 = Ωr

(using again the convexity of Ω0).
With the cascade tree defined, define the corresponding subdivision tree as the tree

formed by the adjoints, i.e., by

Sk,γ := C∗
k,γ = C∗

γ1
· · · C∗

γk
, γ ∈ Γk, k = 0, 1, . . . ,

with the adjoint taken with respect to the standard inner product 〈·, ·〉 on ℓ2. This makes
sense since we assume the mask to be finitely supported.

13



Indeed, for u, v ∈ ℓ2, and also for any u, v ∈ Q with one of them finitely supported,

(3.3) 〈C0u, v〉 =
∑

j

∑

k

u(2(j − k))a(k)v(j) =
∑

k

∑

j

u(2k)a(j − k)v(j) = 〈u,D−1(ã∗v)〉,

showing C∗
0 to equal the subdivision operator S defined in (1.10). Since Cε = C0E

−2ε,
ε ∈ Γ, this implies that

(3.4) Sε = C∗
ε = E2εS = SEε, ε ∈ Γ,

hence that

(3.5) Sk,γ = E2kγSk.

We will actually consider these operators only on QΩ for some bounded set Ω, hence
QΩ is trivially in ℓ2.

4. The double-tree theorem

We continue to have ϕ refinable with finite mask a, and let

Ω := Ω2

(see (3.1)), hence QΩ is finite-dimensional, and invariant under each of the Cε, ε ∈ Γ. This
implies that the action of any Sεq = C∗

ε q on QΩ4
only depends on q Ω. Indeed, for any q

vanishing on Ω,
C∗

ε q : QΩ4
→ C : v 7→ 〈Cεv, q〉

is the zero map since, by (3.2), Cε(QΩ4
) ⊂ QΩ2

= QΩ, hence C∗
ε q must vanish on Ω4. In

the same way,

(4.1) χ
Ω2

q = 0 =⇒ χ
Ω

2k+1
C∗

k,γq = 0, γ ∈ Γk, k = 2, 3, . . . .

Thus, an assumption like (4.4) below is, at least, not impossible.
For any C-invariant linear subspace U of QΩ, we set

‖Ck‖p
p,U := sup

u∈U

∑
γ∈Γk

‖Ck,γu‖p
U/2dk

‖u‖p
U

,

with ‖ · ‖U any convenient norm on U . A particularly suitable norm might be the p-norm.
With that choice, ∑

γ∈Γk

‖Ck,γu‖p = ‖Cku‖p
p,

hence then
‖Ck‖p,U = ‖Ck : U ⊂ ℓp(Z ∩ Ω) → ℓp(Zk ∩ Ω)‖/2dk/p.

But, in the proof below, we work with a more convenient choice for ‖ · ‖U , knowing the
statement ‖Ck‖p,U = O(2−αk) to be independent of the norm on U since U is finite-
dimensional.
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(4.2)Double-Tree Theorem ([NRS: Theorem 3.3]). Let U , V be C-invariant subspaces
of Q, with U ⊂ QΩ, Ω := Ω2, and V shift-invariant and spanned by finitely supported
sequences. If, for some α > 0 and some 1 ≤ p ≤ ∞,

(4.3) ‖Ck‖p,U∩V = O(2−αk)

and

(4.4) ‖Sk‖ := sup
0 6=w∈W

‖χ
Ω

2k+1
Skw‖∞/‖w‖W = O(2−αk)

in some, hence every, norm on the finite-dimensional linear space

W := RV ⊥,

with
V ⊥ := {q ∈ Q : 〈v, q〉 = 0, v ∈ V }, R : Q → QΩ : f 7→ χ

Ω
f,

then

(4.5) ∀{β < α} ‖Ck‖p,U = O(2−βk).

Proof: For completeness, particularly since we need to refer later to a certain
proof detail, we give here a version of the proof in [NRS]. For it, we found it convenient
to replace the condition ‖Sk‖∞,V ⊥ = O(2−αk) (which is (3.5) there) by the more explicit
condition (4.4).

