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Abstract. We describe a simple method for generating tilings of IRd. The basic tile
is defined as

Ω := {x ∈ IRd : |f(x)| < |f(x + j)| ∀j ∈ ZZd\0},

with f a real analytic function for which |f(x + j)| → ∞ as |j| → ∞ for almost every x.
We show that the translates of Ω over the lattice ZZd form an essentially disjoint partition
of IRd. As an illustration of this general result, we consider in detail the special case d = 2
and

f(x) := (ξtx)(ηtx)

with ξ, η column vectors in ZZ2. Already this simple choice, which arises in box-spline
theory, yields rather interesting partitions of IR2.
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Box-Spline Tilings

Carl de Boor1,2 and Klaus Höllig2,3

Let f : IRd 7→ IR be a real analytic function such that, for almost all x and for j ∈ ZZd,

(1) |f(x + j)| → ∞ as |j| → ∞.

Then the translates of the set

(2) Ω := Ω(f) := {x ∈ IRd : |f(x)| < |f(x + j)| ∀j ∈ ZZd\0}

provide a tiling for IRd, in the following sense.

Theorem. The sets Ω + j, j ∈ ZZd, form an essentially disjoint partition of IRd, i.e.

(i) Ω ∩ (Ω + j) = ∅ ∀j 6= 0;

(ii) meas
(
IRd\(Ω + ZZd)

)
= 0;

(iii) meas(Ω) = 1.

Such sets Ω arise in box spline theory, in the characterization of functions of exponen-
tial type as limits of multivariate cardinal series (cf. the Appendix). In that setting, the
functions f have the simple form

fΞ(x) =
∏

ξ∈Ξ

ξtx,

in which x, ξ are taken to be column matrices, Ξ is a multiset from ZZd\0 which spans
IRd, and ξt denotes the transpose of ξ. Already for d = 2 and for Ξ consisting of just two
vectors, even these very simple f give rise to surprisingly complex (and strangely beautiful)
Ω = ΩΞ.
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(3)Figure. ΩΞ for Ξ =
[

1
3

3
1

]

Proof of the theorem To prove (i), let x = limxn with xn ∈ Ω and x − j ∈ Ω.
Then, the definition of Ω leads to the contradiction

1 >
|f(x − j)|

|f
(
(x − j) + j

)
|

=
|f(x − j)|

|f(x)|
= lim

|f(xn − j)|

|f(xn)|
≥ 1.

For the proof of (ii), we deduce from (1) that the function

j 7→ f(x + j)

has a mimimum for almost all x. If this minimum is unique, then there exists j∗ so that

|f(x + j∗)| < |f(x + j)| ∀j 6= j∗,

and therefore x ∈ Ω− j∗. Consequently, up to a set of measure zero, the set IRd\(Ω+ZZd)
lies in the union of the zero sets of the (countably many) functions

g(x) := |f(x + j)|2 − |f(x + k)|2, j 6= k.

Since each such g is analytic, its zero set is of measure zero unless g vanishes identically.
But, this latter possibility is excluded since g = 0 implies that f is periodic in the direction
j − k and this would contradict assumption (1).

For the proof of (iii), we conclude from (i) and (ii) that, up to a set of measure zero,
[0, 1]d is the disjoint union of the sets [0, 1]d ∩ (Ω + j) with j ∈ ZZ2, while Ω is the disjoint
union of the sets

(
[0, 1]d − j

)
∩ Ω with j ∈ ZZ2, and

meas
(
[0, 1]d − j

)
∩ Ω = meas

(
[0, 1]d ∩ (Ω + j)

)
.
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(4)Figure. Ω[
1

3

3

1

] rearranged to fill the unit square.

Special case In this paper, we limit ourselves to the very special case

f(x) = (ξtx)(ηtx) x ∈ IR2

with ξ, η ∈ ZZ2 linearly independent.

In this situation, it is convenient to introduce the new variables

(u, v) := Ξtx = (ξtx, ηtx).

In these new coordinates, the definition of Ω becomes

Ω(Γ) := {(u, v) : |u||v| < |u + α||v + β| for (α, β) ∈ Γ\0}

with
Γ := ΞtZZ2

a sublattice of ZZ2.

(5)Figure. Sublattice Γ for Ξ =
[

1
3

3
1

]
.

The original Ω can always be recovered via the linear transformation

Ω(Ξ) = (Ξt)−1Ω(Γ).

