Box-Spline Tilings

Carl de $Boor^{1,2}$ and Klaus Höllig^{2,3}

Abstract. We describe a simple method for generating tilings of \mathbb{R}^d . The basic tile is defined as

 $\Omega := \{ x \in \mathbb{R}^d : |f(x)| < |f(x+j)| \quad \forall j \in \mathbb{Z}^d \backslash 0 \},\$

with f a real analytic function for which $|f(x+j)| \to \infty$ as $|j| \to \infty$ for almost every x. We show that the translates of $\overline{\Omega}$ over the lattice \mathbb{Z}^d form an essentially disjoint partition of \mathbb{R}^d . As an illustration of this general result, we consider in detail the special case d = 2 and

$$f(x) := (\xi^{\mathsf{t}} x)(\eta^{\mathsf{t}} x)$$

with ξ , η column vectors in \mathbb{Z}^2 . Already this simple choice, which arises in box-spline theory, yields rather interesting partitions of \mathbb{R}^2 .

added: This ms appeared in Amer.Math.Monthly; 98; 1991; 793-802;

Keywords: tilings, box-splines.

AMS classification: 41A15, 41A63

May 1989

 $^{^{1}\,}$ supported by the National Science Foundation under Grant No. DMS-8 $\,$

 $^{^2}$ supported by the United States Army under Contract No. DAAG29-80-C-

 $^{^{3}}$ sponsored by the National Science Foundation under Grant No. DMS-

Box-Spline Tilings

Carl de $Boor^{1,2}$ and Klaus Höllig^{2,3}

Let $f : \mathbb{R}^d \to \mathbb{R}$ be a real analytic function such that, for almost all x and for $j \in \mathbb{Z}^d$,

(1)
$$|f(x+j)| \to \infty \quad \text{as } |j| \to \infty.$$

Then the translates of the set

(2)
$$\Omega := \Omega(f) := \{ x \in \mathbb{R}^d : |f(x)| < |f(x+j)| \quad \forall j \in \mathbb{Z}^d \setminus 0 \}$$

provide a tiling for \mathbb{R}^d , in the following sense.

Theorem. The sets $\overline{\Omega} + j$, $j \in \mathbb{Z}^d$, form an essentially disjoint partition of \mathbb{R}^d , i.e.

- (i) $\overline{\Omega} \cap (\Omega + j) = \emptyset \quad \forall j \neq 0;$
- (*ii*) meas $(\mathbb{IR}^d \setminus (\Omega + \mathbb{Z}^d)) = 0;$
- (iii) $meas(\Omega) = 1.$

Such sets Ω arise in box spline theory, in the characterization of functions of exponential type as limits of multivariate cardinal series (cf. the Appendix). In that setting, the functions f have the simple form

$$f_{\Xi}(x) = \prod_{\xi \in \Xi} \xi^{\mathsf{t}} x,$$

in which x, ξ are taken to be column matrices, Ξ is a multiset from $\mathbb{Z}^d \setminus 0$ which spans \mathbb{R}^d , and ξ^t denotes the transpose of ξ . Already for d = 2 and for Ξ consisting of just two vectors, even these very simple f give rise to surprisingly complex (and strangely beautiful) $\Omega = \Omega_{\Xi}$.

¹ supported by the National Science Foundation under Grant No. DMS-8

 $^{^2}$ supported by the United States Army under Contract No. DAAG29-80-C-

 $^{^{3}}$ sponsored by the National Science Foundation under Grant No. DMS-

(3) Figure.
$$\overline{\Omega}_{\Xi}$$
 for $\Xi = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$

Proof of the theorem To prove (i), let $x = \lim x_n$ with $x_n \in \Omega$ and $x - j \in \Omega$. Then, the definition of Ω leads to the contradiction

$$1 > \frac{|f(x-j)|}{|f((x-j)+j)|} = \frac{|f(x-j)|}{|f(x)|} = \lim \frac{|f(x_n-j)|}{|f(x_n)|} \ge 1.$$

For the proof of (ii), we deduce from (1) that the function

$$j \mapsto f(x+j)$$

has a minimum for almost all x. If this minimum is unique, then there exists j^* so that

$$|f(x+j^*)| < |f(x+j)| \quad \forall j \neq j^*,$$

and therefore $x \in \Omega - j^*$. Consequently, up to a set of measure zero, the set $\mathbb{R}^d \setminus (\Omega + \mathbb{Z}^d)$ lies in the union of the zero sets of the (countably many) functions

$$g(x) := |f(x+j)|^2 - |f(x+k)|^2, \quad j \neq k.$$

Since each such g is analytic, its zero set is of measure zero unless g vanishes identically. But, this latter possibility is excluded since g = 0 implies that f is periodic in the direction j - k and this would contradict assumption (1).