As a start, observe that (4.3) and (4.4) imply, for any β < α, the existence of some
k0 so that

(4.6) ‖Ck0k‖p,U∩V ≤ 2−βk0k, k = 1, 2, . . . ,

and
‖Sk0k‖ ≤ 2−βk0k, k = 1, 2, . . . ,

due to the fact that, whatever the const hiding behind the O in (4.3) and (4.4), there is
k0 so that

const2−αk0 ≤ 2−βk0 .

More than that, for any particular positive constant K, we can so choose k0 that also

(4.7) ‖Sk0k‖ ≤ 2−βk0kK, k = 1, 2, . . . .

At the same time, if we can prove from this that

(4.8) ‖Ck0k‖p,U = O(2−βk0k),

then we are done since it is not hard to see that ‖Ck0‖p,U ≤ ‖C‖k0

p,U .
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For notational simplicity, we hide the constant k0 by using

C̃k,γ := Ck0k,γ , S̃k,γ := C̃∗
k,γ , γ ∈ Γ̃k := Γk0k.

The cascade tree for C̃ uses dilation by

λ := 2k0 ,

and, correspondingly,

‖C̃ku‖p := λ−dk
∑

γ∈Γ̃k

‖C̃γu‖p
U .

In these terms, (4.6) becomes

(4.9) ‖C̃ku‖ ≤ λ−βk‖u‖U , u ∈ U ∩ V.

We now use (4.9) and (4.7) to prove, by induction on k, that, for every u ∈ U ,

(4.10) ‖C̃ku‖ ≤ ‖C̃‖p,U k λ−β(k−1)‖u‖U ,

it being evidently true for k = 1 by the very definition of ‖C̃‖p,U .
For this, we deduce from the discussion in §3 that

C̃k =
∑

γ∈Γ̃k

Eγ C̃k,γ ,

with
C̃k,γ := C̃γk

· · · C̃γ1
and C̃ε := C̃1,ε,

and

γ =:

k∑

j=1

γjλ
j−k.

Therefore, for any u ∈ U ,

‖C̃ku‖p = λ−dk
∑

γ∈Γ̃k

‖C̃k,γu‖p
U = λ−d

∑

ε∈Γ̃

λ−d(k−1)
∑

γ∈Γ̃k−1

‖C̃k−1,γ C̃εu‖
p
U .

In other words,

‖C̃ku‖p = λ−d
∑

ε∈Γ̃

‖C̃k−1C̃εu‖
p.

We can bring (4.9) to bear on this only in case C̃εu ∈ U ∩ V , hence use now

‖C̃k−1C̃εu‖ ≤ ‖C̃k−1P C̃εu‖ + ‖C̃k−1QC̃εu‖,
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with P denoting the orthoprojector onto U ∩ V and Q := 1 − P the complementary
projector.

Correspondingly, we define the norm on U as follows. Choose some finite subset B
of V ⊥ for which RB is a basis for W = RV ⊥ (as we may since W is finite-dimensional).
Then, with

B∗u := (〈u, b〉 : b ∈ B),

necessarily
U ∩ V = U ∩ ker B∗.

We set
‖u‖U := ‖Pu‖p + ‖B∗u‖∞

and see that this is a norm on U since it is a seminorm (as a sum of seminorms), while
‖u‖U = 0 implies Pu = 0 and u ∈ U ∩ V , the latter by choice of B, therefore also u = Pu,
and so u = 0. Note that

(4.11) ‖Pu‖U = ‖Pu‖p ≤ ‖u‖U , ‖Qu‖U = ‖B∗u‖∞ ≤ ‖u‖U , u ∈ U.

