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ABSTRACT

We discuss wavelet frames constructed via multiresolution analysis (MRA), with em-
phasis on tight wavelet frames. In particular, we establish general principles and specific
algorithms for constructing framelets and tight framelets, and we show how they can be
used for systematic constructions of spline, pseudo-spline tight frames and symmetric bi-
frames with short supports and high approximation orders. Several explicit examples are
discussed. The connection of these frames with multiresolution analysis guarantees the
existence of fast implementation algorithms, which we discuss briefly as well.
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FRAMELETS: MRA-BASED CONSTRUCTIONS OF WAVELET FRAMES

Ingrid Daubechies, Bin Han, Amos Ron, Zuowei Shen

1. Introduction

Although many compression applications of wavelets use wavelet bases, other types
of applications work better with redundant wavelet families, of which wavelet frames are
the easiest to use. The redundant representation offered by wavelet frames has already
been put to good use for signal denoising, and is currently explored for image compression.
Motivated by these and other applications, we explore in this article the theory of wavelet
frames. We are interested here in wavelet frames and their construction via multiresolution
analysis (MRA); of particular interest to us are tight wavelet frames. We restrict our
attention to wavelet frames constructed via MRA, because this guarantees the existence of
fast implementation algorithms. We shall explore the ‘power of redundancy’ to establish
general principles and specific algorithms for constructing framelets and tight framelets.
In particular, we shall give several systematic constructions of spline and pseudo-spline
tight frames and symmetric bi-frames with short supports and high approximation orders.
Before we state our main results, we start by reviewing some concepts concerning wavelet
frames and their structure.

1.1. Wavelet frames

Our discussions here concern dyadic systems; more general wavelet frames are discussed
in §5.
Basic notations: 〈·, ·〉 denotes the standard inner product in L2(IR

d), i.e.,

〈f, g〉 :=

∫

IRd

f(y)g(y) dy,

which can be extended to other f and g, e.g. when fg ∈ L1(IR
d). We normalize the

Fourier transform as follows: f̂(ω) :=
∫
IRd f(y)e−iω·y dy. Given a function ψ ∈ L2(IR

d), we

set ψj,k : y 7→ 2jd/2ψ(2jy− k). If the function ψi already carries an enumerative index, we
write ψi,j,k instead.

Let Ψ be a finite subset of L2(IR
d). The dyadic wavelet system generated by the

mother wavelets Ψ is the family

X(Ψ) := {ψj,k : ψ ∈ Ψ, j ∈ ZZ, k ∈ ZZd}.

Such a wavelet system X(Ψ) can be used in order to represent other functions in L2(IR
d).

Useful in this context is the decomposition operator (known also as the ‘analysis oper-
ator’):

T ∗ : f 7→ (〈f, g〉)g∈X(Ψ).
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The system X(Ψ) is a Bessel system if the analysis operator is bounded, i.e., for some
C1 > 0, and for every f ∈ L2(IR

d),
∑

g∈X(Ψ)

|〈f, g〉|2 ≤ C1‖f‖2L2(IRd).

For wavelet systems X(Ψ), it is easy to satisfy this basic and natural requirement: if each

of the mother wavelets has at least one vanishing moment, i.e., ψ̂(0) = 0, for all ψ ∈ Ψ,
then X(Ψ) is a Bessel system if the functions in Ψ satisfy some mild smoothness conditions
(see e.g. [CS], [RS2]).

A Bessel system X(Ψ) is a frame if the analysis operator is bounded below, i.e., if
there exists C2 > 0 such that, for every f ∈ L2(IR

d),
∑

g∈X(Ψ)

|〈f, g〉|2 ≥ C2‖f‖2L2(IRd).

This imposes more stringent conditions on X(Ψ). A special case is provided by tight
frames: this is the case when X(Ψ) is a frame with equal frame bounds, i.e. C1 = C2;
after a re-normalization of the g ∈ X(Ψ), one then has

∑

g∈X(Ψ)

|〈f, g〉|2 = ‖f‖2L2(IRd), for all f ∈ L2(IR
d).

This tight frame condition is equivalent to the perfect reconstruction property

f =
∑

g∈X(Ψ)

〈f, g〉 g, for all f ∈ L2(IR
d).

We are interested in the study of wavelet frames that are derived from a multires-

olution analysis (MRA). Although some of our results and observations cover the case
of vector MRA, we shall restrict our attention to the scalar case. We expect that a full
description of the vector case will have additional features linked to the more complex
analysis of approximation order (see e.g.[Pl], [PR]). Our scalar MRA setup follows [RS3]
and represents an extension of the original MRA setup ([Ma], [Me], [D1]).