For the proof of (iii), we conclude from (i) and (ii) that, up to a set of measure zero, $[0,1]^d$ is the disjoint union of the sets $[0,1]^d \cap (\Omega+j)$ with $j \in \mathbb{Z}^2$, while Ω is the disjoint union of the sets $([0,1]^d - j) \cap \Omega$ with $j \in \mathbb{Z}^2$, and

$$\operatorname{meas}([0,1]^d - j) \cap \Omega = \operatorname{meas}([0,1]^d \cap (\Omega + j)).$$

(4)Figure. $\Omega_{\begin{bmatrix} 1 & 3\\ 3 & 1 \end{bmatrix}}$ rearranged to fill the unit square.

Special case In this paper, we limit ourselves to the very special case

$$f(x) = (\xi^{\mathsf{t}} x)(\eta^{\mathsf{t}} x) \quad x \in \mathbb{R}^2$$

with $\xi, \eta \in \mathbb{Z}^2$ linearly independent.

In this situation, it is convenient to introduce the new variables

$$(u,v) := \Xi^{\mathsf{t}} x = (\xi^{\mathsf{t}} x, \eta^{\mathsf{t}} x).$$

In these new coordinates, the definition of Ω becomes

$$\Omega(\Gamma) := \{ (u, v) : |u| | v| < |u + \alpha| | v + \beta| \text{ for } (\alpha, \beta) \in \Gamma \setminus 0 \}$$

with

$$\Gamma := \Xi^{t} \mathbb{Z}^{2}$$

a sublattice of \mathbb{Z}^2 .

(5) Figure. Sublattice
$$\Gamma$$
 for $\Xi = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

The original Ω can always be recovered via the linear transformation

$$\Omega(\Xi) = (\Xi^{t})^{-1} \Omega(\Gamma).$$

Therefore, in the new coordinates,

(6)
$$\operatorname{meas}(\Omega) = |\det \Xi|.$$

Also, the tiling is now obtained by translating Ω over the *sublattice* Γ (rather than over \mathbb{Z}^2). On the other hand, we have gained much simplicity since now all possible Ω are intersections of some of the *same* sets $\Omega_{\alpha,\beta}$ with

$$\Omega_{\alpha,\beta} := \{ (u,v) : |u||v| < |u+\alpha||v+\beta| \}$$

(see (7)Figure), different Ω being obtained from different choices of the sublattice Γ .

(7) Figure.
$$\Omega_{\alpha,\beta}$$
 for $\alpha = -1, 1, 2, 3$ and $\beta = -1, \ldots, 2$.

Symmetries We now investigate how many essentially different tiles we can obtain in this way. We begin by noting the following obvious symmetries.

(i) Since $\Gamma = -\Gamma$, we also have $\Omega = -\Omega$.

(ii) Γ does not change if Ξ' is multiplied from the right by a unimodular matrix, i.e. an integer matrix with determinant ± 1 .

In particular, we may restrict attention to Ξ' of the form

$$\begin{bmatrix} p & a \\ 0 & \varepsilon \end{bmatrix} \quad \text{with } p := |\det \Xi| / \varepsilon, \ \varepsilon := \gcd(\eta_1, \eta_2),$$

and $a \in [0, p[$. For, with σ the appropriate sign, $\eta^* := \sigma(\eta_2, -\eta_1)/\varepsilon \in \mathbb{Z}^2$ is carried by Ξ' to $(\sigma \det \Xi/\varepsilon, 0) = (p, 0)$, while the fact that η_1/ε and η_2/ε are relatively prime implies the existence of an integer vector y for which $\eta^t y = \varepsilon$. Thus, for some choice of the integer c, Ξ' carries $\gamma := c\eta^* + y \in \mathbb{Z}^2$ to (a, ε) with $a \in [0, p[$. Consequently, $\begin{bmatrix} p & a \\ 0 & \varepsilon \end{bmatrix} = \Xi' \begin{bmatrix} \eta^*, \gamma \end{bmatrix}$, with $\begin{bmatrix} \eta^*, \gamma \end{bmatrix}$ necessarily unimodular.