Then,

(4.12) ‖C̃ku‖ ≤ ‖C̃k−1P C̃u‖ + ‖C̃k−1QC̃u‖,

with

‖C̃k−1AC̃u‖p := λ−d
∑

ε∈Γ̃

‖C̃k−1AC̃εu‖
p = λ−d

∑

ε∈Γ̃

λ−d(k−1)
∑

γ∈Γ̃k−1

‖C̃k−1,γAC̃εu‖
p
U ,

for A := P, Q.
With (4.9) and (4.11), we obtain

‖C̃k−1P C̃εu‖ ≤ λ−β(k−1)‖P C̃εu‖U ≤ λ−β(k−1)‖C̃εu‖U ,

hence,

‖C̃k−1P C̃u‖p ≤ λ−d
∑

ε∈Γ̃

λ−β(k−1)p‖C̃εu‖
p
U = λ−β(k−1)p‖C̃u‖p,

giving, finally,

(4.13) ‖C̃k−1P C̃u‖ ≤ λ−β(k−1)‖C̃‖p,U‖u‖U .

For a bound on ‖C̃k−1QC̃u‖, we use the induction hypothesis, (4.10), to get

(4.14) ‖C̃k−1QC̃εu‖ ≤ ‖C̃‖p,U (k − 1)λ−β(k−2)‖QC̃εu‖U .

With (4.11),

(4.15) ‖QC̃εu‖U = ‖B∗C̃εu‖∞ = max
b∈B

|〈C̃εu, b〉|,
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while
〈C̃εu, b〉 = 〈u, S̃εb〉 = 〈u, RS̃εb〉.

Now, recalling the abbreviation W := RV ⊥, we denote by R−1 the (linear) right inverse
of R that satisfies R−1(Rb) = b, all b ∈ B. Let

Tε := W → W : w 7→ RS̃εR
−1w.

Since, with (3.5),
S̃ε = Sk0,ε = EλεSk0 ,

we conclude from (4.7) that

(4.16) ‖Tεw‖∞ ≤ λ−βK‖w‖W , w ∈ W,

with respect to whatever norm on W and positive constant K was used when k0 was chosen
at the beginning of the proof. Specifically, we now reveal this norm to be

‖w‖W := ‖B−∗w‖1, w ∈ W,

with
B− := {c− ∈ Q : c ∈ B}

chosen dual to B, i.e., so that

w =
∑

c∈B

c 〈w, c−〉, w ∈ W.

Then, the B × B matrix defined by T (c, b) := 〈RS̃εb, c
−〉, c, b ∈ B, represents Tε with

respect to the basis RB of W , hence

‖T ‖1 = ‖Tε‖W,W ≤ ‖Tε‖W,∞‖id|W ‖∞,W .

Thus, with the choice
K := 1/‖id|W ‖∞,W ,

we conclude that ‖T ‖1 ≤ λ−β .
With this,

|〈C̃εu, b〉| = |〈u, RS̃εb〉| = |
∑

c∈B

〈u, c〉T (c, b)| ≤ ‖B∗u‖∞‖T ‖1 ≤ ‖u‖Uλ−β ,

the last inequality also using (4.11). This, together with (4.14) and (4.15), gives

(4.17) ‖C̃k−1QC̃u‖ = (λ−d
∑

ε∈Γ̃

‖C̃k−1QC̃εu‖)
1/p ≤ ‖C̃‖p,U (k − 1)λ−β(k−2)λ−β‖u‖U .

Thus, on using (4.13) and (4.17) in (4.12), we obtain

‖C̃k−1C̃u‖ ≤ λ−β(k−1)‖C̃‖p,U‖u‖U + ‖C̃‖p,U (k − 1)λ−β(k−2)λ−β‖u‖U ,

which is (4.10), i.e., what we had to show.
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Remark. While we have stated and proved the Double-Tree Theorem in its full [NRS]
generality, we will only use it for the case when V ⊥ is S-nilpotent, i.e., SrV ⊥ = 0 for some
r. In this case, the proof of the theorem can be simplified as follows: if we assume that
the parameter k0 that appears in the proof satisfies k0 ≥ r, then, in the notations of the
proof, V ⊥ ⊂ ker S̃, which implies (cf. (3.4)) that S̃εV

⊥ = 0, for every ε ∈ Γ. From that
we conclude that QC̃εu in (4.12) equals 0, hence that C̃ε maps U into U ∩ V . In this case,
assumption (4.3) delivers directly the necessary bound. Moreover, the conclusion (4.5) is
valid then for β = α, and not only for β < α.

