
a quick rundown on determinants (for MA 340 and 443)

Determinants are often brought into courses such as this quite unnecessarily. But when they are useful,
they are remarkably so. The use of determinants is a bit bewildering to the beginner, particularly if confronted
with the classical de�nition as a sum of signed products of matrix entries.

I �nd it more intuitive to follow Weierstrass and begin with a few important properties of the determi-
nant, from which all else follows, including that classical de�nition (which is practically useless anyway).

(As to the many determinant identities available, in the end I have always managed with just one
nontrivial one, viz. Sylvester's determinant identity, and this is nothing but Gauss elimination; see the end
of these notes. The only other one I have often used is the Cauchy-Binet formula.)

The determinant is a map,
det : IFn�n ! IF : A 7! detA;

with various properties. The �rst one in the following list is perhaps the most important one.
(i) det(AB) = det(A) det(B)
(ii) det(I) = 1

Consequently, for any invertible A,

1 = det(I) = det(AA�1) = det(A) det(A�1):

Hence,
(iii) If A is invertible, then detA 6= 0 and, det(A�1) = 1= det(A).

While the determinant is de�ned as a map on matrices, it is very useful to think of det(A) = det[a1; : : : ; an]
as a function of the columns a1; : : : ; an of A. The next two properties are in those terms:
(iv) x 7! det[: : : ; aj�1;x; aj+1; : : :] is linear, i.e., for any n-vectors x and y and any scalar � (and arbitrary

n-vectors ai),

det[: : : ; aj�1;x+ �y; aj+1; : : :] = det[: : : ; aj�1;x; aj+1; : : :] + � det[: : : ; aj�1;y; aj+1; : : :]:

(v) The determinant is an alternating form, i.e.,

det[: : : ; ai; : : : ; aj ; : : :] = � det[: : : ; aj ; : : : ; ai; : : :]:

In words: Interchanging two columns changes the sign of the determinant (and nothing else).
It can be shown (see below) that (ii) + (iv) + (v) implies (i) (and anything else you may wish to prove

about determinants). Here are some basic consequences �rst.
(vi) Since 0 is the only scalar � with the property that � = ��, it follows from (v) that det(A) = 0 if two

columns of A are the same.
(vii) Adding a multiple of one column of A to another column of A doesn't change the determinant.

Indeed, using �rst (iv) and then the consequence (vi) of (v), we compute

det[: : : ; ai; : : : ; aj + �ai; : : :] = det[: : : ; ai; : : : ; aj ; : : :] + � det[: : : ; ai; : : : ; ai; : : :] = det[: : : ; ai; : : : ; aj ; : : :]:

Here comes a very important use of (vii): Assume that b = Ax and consider det[: : : ; aj�1;b; aj+1; : : :].
Since b = x1a1 + � � �+ xnan, subtraction of xi times column i from column j, i.e., subtraction of xiai from
b here, for each i 6= j is, by (vii), guaranteed not to change the determinant, yet changes the jth column to
xjaj ; then, pulling out that scalar factor xj (permitted by (iv)), leaves us �nally with xj detA. This proves

(viii) If b = Ax, then
det[: : : ; aj�1;b; aj+1; : : :] = xj detA:

Hence, if detA 6= 0, then b = Ax implies

xj = det[: : : ; aj�1;b; aj+1; : : :]= det(A); j = 1; : : : ; n:

This is Cramer's rule.

1



In particular, it follows that xj = 0 for all j, in case Ax = 0 and det(A) 6= 0. By the Invertible Matrix
Theorem, this gives the converse to (iii), i.e.,
(ix) If det(A) 6= 0, then A is invertible.

In old-fashioned mathematics, a matrix was called singular if its determinant is 0. So, (iii) and (ix)
combined say that a matrix is nonsingular i� it is invertible.

The suggestion that one actually construct the solution to A? = b by Cramer's rule is ridiculous under
ordinary circumstances since, even for a linear system with just two unknowns, it is more eÆcient to use Gauss
elimination. On the other hand, if the solution is to be constructed symbolically (in a symbol-manipulating
system such as Maple or Mathematica), then Cramer's rule is preferred to Gauss elimination since it treats
all unknowns equally. In particular, the number of operations needed to obtain a particular unknown is the
same for all unknowns.

We have proved all these facts (except (i)) about determinants from certain postulates (namely (ii),
(iv), (v)) without ever saying how to compute det(A). Now, it is the actual formulas for det(A) that have
given determinants such a bad name. Here is the standard one, which (see below) can be derived from (ii),
(iv), (v), in the process of proving (i):
(x) If A = (aij : i; j = 1; : : : ; n), then

det(A) =
X
�2$n

(�1)�
nY

j=1

a�(j);j

Here, � 2 $n is shorthand for: � is a permutation of the �rst n integers, i.e.,

� = (�(1); �(2); : : : ; �(n));

where �(j) 2 f1; 2; : : : ; ng for all j, and �(i) 6= �(j) if i 6= j. In other words, � is a 1-1 and onto map from
f1; : : : ; ng to f1; : : : ; ng. This is bad enough, but I still have to explain the mysterious (�1)�. This number
is 1 or �1 depending on whether the parity of � is even or odd. Now, this parity can be determined in at
least two equivalent ways:

(a) keep making interchanges until you end up with the sequence (1; 2; : : : ; n); the parity of the number
of steps it took is the parity of � (note the implied assertion that this parity will not depend on how you
went about this, i.e., the number of steps taken may di�er, but the parity never will; if it takes me an even
number of steps, it will take you an even number of steps.)