Let φ ∈ L2(IR
d) be given and let V0 := V0(φ) be the closed linear span of its shifts, i.e.,

V0 is the smallest closed subspace of L2(IR
d) that contains E(φ) := {φ(·−k) : k ∈ ZZd}. Let

D be the operator of dyadic dilation: (Df)(y) :=
√

2d f(2y), and set Vj := DjV0, j ∈ ZZ.
The function φ is said to generate the (stationary) MRA (Vj)j if the sequence (Vj)j is
nested:

(1.1) · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ,

and, if, in addition, the union ∪jVj is dense in L2(IR
d). (The MRA condition (1.1) is

equivalent to the inclusion V0 ⊂ V1.) The generator φ of the MRA is known as a scaling
function or a refinable function. Finally, the MRA is local if it is generated by a
compactly supported refinable function. (The MRA condition in [Ma], [Me], [D2] also
required that φ and its shifts constitute a Riesz basis of V0, which is not required in [RS3]
or here.)
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(1.2) Definition: MRA constructions of wavelet systems [RS3]. A wavelet system

X(Ψ) is said to be MRA-based if there exists an MRA (Vj)j such that the condition Ψ ⊂ V1

holds. If, in addition, the system X(Ψ) is a frame, we refer to its elements as framelets.

The notions of mother framelets, tight framelets, etc., have then their obvious meaning.

Some historical pointers: The concept of frames was first introduced by Duffin and
Schaeffer in [DS]. Examples of univariate wavelet frames can already be found in the
work of Daubechies, Grossmann and Meyer, [DGM]; necessary and sufficient conditions for
mother wavelets to generate frames are implicit in e.g. [Me] and [D2]. Characterizations of
univariate tight wavelet frames are implicit in the work of Wang and Weiss, [FGWW, HW]
An explicit characterization of tight wavelet frames (in the multivariate case) was obtained
by Han [H]. Independently of these, Ron and Shen gave in [RS3] a general characterization
of all wavelet frames, and specialized this to the case of tight wavelet frames. Furthermore,
applying its general theory, [RS3] also provided a complete characterization of all framelets.

Note that [RS3] included a mild decay condition on Ψ̂ in one of its basic theorems (Theorem
5.5 of [RS3]); it was then shown by [CSS] that this theorem could also be proved without
this decay assumption, effectively removing the decay constraint for all consequent results
derived from Theorem 5.5 in [RS3], including the characterization of tight frames and
framelets. More recently, several articles proved again some of those results without the
decay constraint; see e.g. [Bo], [CH], [P1]. Finally, band limited tight framelets are also
constructed by Benedetto and Li in [BL] (also see [BT]).

Several questions arise naturally:
(I) Under what conditions (on the MRA (Vj)j and the mother wavelets Ψ) does one

obtain framelets, or, better, tight framelets?
(II) Can one construct (tight) framelets from any MRA? In particular, can one construct

framelets from the MRA induced by a univariate B-spline or a multivariate box spline
φ?

As to (I), we first briefly review the characterization of framelets given in [RS3]. For
this, we start with recalling some basic facts from the theory of shift-invariant spaces.
Suppose that (Vj)j is an MRA induced by a refinable function φ. Let Ψ = (ψ1, . . . , ψr) be
a finite subset of V1 (these ψ` will be our mother wavelets in the MRA-based construction).
Then (see [BDR1,2]), there exist 2π-periodic measurable functions τi, i = 1, . . . , r (referred
to hereafter as the wavelet masks) such that, for every i,

ψ̂i = (τiφ̂)(
·
2
).

Moreover, since φ ∈ V1 (by assumption), there also exists a 2π-periodic τ0 (referred to as

the refinement mask) such that φ̂ = (τ0φ̂)(·/2); this τ0 completely determines φ and
therefore the underlying MRA. For notational convenience, we will occasionally list the
refinable function together with the mother wavelets in the parent wavelet vector

F := (ψ0, ψ1, . . . , ψr) := (φ, ψ1, . . . , ψr).

Similarly, we introduce the notation τ := (τ0, . . . , τr) for the combined MRA mask that
completely determines F .

3



011126(.tex) (as of ???) TEX’ed at 11:34 on 27 November 2001

In all examples considered in this article, the vector τ consists of trigonometric poly-

nomials. In that case the parent vector F is necessarily of compact support. For the
development of the theory, though, we assume only the following milder conditions:

(1.3) Assumptions. All MRA-based constructions that are considered in this article are“assum

assumed to satisfy the following:
(a) Each mask τi in the combined MRA mask τ is measurable and (essentially) bounded.

(b) The refinable function φ satisfies limω→0 φ̂(ω) = 1.

(c) The function [φ̂, φ̂] :=
∑

k∈2π ZZd |φ̂(·+ k)|2 is essentially bounded.

