Box-Spline Tilings

Carl de Boor!? and Klaus Hollig?3

Abstract. We describe a simple method for generating tilings of IR?. The basic tile
is defined as
Q= {z € R': |f(2)| < |f(z +j)| VjeZN\O},

with f a real analytic function for which |f(x + j)| — oo as [j| — oo for almost every w.
We show that the translates of Q over the lattice ZZ% form an essentially disjoint partition
of RY. As an illustration of this general result, we consider in detail the special case d = 2
and

f(z) = (£'2)(n'z)

with &, n column vectors in Z?2. Already this simple choice, which arises in box-spline
theory, yields rather interesting partitions of IR?.
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Box-Spline Tilings

Carl de Boor!? and Klaus Hollig?3

Let f: IR? — IR be a real analytic function such that, for almost all 2 and for j € Z?,
(1) [f(z+j)] =00 as|j| = oo
Then the translates of the set
(2) Q:=Q(f) = {z € R |[f(@)| <[f(x +J)| ¥j€Z\0}

provide a tiling for IR?, in the following sense.

Theorem. The sets Q)+ 7, j € 7%, form an essentially disjoint partition of RY, i.e.
(i) QN (Q+7) =0 Vj#0;

(ii) meas(IRd\(Q + Zd)) = 0;

(iii) meas(Q2) = 1.

Such sets €2 arise in box spline theory, in the characterization of functions of exponen-
tial type as limits of multivariate cardinal series (cf. the Appendix). In that setting, the
functions f have the simple form

f E<x) = H £tx7
£e=
in which z,¢ are taken to be column matrices, = is a multiset from Zd\O which spans
IR¢, and £ denotes the transpose of £&. Already for d = 2 and for = consisting of just two
vectors, even these very simple f give rise to surprisingly complex (and strangely beautiful)
Q=0Qz=.
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Proof of the theorem To prove (i), let x = limz,, with x,, € Q and x — j € Q.
Then, the definition of €2 leads to the contradiction

fa—P i) _
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For the proof of (ii), we deduce from (1) that the function
j— flx+7)
has a mimimum for almost all z. If this minimum is unique, then there exists j* so that

[f@+ ) <[fz+5)] Vi#J",

and therefore x € Q2 — j*. Consequently, up to a set of measure zero, the set IRd\(Q + Zd)
lies in the union of the zero sets of the (countably many) functions

g(@) = f@+ )P = [f@+ k) j#k

Since each such g is analytic, its zero set is of measure zero unless g vanishes identically.
But, this latter possibility is excluded since g = 0 implies that f is periodic in the direction
j — k and this would contradict assumption (1).

For the proof of (iii), we conclude from (i) and (ii) that, up to a set of measure zero,

[0,1]% is the disjoint union of the sets [0,1]% N (Q + j) with j € ZZ*, while Q is the disjoint
union of the sets ([0, 1] — j) NQ with j € Z?, and

meas ([0, 1] — j) N Q = meas([0, 1] N (2 + j)).



(4)Figure. [

3] rearranged to fill the unit square.
1
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Special case In this paper, we limit ourselves to the very special case
f(x) = (z)(n'z) =€ R?
with &, 7 € 7ZZ* linearly independent.
In this situation, it is convenient to introduce the new variables
(u,v) = =2 = ('z,n'x).
In these new coordinates, the definition of {2 becomes
QD) :={(u,v) : |ullv| < Ju+ al|lv+ g for (o, B) € T\0}

with
=227

a sublattice of ZZ2.

(5)Figure.  Sublattice I for = = [;’ ﬂ

The original {2 can always be recovered via the linear transformation

Therefore, in the new coordinates,
(6) meas(2) = | det Z|.

Also, the tiling is now obtained by translating Q over the sublattice ' (rather than over
ZZ). On the other hand, we have gained much simplicity since now all possible ) are
intersections of some of the same sets {1, g with

Qa,p = {(u,0) : |ullv] < fu+allv+ 6]}
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(see (T)Figure), different € being obtained from different choices of the sublattice I'.

(7)Figure. Q,pfora=-1,1,2,3and f=-1,...,2.

Symmetries We now investigate how many essentially different tiles we can obtain
in this way. We begin by noting the following obvious symmetries.

(i) Since I' = —T", we also have 2 = —(Q.

(ii) T' does not change if Z' is multiplied from the right by a unimodular matrix, i.e.
an integer matrix with determinant +1.

In particular, we may restrict attention to =’ of the form

0% with pi= |detE)/z, & = god(ni,me),

and a € [0,p[. For, with o the appropriate sign, n* := o(n2, —n1)/c € Z? is carried by Z’
to (o det Z/e,0) = (p,0), while the fact that 7, /e and 7y /e are relatively prime implies the

existence of an integer vector y for which n®y = . Thus, for some choice of the integer
/

¢, ' carries v := en* +y € Z* to (a,¢) with a € [0, p[. Consequently, [’5 g] =z [n*,fy},

with [77*,7} necessarily unimodular.

(iii) The scaling

50
re |o]r
T lot
changes () correspondingly to
s0
0t
We consider such 2 obtainable one from the other by such scaling as essentially the same.
This means that we may further restrict attention to =’ of the form =/ = [g ‘f] with

0 <a<panda/p. In fact, since

. . &.l. .1 —_/ E] E

(8) [gcﬂ, with 0 < a < p/2 and a [p.
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In particular, there is just one lattice of interest for each value of p < 5, and p = 7 is
the first value for which there are, offhand, three lattices of interest.