(iii) The scaling

$$\Gamma \mapsto \begin{bmatrix} s & 0 \\ 0 & t \end{bmatrix} \Gamma$$

changes Ω correspondingly to

$$\begin{bmatrix} s & 0 \\ 0 & t \end{bmatrix} \Omega.$$

We consider such Ω obtainable one from the other by such scaling as essentially the same. This means that we may further restrict attention to Ξ' of the form $\Xi' = \begin{bmatrix} p & a \\ 0 & 1 \end{bmatrix}$ with 0 < a < p and $a \not| p$. In fact, since

$$\begin{bmatrix} p \ p-a \\ 0 \ 1 \end{bmatrix} = \begin{bmatrix} 1 \ 0 \\ 0 \ -1 \end{bmatrix} \begin{bmatrix} p \ a \\ 0 \ 1 \end{bmatrix} \begin{bmatrix} 1 \ 1 \\ 0 \ -1 \end{bmatrix},$$

it is sufficient to consider Ξ' of the form

(8)
$$\begin{bmatrix} p & a \\ 0 & 1 \end{bmatrix}$$
, with $0 < a < p/2$ and $a \not| p$.

In particular, there is just one lattice of interest for each value of p < 5, and p = 7 is the first value for which there are, offhand, three lattices of interest.

The resulting lattices

$$\Gamma = \Gamma_{p,a} := \begin{bmatrix} p & a \\ 0 & 1 \end{bmatrix} \mathbb{Z}^2, \quad 0 < a < p/2, \ a \not\mid p,$$

are indeed different one from the other in that, e.g., (a, 1) is the only point in $\Gamma_{p,a}$ of the form (b, 1) with $0 \leq b < p$. This follows from the fact that

(9)
$$\min\{b > 0 : (b,0) \in \Gamma_{p,a}\} = p.$$

The corresponding statement

(10)
$$\min\{b > 0 : (0,b) \in \Gamma_{p,a}\} = p$$

also holds since

$$(\Xi')^{-1} = \begin{bmatrix} 1/p - a/p \\ 0 & 1 \end{bmatrix},$$

hence $(\Xi')^{-1}(0,b) = (-ba/p,b)$, and, since $a \not| p$, this is in \mathbb{Z}^2 iff p|b.

Bounds We conclude from (9) and (10) that

$$\Omega \subset \Omega_{\alpha,0} \cap \Omega_{-\alpha,0} \cap \Omega_{0,\alpha} \cap \Omega_{0,-\alpha}$$

with $\alpha = p$. The sets appearing on the right hand side are halfspaces (cf. (7)Figure); e.g.

$$\Omega_{\alpha,0} = \{(u,v) : u > -\alpha/2\}.$$

Consequently,

(11)
$$\Omega \subset (p/2)[-1,1]^2.$$

Note that this bounding square has area p^2 , while Ω has area p. This implies that $\Omega = [-1, 1]^2/2$ when p = 1. It indicates that, for large p, Ω is a rather small subset of this bounding square.

Certain lines are excluded from Ω . Since $|u + \alpha| = 0$ for $u = -\alpha$, Ω cannot contain any point (u, v) with $u = -\alpha$, for which $(\alpha, \beta) \in \Gamma$ for some β . This condition holds for every $\alpha \in \mathbb{Z} \setminus 0$, hence Ω meets none of the lines $u + \alpha = 0$ (therefore also none of the lines $v + \alpha = 0$) for $\alpha \in \mathbb{Z} \setminus 0$. (12) Figure. Ω must lie inside such a set.

We conclude from (11) that, in constructing $\Omega = \bigcap_{j \in \Gamma} \Omega_j$, we only need to consider

(13)
$$j \in p[-1,1]^2$$
.

For, if $(u,v) \in (p/2)[-1,1]^2$ and, e.g., $(\alpha,\beta) > 0$, then

$$|u + \alpha||v + \beta| < |u + \alpha + mp||v + \beta + np|$$

for any positive integers m and n. Consequently

$$x \in (p/2)[-1,1]^2 \cap \bigcap_{j \in \Gamma \cap [0,p]^2} \Omega_j \implies x \in \bigcap_{j \in \Gamma \cap \mathbb{Z}_+^2} \Omega_j.$$

Figures We conclude this note with pictures of the first few essentially different tilings obtained in this special case.

For every p, there is a lattice Γ generated by (p, 0) and (1, 1), viz. $\Gamma = \Gamma_{p,1}$. For p = 1, the corresponding tile is the centered square of side length 1. For p = 2, it is the centered diamond with side length 2, i.e., the diamond with vertices at the unit vectors. As p increases, the central portion of the confining set shown in (12)Figure is too small to contain all of Ω , and Ω sprouts four arms. The lattice is invariant under the map $(u, v) \mapsto (v, u)$ (in addition to the symmetry $\Gamma = -\Gamma$ observed earlier), hence so is Ω . The resulting four-fold symmetry implies that, in constructing Ω , only one of its four 'arms' need be calculated. The corresponding Ω all look similar, and the following figure gives a typical example.

(14) Figure.
$$\overline{\Omega}$$
 for $\Xi^{t} = \begin{vmatrix} 8 & 1 \\ 0 & 1 \end{vmatrix}$.