5. Convergence of the cascade algorithm for box splines

We are ready for a proof of our main result (relying throughout this section on the
Appendix to supply whatever specific information concerning the box spline MΞ is needed).

(5.1)Theorem. Let ϕ = MΞ be the box spline with direction matrix Ξ of full rank. Let
(i) m0 be the minimum over all #(Ξ\Ξt) as t ∈ [0 . . 2π)d\0 ranges over all vectors for

which Ξt is of full rank and et| is malignant with respect to Ξ (setting m0 := #Ξ + 1
in case there is no such t);

(ii) mp := m(Ξ) + 1/p, with p ∈ [1 . . ∞] given and fixed, and m(Ξ) defined as in (1.12);
and

(iii) ms be the largest integer m for which (b) of (1.5) is valid.
Then, given α > 0, the cascade iterations converge to MΞ at rate α in the p-norm on every
initial seed g ∈ Gp,α(MΞ), provided that α < mp, and that α ≤ min{m0, ms}.

Proof: Fix p ∈ [1 . . ∞], and let g ∈ Gp,α(MΞ), with α < m(Ξ) + 1/p. Then

MΞ ∈ Wα
p (Rd), hence, as outlined in §1 and also discussed in [R2], we already know that,

for any compactly supported distribution ν, if ν∗MΞ is continuous, and if 1−ĝν̂ has a zero of
order α at the origin, the cascade algorithm on g∗v, v := (ν∗MΞ)|, converges in the p-norm

to MΞ at a rate α. In order to draw a conclusion about the rate of convergence of (Ckg)k

to MΞ, we examine the convergence rate to 0 of the cascade iterations Ck(g ∗ (δ0 − v))),

with v as above. We note that the Fourier transform M̂Ξ of the box spline (see (6.2)) has
a zero of order m(Ξ) + 1 at each ω ∈ 2πZ

d\0. Moreover, Poisson’s summation formula
yields that

v̂ =
∑

ω∈2πZ
d

(ν̂M̂Ξ)(· + ω),

and consequently 1− v̂ has a zero of order ≤ m(Ξ)+1 at the origin if and only if 1− ν̂M̂Ξ

has such zero at the origin. Since α here is < m(Ξ) + 1, we can then appeal to (d) of
(1.5)Assumptions to conclude that, since 1 − ν̂ĝ has a zero of order α at the origin, so
does 1 − v̂. Thus, the sequence u := δ0 − v has α zero moments: u ⊥ (Π<α)| (with Π<α

the space of polynomials of degree < α). The proof will be complete once we determine
the convergence rate to 0 of the cascade iterations starting with the initial seed g∗u. We
consider now two different cases:
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Case I: α ≤ m(Ξ). In this case, we show that

(5.2) ‖Ck‖p,U = O(2−mk),

with U := Um a suitable space of compactly supported sequences perpendicular to Π<m,
and with m the least integer ≥ α (hence m ≤ min{m0, ms, m(Ξ)}).

For its proof by the Double-Tree theorem, we choose (as outlined already in §3) the
bounded convex subset Ω := Ω2 of R

d. Then QΩ is C-invariant. The assumption m ≤ ms

guarantees that C also leaves invariant the orthogonal complement U of (Π<m)| in QΩ.
We choose V := Vm to be the shift-invariant space (in Q) generated by the convolution

product sequences

uY := (δ0 − δξ) ∗ · · · ∗ (δ0 − δζ), Y := [ξ, . . . , ζ] ⊂ Ξ, #Y = m.