The resulting lattices

pa

I =T,, = [01

|2, 0<a<pr2 atp

are indeed different one from the other in that, e.g., (a, 1) is the only point in I', , of the
form (b, 1) with 0 < b < p. This follows from the fact that

9) min{b > 0:(b,0) €', .} =p.
The corresponding statement

(10) min{b > 0:(0,b) €'y} =p
also holds since

==

hence (2)71(0,b) = (—ba/p,b), and, since a [p, this is in Z? iff p|b.

Bounds We conclude from (9) and (10) that
0 C Qo N QaoN Qe _a
with @ = p. The sets appearing on the right hand side are halfspaces (cf. (7)Figure); e.g.
Qa0 ={(u,v) :u>—a/2}.
Consequently,

(11) Qc(p/2)[-1,1]>

Note that this bounding square has area p?, while Q has area p. This implies that
Q = [-1,1]?/2 when p = 1. It indicates that, for large p,  is a rather small subset of this
bounding square.

Certain lines are excluded from €. Since |u + a| = 0 for u = —a, Q cannot contain
any point (u,v) with v = —a, for which (a, 3) € T' for some 3. This condition holds for
every a € 7Z\0, hence €2 meets none of the lines u + o = 0 (therefore also none of the lines
v+ a=0) for a € ZZ\0.



(12)Figure.  Q must lie inside such a set.

We conclude from (11) that, in constructing 2 = (.- §2;, we only need to consider

jer

(13) j€pl-1,1]%

For, if (u,v) € (p/2)[-1,1]? and, e.g., (o, 3) > 0, then
lu+aflv+ 6] <lu+a+mpllo+ §+npl

for any positive integers m and n. Consequently

re(@/2)-L1°n (] &4 = =z¢ (] Q.

JErNIO,p]? JETNZ2

Figures We conclude this note with pictures of the first few essentially different
tilings obtained in this special case.

For every p, there is a lattice I' generated by (p,0) and (1,1), viz. I' = I ;. For
p = 1, the corresponding tile is the centered square of side length 1. For p = 2, it is the
centered diamond with side length 2, i.e., the diamond with vertices at the unit vectors.
As p increases, the central portion of the confining set shown in (12)Figure is too small
to contain all of €, and €2 sprouts four arms. The lattice is invariant under the map
(u,v) — (v,u) (in addition to the symmetry I' = —I" observed earlier), hence so is 2. The
resulting four-fold symmetry implies that, in constructing €2, only one of its four ‘arms’
need be calculated. The corresponding 2 all look similar, and the following figure gives a
typical example.

. D fap = 81
(14)Figure. Q for Z' = [0 1].

The first tiling of a different kind occurs for p = 5. Since its lattice, I's o, is invariant
under rotation of 90°, so is the tile.

. D fap = 52
(15)Figure. Q for Z' = [0 1].
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Here are the next few ‘unorthodox’ tiles.

(16)Figure. Q for =% = [gﬂ, [(7)?]7 [g i’]

(17)Figure. Q for =% = [gﬂ, [3411]’ [100 i’]

Based on the above figures, one might conjecture that the set €2 is confined to the
union

[—1,1] x [-p/2,p/2] U [-p/2,p/2] x [-1,1]

of the two central strips of (12)Figure. As (18)Figure shows, this is in general not true. In
fact, rather complicated patterns develop as p increases. The smallest p for which we first
encounter a disconnected tile is p = 15, and this is the tile shown in (18).

. : o=t [154
(18)Figure. A disconnected tile: Z* = [ o 1]

The next figure shows a more elaborate tile.

(19)Figure. Tiling for =* = [17 “;’]

As we mentioned in the beginning, we have considered in this paper a very special
choice of f, motivated by results from box-spline theory. Our final figures give a hint of
things to come [BH].
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(20)Figure.  The BUG: generating function f(x,y) := 2% + y3 — 2xy.

(21)Figure.  NOVA: generating function f(z,y) := 23 + y> — .
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Appendix

We discuss briefly the connection to box-spline theory. Let M : R% — IR be a bounded
function with compact support and denote by

M, =Mx...xM

the n-fold convolution of M. Further, denote by

Sni={ ) Ma(-=j)elj) : c € bo(Z")}

the linear span of the translates of M,, with square summable coefficients. We showed in
[BHR] that a function g € Ly(IR?) can be approximated by a sequence g,, € Sy, n € IN, if
and only if the support of the Fourier transform of g is contained in the set

(22) D(M) :={z e R%: |M(z +2nj)| < |M(z)|, j € Z\0}.

With minor modifications, this agrees with the definition of the basic tile in (2), i.e.
D(M) =2rQ(f), with f:=1/M(2r).

Thus the fundamental domain D generates a tiling of IR%.

In the main application of this result, M is chosen as the centered box-spline. Its
Fourier transform has the simple form (cf. [BH;], [H])



where sinc(t) := sint/t and Z is a multiset of integer d-vectors. Because of periodicity, the
factors sin(£z/2) are irrelevant for the definition of the fundamental domain, hence

D(Mz) = 27Q(f=), with fz:= [] &'
{e=

The simplest special case, when d = 2 and = consists of just two vectors, is considered in
the present paper.
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