(b) count the number of pairs that are out of order; its parity is the parity of �.
Here is a simple example: � = (3; 1; 4; 2) has the pairs (3; 1), (3; 2), and (4; 2) out of order, hence

(�1)� = �1. Equivalently, the following sequence of 3 interchanges gets me from � to (1; 2; 3; 4):

(3; 1; 4; 2)

(3; 1; 2; 4)

(1; 3; 2; 4)

(1; 2; 3; 4)

Therefore, again, (�1)� = �1.
Now, fortunately, we don't really ever have to use this stunning formula (x) in calculations, nor is it

physically possible to use it for n much larger than 8 or 10. For n = 1; 2; 3, one can derive from it explicit
rules for computing det(A):

det [ a ] = a; det

�
a b
c d

�
= ad� bc; det

2
4 a b c
d e f
g h i

3
5 = aei+ bfg + cdh� (ceg + afh+ bdi);

the last one can be remembered easily by the following mnemonic:
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a ab bc

d de ef

g gh hi

For n > 3, this mnemonic does not work, and one would not usually make use of (x), but use instead (i) and
the following immediate consequence of (x):
(xi) The determinant of a triangular matrix equals the product of its diagonal entries.

Indeed, when A is upper triangular, then aij = 0 whenever i > j. Now, if �(j) > j for some j, then the
factor a�(j);j in the corresponding summand (�1)�

Qn

j=1 a�(j);j is zero. This means that the only possibly
nonzero summands correspond to � with �(j) � j for all j, and there is only one permutation that manages
that, the identity permutation (1; 2; : : : ; n), and its parity is obviously even. Therefore, the formula in
(x) gives detA = a11 � � � ann in this case. { The proof for a lower triangular matrix is analogous; else, use
(xiii) below.

Consequently, if A = LU with L unit triangular and U upper triangular, then

detA = detU = u11 � � �unn:

If, more generally, A = PLU , with P some permutation matrix, then

detA = det(P )u11 � � �unn;

i.e.,
(xii) detA is the product of the pivots used in elimination, times (�1)i, with i the number of row interchanges

made.
Since, by elimination, any A 2 IFn can be factored as A = PLU , with P a permutation matrix, L unit

lower triangular, and U upper triangular, (xii) provides the standard way to compute determinants.
Note that, then, AT = UTLTP T , with UT lower triangular, LT unit upper triangular, and P T the

inverse of P , hence
(xiii) detAT = detA.

This can also be proved directly from (x). Note that this converts all our statements about the deter-
minant in terms of columns to the corresponding statements in terms of rows.

(xiv) \expansion by minors":
Since, by (iv), the determinant is slotwise linear, and x = x1e1 + x2e2 + � � �+ xnen, we obtain

(1) det[: : : ; aj�1;x; aj+1; : : :] = x1C1j + x2C2j + � � �+ xnCnj ;

with
Cij := det[: : : ; aj�1; ei; aj+1; : : :]

the socalled cofactor of aij . With the choice x = ak, this implies

a1kC1k + a2kC2k + � � �+ ankCnk = det[: : : ; aj�1; ak; aj+1; : : :] =

�
detA; k = j;
0; k 6= j.

The case k = j gives the expansion by minors for detA (and justi�es the name `cofactor' for Cij). The
case k 6= j is justi�ed by (vi). In other words, with

adjA :=

2
664
C11 C21 � � � Cn1

C12 C22 � � � Cn2
...

... � � �
...

C1n C2n � � � Cnn

3
775

the socalled adjugate of A (note that the subscripts appear reversed), we have

adj(A)A = (detA) I:
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For an invertible A, this implies that

A�1 = (adjA)= detA:

The expansion by minors is useful since, as follows from (x), the cofactor Cij equals (�1)i+j times the
determinant of the matrix A(nnijnnj) obtained from A by removing row i and column j, i.e.,

Cij = (�1)i+j det

2
64
: : : : : : : : : : : :
: : : ai�1;j�1 ai�1;j+1 : : :
: : : ai+1;j�1 ai+1;j+1 : : :
: : : : : : : : : : : :

3
75 ;

and this is a determinant of order n� 1, and so, if n� 1 > 1, can itself be expanded along some column (or
row).
(xv) detA is the n-dimensional (signed) volume of the parallelepiped

fAx : 0 � xi � 1; all ig

spanned by the columns of A.
For n > 3, this is a de�nition, while, for n � 3, one works it out (see the book and/or else below). This

is a very useful geometric way of thinking about determinants. Also, it has made determinants indispensable
in the de�nition of multivariate integration and the handling therein of changes of variable.