Note that the MRA does not determine φ and τ0 uniquely. For example, if α is a 2π-
periodic function which is non-zero a.e., and if the function ϕ defined by ϕ̂(ω) = α(ω)φ̂(ω)
lies in L2(IR

d), then ϕ is refinable with mask t0(ω) = α(2ω)τ0(ω)/α(ω), and generates the
same MRA as φ does. Incidentally, this remark shows that Assumptions (1.3) depend on
the refinable function representing the MRA: for example, this little manipulation could
transform an unbounded τ0 into a bounded t0.

The characterization in [RS3] of tight framelets involves a special 2π-periodic function Θ:

(1.4) Definition. Let τ = (τ0, . . . , τr) be as above. Set

τ+ := (τ1, . . . , τr), |τ+(ω)|2 :=
r∑

i=1

|τi(ω)|2.

Given a combined MRA mask τ and the corresponding wavelet system X(Ψ), define the

fundamental function Θ of the parent wavelet vector by

(1.5) Θ(ω) :=
∞∑

j=0

|τ+(2jω)|2
j−1∏

m=0

|τ0(2mω)|2.
“extraID

The definition of Θ implies the following important identity, (which is valid a.e.):

(1.6) Θ(ω) = |τ+(ω)|2 + |τ0(ω)|2Θ(2ω).“tetrelation

(Note that this identity was not featured in [RS3], it will be crucial in this paper.)
In our statements below, we use the following weighted semi-inner product (here w ≥ 0,
and u, v ∈ Cr+1):

〈u, v〉w := wu0v0 +
r∑

i=1

uivi.

We also need to single out the following set (which is determined only up to a null set):

σ(V0) := {ω ∈ [−π, π]d : φ̂(ω + 2πk) 6= 0, for some k ∈ ZZd}.
The set σ(V0) is the spectrum of the shift-invariant space V0; it is independent of the
choice of the generator φ of V0, and plays an important role in the theory of shift-invariant
spaces (cf. [BDR2,3]). The values assumed by τ outside the set σ(V0) affect neither the
MRA nor the resulting wavelet system X(Ψ). In almost every example of interest, the
spectrum σ(V0) coincides (up to a null set) with the cube [−π, π]d. In particular, whenever
φ is compactly supported, we automatically have σ(V0) = [−π, π]d.

The following characterization of [RS3] answers question (I) for the tight frames:
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Proposition 1.7 ([RS3]). Assume that the combined MRA mask τ = (τ0, . . . , τr) is“thmtet

bounded. Assume that φ̂ is continuous at the origin and φ̂(0) = 1. Define Θ as in (1.5).
Then the following conditions are equivalent:

(a) The corresponding wavelet system X(Ψ) is a tight frame.

(b) For almost all ω ∈ σ(V0), the function Θ satisfies:

(b1) limj→−∞ Θ(2jω) = 1.
(b2) If ν ∈ {0, π}d\0 and ω + ν ∈ σ(V0), then

(1.8) 〈τ(ω), τ(ω + ν)〉Θ(2ω) = 0.“extraIDtwo

This leads to several solutions to question (II) as described below:

1.2. Extension principles

Proposition 1.7 states mathematically how all the masks “work together” to make the
whole family a tight frame. We have one single family of 2d equations ((1.5) and (1.8))
that the masks have to satisfy jointly. In practical constructions, this leads to a “shared
responsibility” which allows more flexibility. In the original construction of compactly
supported orthonormal wavelets [D1], the refinement mask for φ had to satisfy a conjugate
quadrature filter (CQF) conditions as well as stability properties. This excluded symmetric
or antisymmetric wavelets, as well as spline wavelets (except for Haar wavelet). Many
subsequent constructions sought to remedy this by relaxing some restrictions: in [CDF],
symmetry was obtained at the cost of dropping orthogonality; in their construction two
compactly supported dual refinable functions were needed, only one of which could be
spline; in [CW] similar non-orthogonal dual symmetric, spline wavelet bases were given,
but only one of them could be compactly supported; in [DGH], symmetry, orthonormality
and compact support were combined at the price of having multiwavelets, or vector MRA;
in [DGH], it was shown that this could be done with spline vector MRA. In this paper, we
are relaxing the non-redundancy condition, which makes it possible to start from refinable
φ that satisfy no other conditions than those in Assumptions 1.3.

At first sight, it is not clear how to use Proposition 1.7 for the practical construction
of tight framelets; one needs to select simultaneously the combined MRA mask τ and the
fundamental MRA function Θ, making sure that they satisfy the requirements (1.5) and
(1.8); and this is nontrivial to solve. The problem simplifies drastically when one restricts
to the case Θ = 1 on σ(V0), the choice made in [RS3].