We claim first that

(5.3) ‖CkuY ‖∞ ≤ 2−mk, Y ⊂ Ξ, #Y = m.

Indeed, consider Cku for the particular mesh function

u = uξ := δ0 − δξ,

for some ξ ∈ Ξ. Then (see (1.7) and (6.3), (6.5), and (6.6)),

Ckuξ = Dkuξ∗a
(1/2k)
Ξ = Dkuξ∗b

(1/2k)
[ξ] ∗a

(1/2k)
Z ,

with
Z ∪ ξ := Ξ.

Since

b
(1/2k)
[ξ] = 2−k

2k−1∑

j=0

δ−jξ/2k ,

it follows that Dkuξ∗b
(1/2k)
[ξ] = 2−kuξ, hence

Ckuξ = 2−kuξ∗a
(1/2k)
Z .

Since Dk(u∗v) = (Dku)∗(Dkv), it follows that, correspondingly,

(5.4) CkuY = 2−k#Y uY ∗a
(1/2k)
Ξ\Y , Y ⊂ Ξ.

(This establishes the fact, of use later, that CkuY lies in the span of the shifts of uY , hence
that our chosen V is not only shift-invariant but also C-invariant.)
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Note that #Y = m ≤ m(Ξ) hence Z := Ξ\Y is of full rank. We claim that, for any

Z ⊂ Ξ of full rank, a
(h)
Z is bounded independently of h. From the definition (6.5),

a
(h)
Z = h#Z−d

∑

j∈m#Z

h

δZj .

In particular,

‖a
(h)
Z ‖∞ = 1

if Z is a basis for R
d. Also,

a
(h)
Z∪ξ = b

(h)
[ξ] ∗a

(h)
Z ,

while
‖b

(h)
[ξ] ‖1 :=

∑

j∈mh

b
(h)
[ξ] (j) = h#mh = 1.

Hence
‖a

(h)
Z∪ξ‖∞ ≤ ‖a

(h)
Z ‖∞.

This proves (4.3) for p = ∞. For p < ∞, since m ≤ m(Ξ) (which is necessarily the
case for p = ∞, but need not to be the case for smaller p), then (4.3) extends to p ∈ [1. .∞],
since, always,

‖Ck‖p,U∩V ≤ ‖Ck‖∞,U∩V .

Case II: α > m(Ξ). In this case, ms = m(Ξ) + 1 ≤ m0 and p < ∞. We choose
m := m(Ξ) + 1. We deal with this case by modifying the proof of the case p = ∞. In the
current case, Y has m(Ξ) + 1 columns, hence it is possible that

Z := Ξ\Y

is not of full rank. In that case, Z is guaranteed to have at least rank d − 1. We use now
(5.4), which tells us that

‖CkuY ‖p,U ≤ const2−k#Y ‖Ck
Zδ0‖p,U .

Here, we use the facts that (i) the sequence uY in the right-hand-side of (5.4) has bounded

ℓ1-norm, and (ii) a
(h)
Z = Ck

Zδ0, with CZ the discrete cascade operator associated with MZ,
and with h = 2−k. Straightforward modifications to the p = ∞ proof yield then that

‖Ck
Zδ0‖∞,U = ‖a

(h)
Z ‖∞ = 2k.

However, when estimating ‖Ck
Zδ0‖p,U for p < ∞, we can take advantage of the fact that,

since Ck
Zδ0 is supported on a hyperplane, its support contains O(2k(d−1)) points, hence

that, since the (p, U)-norm is normalized by 2kd/p, we get an extra 2k/p factor to spare.
Hence

‖Ck
Zδ0‖p,U ≤ const2k(1−1/p).
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Thus our estimate here is

‖CkuY ‖p,U ≤ const2−k(m(Ξ)+1)2k(1−1/p) = const2−k(m(Ξ)+1/p),

which is what we need since α < m(Ξ) + 1/p.
It remains to verify (4.4). For this, observe that

V ⊥ = ∩Y ⊂Ξ,#Y =m ker∇Y ,

with
∇Y :=

∏

ξ∈Y

∇y

and
∇y : Q → Q : q 7→ q − q(· − y).