Therefore, in the new coordinates,

(6) meas(Ω) = | detΞ|.

Also, the tiling is now obtained by translating Ω over the sublattice Γ (rather than over
ZZ2). On the other hand, we have gained much simplicity since now all possible Ω are
intersections of some of the same sets Ωα,β with

Ωα,β := {(u, v) : |u||v| < |u + α||v + β|}
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(see (7)Figure), different Ω being obtained from different choices of the sublattice Γ.

(7)Figure. Ωα,β for α = −1, 1, 2, 3 and β = −1, . . . , 2.

Symmetries We now investigate how many essentially different tiles we can obtain
in this way. We begin by noting the following obvious symmetries.

(i) Since Γ = −Γ, we also have Ω = −Ω.

(ii) Γ does not change if Ξ′ is multiplied from the right by a unimodular matrix, i.e.
an integer matrix with determinant ±1.

In particular, we may restrict attention to Ξ′ of the form

[p

0

a

ε

]
with p := | detΞ|/ε, ε := gcd(η1, η2),

and a ∈ [0, p[. For, with σ the appropriate sign, η∗ := σ(η2,−η1)/ε ∈ ZZ2 is carried by Ξ′

to (σ det Ξ/ε, 0) = (p, 0), while the fact that η1/ε and η2/ε are relatively prime implies the
existence of an integer vector y for which ηty = ε. Thus, for some choice of the integer

c, Ξ′ carries γ := cη∗ + y ∈ ZZ2 to (a, ε) with a ∈ [0, p[. Consequently,
[

p
0

a
ε

]
= Ξ′

[
η∗, γ

]
,

with
[
η∗, γ

]
necessarily unimodular.

(iii) The scaling

Γ 7→
[s

0

0

t

]
Γ

changes Ω correspondingly to [s

0

0

t

]
Ω.

We consider such Ω obtainable one from the other by such scaling as essentially the same.

This means that we may further restrict attention to Ξ′ of the form Ξ′ =
[

p
0

a
1

]
with

0 < a < p and a 6 | p. In fact, since

[p

0

p − a

1

]
=

[1

0

0

−1

][p

0

a

1

][1

0

1

−1

]
,

it is sufficient to consider Ξ′ of the form

(8)
[p

0

a

1

]
, with 0 < a < p/2 and a 6 | p.
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In particular, there is just one lattice of interest for each value of p < 5, and p = 7 is
the first value for which there are, offhand, three lattices of interest.

The resulting lattices

Γ = Γp,a :=
[p

0

a

1

]
ZZ2, 0 < a < p/2, a 6 | p,

are indeed different one from the other in that, e.g., (a, 1) is the only point in Γp,a of the
form (b, 1) with 0 ≤ b < p. This follows from the fact that

(9) min{b > 0 : (b, 0) ∈ Γp,a} = p.

The corresponding statement

(10) min{b > 0 : (0, b) ∈ Γp,a} = p

also holds since

(Ξ′)−1 =
[1/p

0

−a/p

1

]
,

hence (Ξ′)−1(0, b) = (−ba/p, b), and, since a 6 | p, this is in ZZ2 iff p|b.

Bounds We conclude from (9) and (10) that

Ω ⊂ Ωα,0 ∩ Ω−α,0 ∩ Ω0,α ∩ Ω0,−α

with α = p. The sets appearing on the right hand side are halfspaces (cf. (7)Figure); e.g.

Ωα,0 = {(u, v) : u > −α/2}.

Consequently,

(11) Ω ⊂ (p/2)[−1, 1]2.

Note that this bounding square has area p2, while Ω has area p. This implies that
Ω = [−1, 1]2/2 when p = 1. It indicates that, for large p, Ω is a rather small subset of this
bounding square.

Certain lines are excluded from Ω. Since |u + α| = 0 for u = −α, Ω cannot contain
any point (u, v) with u = −α, for which (α, β) ∈ Γ for some β. This condition holds for
every α ∈ ZZ\0, hence Ω meets none of the lines u +α = 0 (therefore also none of the lines
v + α = 0) for α ∈ ZZ\0.
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(12)Figure. Ω must lie inside such a set.

We conclude from (11) that, in constructing Ω =
⋂

j∈Γ Ωj , we only need to consider

(13) j ∈ p[−1, 1]2.