Proposition 1.9: The Unitary Extension Principle (UEP), [RS3]. Let τ be the“thmuep

combined MRA that satisfies Assumptions (1.3). Suppose that, for almost all ω ∈ σ(V0),
and all ν ∈ {0, π}d,

(1.10)
r∑

i=0

τi(ω)τi(ω + ν) =

{
1, ν = 0,
0, otherwise.

“uprin

Then the resulting wavelet system X(Ψ) is a tight frame, and the fundamental function Θ
equals 1 a.e. on σ(V0).

5



011126(.tex) (as of ???) TEX’ed at 11:34 on 27 November 2001

The proof of the UEP in [RS3] is based on Proposition 1.7. A ‘stand-alone’ proof of the
UEP can be obtained by following the arguments we use in the proof of Lemma 2.4 of the
current article. The UEP was then used in [RS3] as follows: Given τ0, identify τ1, . . . , τr
such that the “unitarity condition” (1.10) holds, thus obtaining a tight wavelet frame.
Note that when (1.10) holds,

∑
ν∈{0,π}d |τ0(ω + ν)|2 ≤ 1 for almost every ω. Therefore,∑

ν∈{0,π}d |τ0(ω + ν)|2 ≤ 1 is a necessary condition to use the UEP.

The UEP proved to be a very useful tool to construct tight framelets, including uni-
variate compactly supported spline tight frames [RS3,6], multivariate compactly supported
boxlets, [RS5], and various other tight framelets and bi-framelets in [RS6]. On a more
theoretical level, this extension principle was used in [GR] in order to construct, for any
dilation matrix and any spatial dimension, compactly supported tight frames of arbitrarily
high smoothness. Recently, the UEP was used in [CH], [P1,2] and [S] in the context of
univariate strongly local constructions of framelets. We revisit these latter constructions
at the end of this section.

However, these constructions have limitations. In all the constructions of spline
framelets listed above, at least one of the wavelets has only 1 vanishing moment, and
none of these frames has approximation order higher than 2. In this paper, we show how
to overcome or circumvent these shortcomings. One option is to change the underlying
MRA. In [RS3–6], spline MRAs were used; by leaving the spline framework, considering
“pseudo-splines” as in §3.1 below, the same approach as in [RS3–6] leads to tight wavelet
frames (bi-framelets) with higher approximation order, and with very short support. This
was also discovered, simultaneously and independently, in [S] (see §4 of that paper). An-
other approach is to revisit Proposition 1.7 and extract more flexible construction rules.
To replace the UEP, we formulate the more general Oblique Extension Principle or OEP,
as another consequence of Proposition 1.7:

Proposition 1.11: The Oblique Extension Principle (OEP). Let τ be the combined“thmoep

mask of an MRA that satisfies Assumptions (1.3). Suppose that there exists a 2π-periodic
function Θ that satisfies the following:

(i) Θ is non-negative, essentially bounded, continuous at the origin, and Θ(0) = 1.

(ii) If ω ∈ σ(V0), and if ν ∈ {0, π}d is such that ω + ν ∈ σ(V0), then

(1.12) 〈τ(ω), τ(ω + ν)〉Θ(2ω) =

{
Θ(ω), if ν = 0,
0, otherwise.“genext

Then the wavelet system X(Ψ) defined by τ is a tight wavelet frame.

There are several ways in which Proposition 1.11 can be proved. One approach is to
build, like for Proposition 1.9, a stand-alone proof by copying the arguments for Lemma
2.4. Another approach is to follow the proof of Corollary 5.3: to show that the Θ here
is the fundamental function associated with τ , and then to invoke Proposition 1.7. This
also shows, incidentally, that the existence of Θ satisfying (i) and (ii) is also a necessary
condition for X(Ψ) to be a tight frame. It is more surprising that Proposition 1.11 can
also be derived from Proposition 1.9:
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Proof: Setting ϑ := Θ1/2, we define a function ϕ via ϕ̂ := ϑφ̂. Since ϑ is bounded,
ϕ lies in L2(IR

d). Consider the combined mask t with

t0 :=
ϑ(2·)τ0
ϑ

, ti :=
τi
ϑ
, i > 0.

From (1.12), we obtain that |t(ω)|2 = 1, a.e. on σ(V0), hence t is well-defined and bounded,
and t0 is the refinement mask of ϕ. Moreover, since Θ(0) = 1, we obtain that ϕ̂ is
continuous at 0 and ϕ̂(0) = 1. Apply now Proposition 1.9 to t, and observe that the
tight wavelet frame obtained from the combined vector t is the same as the wavelet system
induced by the combined vector τ .