Since m ≤ m(Ξ) + 1, V ⊥ necessarily lies in

∆(Ξ) := ∩Z⊂Ξ,rank(Ξ\Z)<d ker∇Z.

Now (cf. [BHR: (II.49)Theorem]),

(5.5) ∆(Ξ) =
⊕

(etPt)|,

with the sum ranging over all t ∈ [0 . . 2π)d for which

Ξt := [ξ ∈ Ξ : et(ξ) = 1]

is of full-rank d, and Pt := Pt,Ξ certain finite-dimensional subspaces spanned by homoge-
neous polynomials. In particular, ∆(Ξ) is finite-dimensional, hence, so is V ⊥. We next
observe that, since m ≤ m(Ξ)+1, [BDyR: Lemma 7.15] implies that, for every t as above,
we have V ⊥ ∩ (etPt)| ⊂ (etΠ<m)|. In particular, this is the case for t = 0. Also, the

shift-invariance of V ⊥ ensures that

V ⊥ = V ⊥ ∩ ∆(Ξ) =
⊕

(V ⊥ ∩ (etPt)|).

We write now
V ⊥ = K0 + K1,

with K0 := V ⊥ ∩ P0|, and K1 the sum of all other summands, i.e., K1 :=
⊕

t6=0(V
⊥ ∩

(etPt)|). The space V ⊥ is S-invariant, and this readily implies that K1 is also S-invariant.
Moreover, K0 ⊂ Π<m|, and, thanks to (b) of (1.5)Assumptions (viz., to our assumption
that m ≤ ms), Π<m| is also S-invariant, hence so is K0. Since our use of the Double-
Tree Theorem is done with respect to the space U that contains only sequences with m
vanishing moments, we have that K0 ⊂ U⊥. Now, checking the sole use made of (4.4) in
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the proof of the Double-Tree Theorem, it concerns bounding 〈u, S̃εb〉 for b ∈ B, with B
chosen in V ⊥ so as to provide a suitable semi-norm

u 7→ ‖B∗u‖∞ = max
b∈B

|〈u, b〉|

on U . Since U is perpendicular to K0, we may assume without loss that B was chosen
from K1, hence may assume without loss that V ⊥ = K1, as we do from now on.

We will finally invoke the remaining assumption, m ≤ m0, and show that K1 is a
nilpotent subspace of S. This will certainly settle (4.4), hence will bring the proof to its
conclusion. Since K1 is shift-invariant, finite-dimensional, and S-invariant, it is sufficient
to prove (in view of Lemma 2.7) that each exponential et| ∈ K1 is S-nilpotent. By the
definition of K1, each such exponential is annihilated by ∇Y , Y ⊂ Ξ, #Y = m. Note
that ∇Y et| = 0 iff ∇yet| = 0 for some y ∈ Y . Also, ∇yet| = 0 for y ∈ Ξ if and only if
y ∈ Ξt. Now, if et| is malignant, then #(Ξ\Ξt) ≥ m0 ≥ m, hence, by choosing Y to be
any m-submatrix of Ξ\Ξt, we obtain ∇Y that does not annihilate et|. Thus, if et| ∈ K1, it
cannot be malignant, hence must be S-nilpotent. Invoking Lemma 2.7, we conclude that
K1 is S-nilpotent.

6. Appendix: Box splines

From [BHR], we recall the following basic box spline facts.
The box spline, MΞ, associated with the matrix Ξ ∈ (Zd\0)n, is the distribution

MΞ : f 7→

∫

[0..1)Ξ
f(Ξt) dt,

where, here and below,

AΞ

denotes the set of sequences, indexed by the columns ξ of Ξ, with entries in A. In particular,

M[ ] = δ0,

and

MΞ∪ζ =

∫ 1

0

MΞ(· − tζ) dt.