The first tiling of a different kind occurs for p = 5. Since its lattice, $\Gamma_{5,2}$, is invariant under rotation of 90°, so is the tile.

(15) Figure.
$$\overline{\Omega}$$
 for $\Xi^{t} = \begin{bmatrix} 5 & 2 \\ 0 & 1 \end{bmatrix}$.

Here are the next few 'unorthodox' tiles.

(16) Figure.
$$\overline{\Omega}$$
 for $\Xi^{t} = \begin{bmatrix} 7 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 7 & 3 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 8 & 3 \\ 0 & 1 \end{bmatrix}.$

(17) Figure.
$$\overline{\Omega}$$
 for $\Xi^{t} = \begin{bmatrix} 9 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 9 & 4 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 10 & 3 \\ 0 & 1 \end{bmatrix}.$

Based on the above figures, one might conjecture that the set Ω is confined to the union

$$[-1,1] \times [-p/2,p/2] \cup [-p/2,p/2] \times [-1,1]$$

of the two central strips of (12)Figure. As (18)Figure shows, this is in general not true. In fact, rather complicated patterns develop as p increases. The smallest p for which we first encounter a disconnected tile is p = 15, and this is the tile shown in (18).

(18) Figure. A disconnected tile: $\Xi^{t} = \begin{bmatrix} 15 & 4 \\ 0 & 1 \end{bmatrix}$.

The next figure shows a more elaborate tile.

(19) Figure. Tiling for
$$\Xi^{t} = \begin{bmatrix} 17 & 5 \\ 0 & 1 \end{bmatrix}$$
.

As we mentioned in the beginning, we have considered in this paper a very special choice of f, motivated by results from box-spline theory. Our final figures give a hint of things to come [BH].

(20) Figure. The BUG: generating function $f(x, y) := x^3 + y^3 - 2xy$.

(21)Figure. NOVA: generating function $f(x, y) := x^3 + y^3 - x$.

Acknowledgement The authors would like to thank Stefan Pumm and Oliver Schüle from the University of Stuttgart for helping with the Figures.

Appendix

We discuss briefly the connection to box-spline theory. Let $M : \mathbb{R}^d \to \mathbb{R}$ be a bounded function with compact support and denote by

$$M_n := M * \ldots * M$$

the n-fold convolution of M. Further, denote by

$$S_n := \{\sum_{j \in \mathbb{Z}^d} M_n(\cdot - j)c(j) : c \in \ell_2(\mathbb{Z}^d)\}$$

the linear span of the translates of M_n with square summable coefficients. We showed in [BHR] that a function $g \in L_2(\mathbb{R}^d)$ can be approximated by a sequence $g_n \in S_n$, $n \in \mathbb{N}$, if and only if the support of the Fourier transform of g is contained in the set

(22)
$$D(M) := \{ x \in \mathbb{R}^d : |\widehat{M}(x + 2\pi j)| < |\widehat{M}(x)|, j \in \mathbb{Z} \setminus 0 \}.$$

With minor modifications, this agrees with the definition of the basic tile in (2), i.e.

$$D(M) = 2\pi\Omega(f)$$
, with $f := 1/M(2\pi \cdot)$.

Thus the fundamental domain D generates a tiling of \mathbb{R}^d .

In the main application of this result, M is chosen as the centered box-spline. Its Fourier transform has the simple form (cf. $[BH_1], [H]$)

$$\widehat{M}(x) := \widehat{M}_{\Xi}(x) := \prod_{\xi \in \Xi} \operatorname{sinc}(\xi^{\mathsf{t}} x/2)$$

where $\operatorname{sinc}(t) := \operatorname{sin} t/t$ and Ξ is a multiset of integer *d*-vectors. Because of periodicity, the factors $\operatorname{sin}(\xi^{t}x/2)$ are irrelevant for the definition of the fundamental domain, hence

$$D(M_{\Xi}) = 2\pi\Omega(f_{\Xi}), \text{ with } f_{\Xi} := \prod_{\xi \in \Xi} \xi^{t} x.$$

The simplest special case, when d = 2 and Ξ consists of just two vectors, is considered in the present paper.

References

- [BH₁] C. de Boor and K. Höllig, B-splines from parallelepipeds, J. d'Analyse Math. 42 (1982/83), 99-115.
- [BH₂] C. de Boor and K. Höllig, Tilings via generating functions, ms.
- [BHR] C. de Boor, K. Höllig, and S. D. Riemenschneider, Convergence of Cardinal Series, Proc. Amer. Math. Soc. 98 (1986), 936-939.
 - [H] K. Höllig, Box-splines, in: Approximation Theory V, C.K. Chui, L.L. Schumaker and J. Ward, eds., Academic Press 1986, 71-95.