We thus see that Proposition 1.9 and Proposition 1.11 are equivalent. It follows that
every OEP construction can be obtained also from the UEP, and vice versa, by replacing the
generator of the MRA by another (carefully chosen) generator of the same MRA. Although
the UEP construction suffices, in principle, to construct all MRA-based tight wavelet
frames, the OEP greatly facilitates the search for new constructions in practice. Indeed,
by choosing Θ and τ to be trigonometric polynomials that satisfy the OEP conditions
we naturally obtain a local tight wavelet frame. If we attempt to construct the same
system by the UEP, then the refinable function is generally not compactly supported, the
corresponding masks are not trigonometric polynomials, and it is impossible to predict
when we nevertheless will still obtain compactly supported mother wavelets.

Moreover, as we shall see in §3, constructing the τi’s and Θ simultaneously is less
daunting than it looks. Given τ0, one needs to choose Θ and τi such that (1.12) holds.
More explicitly, given a (trigonometric polynomial) τ0 with τ0(0) = 1, we shall identify
(trigonometric polynomials) τi and Θ such that the identity (1.12) holds for every ω ∈
[−π, π]d and every ν ∈ {0, π}d. Then X(Ψ) will be a local MRA-based tight wavelet
frame (provided that Θ is non-negative and Θ(0) = 1). We refer to such constructions as
strongly local.

The remainder of this paper is organized as follows:
We first elaborate (in §2) on three basic properties of MRA-based wavelet systems:

the approximation order of the underlying MRA, the approximation order of the wavelet
system, and the vanishing moments of the mother wavelets. This analysis allows us to
understand better the relative merit of various possible constructions.

We then turn our attention (in §3) to several systematic univariate constructions.
One effort is directed at constructing refinable functions whose derived frame system has a
high approximation order. A different effort yields spline frames with high approximation
orders. We also discuss briefly general techniques for constructing frames from any given
MRA.

In §4, we give the analysis of the implementation algorithm: the fast framelet trans-

form. Though essentially identical to the widely used fast wavelet transform, the interpre-
tation of the results of the framelet transform turns out to be somewhat different.

We conclude this article (§5) with the analysis of wavelet frames that are not neces-
sarily tight, or dilations that are not necessarily dyadic, and correspondingly more flexible
characterizations. A highlight in this section is the (systematic) construction of univariate
(symmetric) spline framelets with optimal approximation order, and very short support;

7
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the systems in that construction are always generated by two mother wavelets, and a
specific construction in this class is detailed in §6.

Several authors used the results of [RS3] and obtained UEP-based constructions that
are related to some of ours. Particularly, univariate UEP-based framelet systems that
are generated by 2 or 3 mother wavelets were studied in [CH], [P1,2] and [S]. More re-
cently, Chui, He and Stöckler completed an independent article [CHS] in which several
results overlap ours. Neither group of authors was aware of the other’s work before it was
completed; the two papers are published here consecutively.

2. Approximation orders and vanishing moments for wavelet frames

“Good” wavelet systems are characterized by several desirable properties, which may com-
pete with each other. Generally speaking, these properties can be grouped into four cate-
gories:

(I): The invertibility and redundancy of the representation. The system is required
to be orthonormal, or bi-orthogonal, or a tight frame, or a frame. And, there must be a
fast algorithm that implements the decomposition and the reconstruction.

(II): The space-frequency localization of the system. This is usually measured by
the smoothness of the mother wavelet Ψ and the smoothness of its Fourier transform. If
Ψ is compactly supported (or band-limited) one would measure the size of suppΨ (Ψ̂,
respectively).

(III): Approximation properties of X(Ψ). The three pertinent notions here are the
approximation order of the underlying MRA, the number of vanishing moments of the
mother wavelets, and the approximation order of the system itself. These properties are
investigated in the current section (for tight framelets), and in §5.2 (for the more general
bi-framelets).

(IV): Miscellaneous properties. Most of these properties are motivated by the ac-
tual applications; they include the symmetry of the mother wavelets, the ‘translation-
invariance’ of the system, or optimality with respect to certain cost functions.

In this section we concentrate on the approximation properties of the system.

(2.1) Definition: approximation orders and vanishing moments. Let φ be a refin-
able function that generates a multiresolution analysis (Vj)j . Let Ψ be a finite collection
of mother wavelets in V1, and let X(Ψ) be the induced wavelet system. We say that:

(a) The refinable function φ (or, more correctly, the MRA) provides approximation
order m, if, for every f in the Sobolev space Wm

2 (IRd),

dist(f, Vn) := min{‖f − g‖L2(IRd) : g ∈ Vn} = O(2−nm).

(b) The wavelet system has vanishing moments of order m0 if, for each mother

wavelet ψ ∈ Ψ, the Fourier transform ψ̂ of ψ has a zero of order m0 at the origin.

8
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(c) Assuming that X(Ψ) is a tight frame, we define the truncated representation Qn by

Qn : f 7→
∑

ψ∈Ψ,k∈ZZd,j<n

〈f, ψj,k〉ψj,k.