Since det(AB) = det(A) det(B), it follows that the linear transformation T : IFn ! IFn : x 7! Ax
changes volumes by a factor of det(A), meaning that, for any set M in the domain of T ,

voln(T (M)) = det(A) vol n(M):

As an example, consider det[a;b], with a, b vectors in the plane linearly independent, and assume,
wlog, that a1 6= 0. By (iv), det[a;b] = det[a; ~b], with ~b := b� (b1=a1)a having its �rst component equal to
zero, and so, again by (iv), det[a;b] = det[~a; ~b], with ~a := a � (a2=~b2)~b having its second component equal
to zero. Therefore, det[a;b] = ~a1~b2 = �k~akk~bk equals � the area of the rectangle spanned by ~a and ~b.
However, following the derivation of ~a and ~b graphically, we see, by matching congruent triangles, that the
rectangle spanned by ~a and ~b has the same area as the parallelepiped spanned by a and ~b, and, therefore, as
the paralellepiped spanned by a and b. Thus, up to sign, det[a;b] is the area of the parallelepiped spanned
by a and b.

b

a

b
~b

a

~b

a

~a

Here, �nally, for the record, is a proof that (ii) + (iv) + (v) implies (i), hence everything else we have
been deriving so far. Let A and B be arbitrary matrices (of order n). Then the linearity (iv) implies that

det(BA) = det[Ba1; Ba2; : : : ; Ban] = det[: : : ;
X
i

biaij ; : : :] =
X

�2f1;:::;ngn

det[b�(1); : : : ;b�(n)]
Y
j

a�(j);j :

By the consequence (vi) of the alternation property, most of these summands are zero. Only those determi-
nants det[b�(1); : : : ;b�(n)] for which all the entries of � are di�erent are not automatically zero. But that
are exactly all the � 2 $n, i.e., the permutations of the �rst n integers. Further, for such �,

det[b�(1); : : : ;b�(n)] = (�)� det(B)
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by the alternation property, with (�)� = �1 depending on whether it takes an even or an odd number
of interchanges to change � into a strictly increasing sequence. (We discussed this earlier; the only tricky
part remaining here is an argument that shows the parity of such number of needed interchanges to be
independent of how one goes about making the interchanges. The clue to the proof is the simple observation
that any one interchange is bound to change the number of sequence entries out of order by an odd amount.)
Thus

det(BA) = det(B)
X
�2$n

(�)�
Y
j

a�(j);j :

Since IA = A while, by the de�ning property (ii), det(I) = 1, the formula (x) follows and, with that,
det(BA) = det(B) det(A) for arbitrary B and A. On the other hand, starting with the formula in (x)
as a de�nition, one readily veri�es that det so de�ned satis�es the three properties (ii) (det(I) = 1), (iv)
(multilinear), and (v) (alternating) claimed for it. In other words, there actually is such a function (necessarily
given by (x)).

Here, for the record (but not discussed in class) is a proof and statement of Sylvester's Determinant
Identity. For it, the following notation will be useful: If i = (i1; : : : ; ir) and j = (j1; : : : ; js) are suitable
integer sequences, then A(ijj) is the r � s-matrix whose (p; q) entry is A(ip; jq), p = 1; : : : ; r, q = 1; : : : ; s.
Note the notation A(i; j) for the (i; j)-entry of A used here and below. Also, the MATLAB notation A(:; j) for
the j-th column of A will be handy.

With k := (1; : : : ; k), consider the matrix B with entries

B(i; j) := detA(k; ijk; j):

On expanding detA(k; ijk; j) by entries of the last row,

B(i; j) = A(i; j) detA(kjk) �
X
r�k

A(i; r)(�)k�r detA(kj(knr); j):

This shows that
B(:; j) 2 A(:; j) detA(kjk) + spanA(: jk);

while, directly, B(i; j) = 0 for i 2 k since then detA(k; ijk; j) has two rows the same.
In the same way,

B(i; :) 2 A(i; :) detA(kjk) + spanA(kj :);

while, directly, B(i; j) = 0 for j 2 k. Thus, if detA(kjk) 6= 0, then, for i > k,

B(i; :)= detA(kjk)

provides the ith row of the matrix obtained from A after k steps of Gauss elimination (without pivoting). In
other words, the matrix S := B= detA(kjk) provides the Schur complement S(k + 1; : : : ; njk + 1; : : : ; n)
in A of the pivot block A(kjk).

Since such row elimination is done by elementary matrices with determinant equal to 1, it follows that

detA = detA(kjk) det S(k + 1; : : : ; njk + 1; : : : ; n):

Since, for any #i = #j, B(i; j) depends only on the square matrix A(k; ijk; j), this implies

Sylvester's determinant identity. If

S(i; j) := detA(k; ijk; j)= detA(kjk); 8i; j;

then
detS(ijj) = detA(k; ijk; j)= detA(kjk):

Cauchy-Binet formula. det(AB(ijj)) =
P

#h=#i
det(A(ijh)) det(B(hjj)).

Carl de Boor, 1989 (latest update: 21oct99)

5