MΞ ∈ Cs, with s + 2 the minimum over #Z with Ξ\Z not of full rank. Thus, s =
m(Ξ)−1, with m(Ξ) the largest m for which Ξ\Z is of full rank for all #Z ≤ m. Moreover,
as any continuous compactly supported piecewise-polynomial, the derivatives of MΞ of
order m(Ξ)− 1 are all in Lip1, hence MΞ ∈ Wα

∞ for every α < m(Ξ). Since the box spline
is C∞ on the complement of a compact subset of a finite union of hyperplanes, this further
implies that MΞ ∈ Wα

p for every 1 ≤ p < ∞ and α < m(Ξ) + 1/p.
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The discrete box spline, b
(h)
Ξ , is defined for any h ∈ 1/N as the distribution

b
(h)
Ξ : f 7→ h#Ξ

∑

j∈mΞ
h

f(Ξj)

with
mh := {0, h, . . . , 1 − h}.

We denote by b
(h)
Ξ also the corresponding discretely defined function,

b
(h)
Ξ =:

∑

t

b
(h)
Ξ (t)δt.

Since

lim
h→0

∑

mΞ
h

f(Ξj) =

∫

[0..1)Ξ
f(Ξt) dt,

b
(h)
Ξ converges, pointwise on C(Rd), to MΞ as h → 0, thus justifying the name.

Its Fourier transform (see [BHR: (VI.9)]) is

(6.1) b̂
(h)
Ξ = M̂Ξ/M̂Ξ(h·).

Since [BHR: (I.17)]

(6.2) M̂Ξ =
∏

ξ∈Ξ

1 − e−ξ

iξ·

(with ξ· : R
d → R : x →

∑
k ξ(k)x(k)), this says that

b̂
(h)
Ξ = h#Ξ

∏

ξ∈Ξ

1 − e−ξ

1 − e−hξ
.

In particular (cf. [BHR: (VI.12]),

(6.3)
̂

b
(1/2)
Ξ =

∏

ξ∈Ξ

1 + e−ξ/2

2
.

We note that
b
(h)
Y ∗b

(h)
Z = b

(h)
Y∪Z.

Also, for h, h′ ∈ 1/N,

(6.4) bΞ
(hh′) = bΞ

(h)∗bΞ
(h′)(·/h),

by (6.1).
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The box spline MΞ is refinable; precisely (see, e.g., [BHR: p. 141]), for any h ∈ 1/N,

MΞ = MΞ(·/h)∗a
(h)
Ξ ,

with

(6.5) a
(h)
Ξ := bΞ

(h)/hd.

More than that, by (6.4),

a
(hh′)
Ξ = b

(hh′)
Ξ /(hh′)d = b

(h′)
Ξ (·/h)∗b

(h)
Ξ /(hh′)d = a

(h′)
Ξ (·/h)∗a

(h)
Ξ .

Therefore, in particular, with

a = aΞ := a
(1/2)
Ξ ,

we have

(6.6) a[k] = Dk−1a∗Dk−2a∗ · · · ∗D0a = a
(1/2k)
Ξ .

We also need the following

(6.7) Proposition. If t ∈ [0 . . 2π)d\0, and

Ξt = [ξ ∈ Ξ : et(ξ) = 1]

is of full rank, then MΞ ∗ et| = 0, and the smallest S-invariant space containing et| is
finite-dimensional.

A direct proof of the first claim is given in [BHR: proof of (II.55)]. As to the second
claim, any such ‘discrete exponential’ et| lies in the space ∆(Ξ) defined in (5.5), and this
space is finite-dimensional (as already observed in §5). More than that,

∆(Ξ) = W⊥,

with W the shift-invariant subspace of Q spanned by {uY : Y ⊂ Ξ, rank(Ξ\Y ) < d}, hence,
by (5.4), C-invariant, and this implies that ∆(Ξ) is also S-invariant.
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