We say that the tight frame X(Ψ) provides approximation order m1 if, for
every f in the Sobolev space Wm1

2 (IRd),

‖f −Qnf‖L2(IRd) = O(2−nm1).

It is customary to label the largest possible number for which these statements can
be made as “the” approximation order of φ or of the MRA, etc.

(2.2) Remarks.
(1) Note that the approximation orders provided by φ are completely determined

by the MRA (Vj)j . Thus, two refinable functions that generate the same MRA provide
the same approximation order. The study of the approximation order provided by the
refinable function φ is a special case of the well-understood topic of the approximation

order of shift-invariant spaces, [BDR1].
(2) Since the operator Qn maps into Vn, it is obvious that the approximation order

of the wavelet system cannot exceed the order provided by the MRA. If the system X(Ψ)
is orthonormal, the two orders coincide, since then Qn is the orthogonal projector onto
Vn, hence ‖f − Qnf‖L2(IRd) = dist(f, Vn) for every f ∈ L2(IR

d). The same is not true
for tight frames. In particular we shall see that, in contrast with the approximation order
provided by φ (that depends only on the choice of the MRA), the approximation order of
the wavelet system depends on the choice of the mother wavelets.

In the analysis below, we use the following bracket product, [JM], [BDR1]:

[f, g] :=
∑

k∈2π ZZd

f(·+ k)g(·+ k).

We quote briefly some basic results concerning the approximation orders provided by shift-
invariant spaces. Given any function φ ∈ L2(IR

d), it is known [BDR1], that φ provides
approximation order m if and only if the function

(2.3) Λφ :=

(
1− |φ̂|

2

[φ̂, φ̂]

)1/2

“deflam

has a zero of order m at the origin. Under certain conditions on φ (e.g., if φ is compactly

supported and φ̂(0) 6= 0), this requirement is equivalent to the Strang-Fix (SF) conditions,

meaning that Λφ has a zero of order m at ω = 0 if and only if ‘φ̂ has a zero of order m

at each k ∈ 2π ZZd \0’ (see [BDR1] for more results and analysis.) If φ̂(0) = 1, and φ is
refinable with refinement mask τ0, then the SF conditions are implied (but not vice versa)
by the requirement that ‘τ0 has a zero of order m at each of the points in {0, π}d\0’.

In this section we explore the connections between the well-understood approximation
order provided by the refinable function on the one hand, and the vanishing moments of
the mother wavelets, as well as the approximation order of the frame system itself on the
other hand. We start by the following lemma, which rewrites Qnf in MRA terms:

9
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Lemma 2.4. Let X(Ψ) be an MRA tight frame system and Θ the corresponding funda-“lemqzero

mental function. Then the truncated operator Qn satisfies

Q̂nf =
(
[f̂(2n·), φ̂] φ̂Θ

)( ·
2n

)
, f ∈ L2(IR

d).

In particular, Q̂0f = [f̂ , φ̂]φ̂Θ, for every f ∈ L2(IR
d).

Proof: We start the proof by observing that

(Q1 −Q0)f =
r∑

i=1

∑

k∈ZZd

〈f, ψi,0,k〉ψi,0,k.

As shown in [RS1], this is equivalent to

(2.5) Q̂1f − Q̂0f =
r∑

i=1

[f̂ , ψ̂i] ψ̂i =
r∑

i=0

Θi[f̂ , ψ̂i]ψ̂i −Θ [f̂ , φ̂]φ̂,
“qone

where ψ0 := φ, Θ0 := Θ and Θi = 1, i = 1, . . . , r. Using the relation

(2.6) ψ̂i = (τiφ̂)(·/2),“temprel

we further obtain that
[f̂ , ψ̂i] =

∑

ν∈{0,π}d

(τiξ)(
·
2

+ ν),

where
ξ := [f̂(2·), φ̂] =

∑

k∈2π ZZd

f̂(2(·+ k))φ̂(·+ k).

Substituting this into (2.5), invoking again (2.6), and changing the order of the summation,
we obtain

Q̂1f − Q̂0f = φ̂(·/2)
∑

ν∈{0,π}d

ξ(·/2 + ν)
r∑

i=0

Θiτi(·/2)τi(·/2 + ν)− [f̂ , φ̂] φ̂Θ.

=
(
[f̂(2·), φ̂] φ̂Θ

)
(
·
2
)− [f̂ , φ̂] φ̂Θ.