For, if (u, v) ∈ (p/2)[−1, 1]2 and, e.g., (α, β) > 0, then

|u + α||v + β| < |u + α + mp||v + β + np|

for any positive integers m and n. Consequently

x ∈ (p/2)[−1, 1]2 ∩
⋂

j∈Γ∩[0,p]2

Ωj =⇒ x ∈
⋂

j∈Γ∩ZZ2
+

Ωj .

Figures We conclude this note with pictures of the first few essentially different
tilings obtained in this special case.

For every p, there is a lattice Γ generated by (p, 0) and (1, 1), viz. Γ = Γp,1. For
p = 1, the corresponding tile is the centered square of side length 1. For p = 2, it is the
centered diamond with side length 2, i.e., the diamond with vertices at the unit vectors.
As p increases, the central portion of the confining set shown in (12)Figure is too small
to contain all of Ω, and Ω sprouts four arms. The lattice is invariant under the map
(u, v) 7→ (v, u) (in addition to the symmetry Γ = −Γ observed earlier), hence so is Ω. The
resulting four-fold symmetry implies that, in constructing Ω, only one of its four ‘arms’
need be calculated. The corresponding Ω all look similar, and the following figure gives a
typical example.

(14)Figure. Ω for Ξt =
[

8
0

1
1

]
.

The first tiling of a different kind occurs for p = 5. Since its lattice, Γ5,2, is invariant
under rotation of 90◦, so is the tile.

(15)Figure. Ω for Ξt =
[

5
0

2
1

]
.
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Here are the next few ‘unorthodox’ tiles.

(16)Figure. Ω for Ξt =
[

7
0

2
1

]
,

[
7
0

3
1

]
,

[
8
0

3
1

]
.

(17)Figure. Ω for Ξt =
[

9
0

2
1

]
,

[
9
0

4
1

]
,

[
10
0

3
1

]
.

Based on the above figures, one might conjecture that the set Ω is confined to the
union

[−1, 1] × [−p/2, p/2] ∪ [−p/2, p/2]× [−1, 1]

of the two central strips of (12)Figure. As (18)Figure shows, this is in general not true. In
fact, rather complicated patterns develop as p increases. The smallest p for which we first
encounter a disconnected tile is p = 15, and this is the tile shown in (18).

(18)Figure. A disconnected tile: Ξt =
[

15
0

4
1

]
.

The next figure shows a more elaborate tile.

(19)Figure. Tiling for Ξt =
[

17
0

5
1

]
.

As we mentioned in the beginning, we have considered in this paper a very special
choice of f , motivated by results from box-spline theory. Our final figures give a hint of
things to come [BH].
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(20)Figure. The BUG: generating function f(x, y) := x3 + y3 − 2xy.

(21)Figure. NOVA: generating function f(x, y) := x3 + y3 − x.
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Appendix

We discuss briefly the connection to box-spline theory. Let M : IRd 7→ IR be a bounded
function with compact support and denote by

Mn := M ∗ . . . ∗ M

the n-fold convolution of M . Further, denote by

Sn := {
∑

j∈ZZd

Mn(· − j)c(j) : c ∈ ℓ2(ZZ
d)}

the linear span of the translates of Mn with square summable coefficients. We showed in
[BHR] that a function g ∈ L2(IR

d) can be approximated by a sequence gn ∈ Sn, n ∈ IN, if
and only if the support of the Fourier transform of g is contained in the set

(22) D(M) := {x ∈ IRd : |M̂(x + 2πj)| < |M̂(x)|, j ∈ ZZ\0}.

With minor modifications, this agrees with the definition of the basic tile in (2), i.e.

D(M) = 2πΩ(f), with f := 1/M̂(2π·).

Thus the fundamental domain D generates a tiling of IRd.

In the main application of this result, M is chosen as the centered box-spline. Its
Fourier transform has the simple form (cf. [BH1], [H])

M̂(x) := M̂Ξ(x) :=
∏

ξ∈Ξ

sinc(ξtx/2)
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where sinc(t) := sin t/t and Ξ is a multiset of integer d-vectors. Because of periodicity, the
factors sin(ξtx/2) are irrelevant for the definition of the fundamental domain, hence

D(MΞ) = 2πΩ(fΞ), with fΞ :=
∏

ξ∈Ξ

ξtx.

The simplest special case, when d = 2 and Ξ consists of just two vectors, is considered in
the present paper.
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