The last equality follows from (1.12) if ω/2 ∈ σ(V0); if ω/2 /∈ σ(V0) it follows from the fact

that φ̂(ω/2) = 0. (The MRA tight frame must satisfy (1.12) by Proposition 1.7 and (1.6).)
Since Qn = DnQ0D−n, we easily conclude that, for every n,

Q̂nf − ̂Qn−1f =
(
[f̂(2n·), φ̂] φ̂Θ

)
(
·

2n
)−

(
[f̂(2n−1·), φ̂] φ̂Θ

)
(
·

2n−1
),

implying, for j < n, Q̂nf = Q̂jf−
(
[f̂(2j ·), φ̂] φ̂Θ

)
( ·
2j )+

(
[f̂(2n·), φ̂] φ̂Θ

)
( ·
2n ). It remains

to show that the sequence (Pjf) defined by

P̂jf := Q̂jf −
(
[f̂(2j ·), φ̂] φ̂Θ

)
(
·
2j

)

converges to 0 when j → −∞. This is a simple consequence of the weak compactness of
the unit ball of L2(IR

d). (See, e.g., [BDR3] for this argument, which uses ∩jVj = {0}.
Every MRA automatically satisfies this latter condition, as proved in [BDR3] as well.)

10
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The bracket product [φ̂, φ̂] and the difference 1−[φ̂, φ̂] are known to play a role in MRA
analysis. For instance, the orthogonal projection P0 of f onto V0 satisfies (with the con-

vention that 0/0 := 0) [BDR1], P̂0f = [f̂ ,φ̂]

[φ̂,φ̂]
φ̂. Clearly, when Θ = 1 and σ(V0) = [−π, π]d,

Q0 = P0 if and only if 1 − [φ̂, φ̂] = 0; the latter is a well-known characterization of the
orthonormality of E(φ). Lemma 2.4 (as well as Theorem 2.8 below) shows that even when

Θ 6= 1, the difference 1 − Θ[φ̂, φ̂] continues to play a central role in the characteriza-
tion of the approximation order provided by more general wavelet systems. Even more
to the point, the lemma and theorem connect MRA-based wavelet systems with quasi-

interpolation, [BR]: quasi-interpolation is the art of assigning suitable dual functionals to
a given set of ‘approximating’ functions. The fundamental function Θ can be recognized
to be a specific quasi-interpolation rule. Indeed, our proof of Theorem 2.8 below invokes
the following result of Jetter and Zhou concerning quasi-interpolation:

Result 2.7 [JZ1-2]. Let φ, ζ ∈ L2(IR
d), and φ̂(0) 6= 0. Consider the approximation“jz

operators (Qn)n where Qn = DnQ0D−n, and

Q̂0f = [f̂ , ζ̂]φ̂.

Assume that [φ̂, φ̂] is bounded. Then (Qn)n provides approximation order m if and only
if the following two conditions hold:
(a) [φ̂, φ̂]− |φ̂|2 = O(| · |2m).

(b) 1− ζ̂φ̂ = O(| · |m).

Theorem 2.8. Let X(Ψ) be an MRA tight frame system and Θ be the corresponding“characao

fundamental function. Assume that Assumptions (1.3) are satisfied; and the underlying
refinable function provides approximation order m < ∞. Then the approximation order
provided by the framelet system coincides with each of the following (equal) numbers

(i) min{m,m1}, with m1 the order of the zero of 1−Θ [φ̂, φ̂] at the origin.
(ii) min{m,m2}, with m2 the order of the zero of Θ−Θ(2·)|τ0|2 at the origin.

(iii) min{m,m3}, with m3 the order of the zero of 1−Θ |φ̂|2 at the origin.
Here, φ is the refinable function, and τ0 is its mask.

Proof: We first prove that the approximation order provided by the frame system
is min{m,m3}, and invoke to this end Result 2.7. In view of Lemma 2.4, our case here

corresponds to the case ζ̂ = Θφ̂ in Result 2.7, hence we need to check the zero order
of [φ̂, φ̂] − |φ̂|2 and of 1 − Θ|φ̂|2. The latter order is m3. As to the former, since φ̂ is
bounded above as well as away of zero in a neighborhood of the origin, the characterization
of the approximation orders provided by φ (cf. [BDR1], or derive it directly from the
characterization mentioned in the discussion around (2.3)) is given as half the order of the

zero of [φ̂, φ̂] − |φ̂|2 at the origin. Thus, Result 2.7 implies indeed that the frame system
provides approximation order min{m,m3}.

Assuming φ to provide approximation order m, we obtain (again from either [BDR1]

or directly from the discussion around (2.3)) that, since φ̂(0) = 1, then, near the origin,

[φ̂, φ̂]− |φ̂|2 = O(| · |2m).

11
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In particular,m1 = m3 whenever one of these numbers is< 2m. Consequently, min{m,m1} =
min{m,m3}.

Finally, since

(2.9) |τ0|2|φ̂|2 = |φ̂|2(2·),“one

we obtain that
[Θ−Θ(2·)|τ0|2]|φ̂|2 = Θ|φ̂|2 −Θ(2·)|φ̂(2·)|2.

Since 1−Θ|φ̂|2 has a zero of exactly order m3 at the origin, 1−Θ|φ̂|2 = q+ o(| · |m3) near
the origin where q is some homogeneous polynomial of total degree m3. Hence, near the
origin,

Θ|φ̂|2 −Θ(2·)|φ̂(2·)|2 = q(2·)− q(·) + o(| · |m3).

Since q(2·)−q(·) is a nonzero homogeneous polynomial of total degreem3, wheneverm3 > 0

(which is the case, because Θ|φ̂|2(0) = 1), we see that Θ|φ̂|2 − Θ(2·)|φ̂(2·)|2 has a zero of
exactly order m3 at the origin. The conclusion that m2 = m3 now follows from the fact
that the order of the zero of [Θ−Θ(2·)|τ0|2]|φ̂|2 at the origin is exactly m2.

For a given refinable function φ, Theorem 2.8 (iii) suggests that in order to construct
tight framelets that provide high approximation order, we should choose Θ as a suitable
approximation, at the origin, to 1/|φ̂|2. For example, if φ is a B-spline of order m, then

|φ̂(ω)| =
∣∣∣ sin(ω/2)

ω/2

∣∣∣
m

. Thus, we should choose Θ as a 2π-periodic function which approxi-

mates the function ∣∣∣∣
ω/2

sin(ω/2)

∣∣∣∣
2m

at the origin. We shall revisit this issue in §3.3.

(2.10) Discussion: approximation orders vs. vanishing moments. If the behaviors

of Θ and |φ̂|2 are not “matched” near the origin, then Theorem 2.8 shows that the ap-
proximation order of the framelet system can lag significantly behind the approximation
order provided by the refinable function. On the other hand, the approximation order of
the framelet system turns out to be strongly connected, perhaps in a somewhat surprising
way, to the number of vanishing moments of the wavelets.

Since ψ̂i = (τiφ̂)(·/2), and since φ̂(0) = 1, the vanishing moments of ψi are determined
completely by the order of the zero (at the origin) of τi. This means that the MRA-based
wavelet system X(Ψ) has vanishing moments of order m0 if and only if |τ+|2 = O(| · |2m0),
near the origin. On the other hand, if our system is a tight framelet, it must satisfy the
OEP conditions, and thus |τ+|2 = Θ−Θ(2·)|τ0|2. It follows that the index m2 of Theorem
2.8 (ii) is exactly equal to 2m0. This proves part of the following theorem:

Theorem 2.11. Let X(Ψ) be an MRA tight frame system. Assume that the system has“momao

vanishing moments of order m0, and that the refinable function φ provides approximation
order m. Then:
(a) φ satisfies the SF conditions of order m0, i.e. φ̂ vanishes at each ω ∈ 2π ZZd \0 to order

m0.

12
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(b) The approximation order of the tight frame system is min{m, 2m0}.
Proof: Because of the remarks above, we need prove only (a).
Let ν ∈ {0, π}d\{0}. If X(Ψ) has vanishing moments of order m0, then |τ+|2 =

O(| · |2m0) (near the origin), hence, for every i ≥ 1,

(2.12) τi = O(| · |m0).

Let j ∈ 2π ZZd. Since, thanks to the OEP conditions, 〈τ, τ(·+ ν)〉Θ(2·)φ̂(·+ ν + j) = 0, (on
σ(V0), hence in a neighborhood of the origin), we obtain from (2.12) that Θ(2·)τ0τ0(· +
ν)φ̂(·+ ν + j) = O(| · |m0). Since Θ(0) = τ0(0) = 1, we conclude that

φ̂(2 ·+2ν + 2j) = τ0(·+ ν)φ̂(·+ ν + j) = O(| · |m0), ν ∈ {0, π}d\0, j ∈ 2π ZZd .

A routine argument can then be used to prove that the last relation holds for ν = 0 as
well (provided then that j 6= 0).

(2.13) Remark. Part (a) of the above result states, essentially, that the approximation
order provided by φ is ≥ m0. For an MRA-based framelet with exactly m0 vanishing
moments, the approximation order of the framelet is therefore always between m0 and
2m0.

In the theory of MRA-based orthonormal wavelets, the approximation order of the
MRA, the approximation order of the wavelet system and the number of vanishing moments
of the wavelets are always equal. (Note that this is no longer true for bi-orthogonal bases.)
It is therefore customary to inspect only one of those quantities; most of the wavelet
literature picks the number of vanishing moments as the focal property.

In contrast, these three parameters need not coincide in the context of framelets. A
natural question then arises: which parameter should we attempt to maximize in actual
constructions? The answer usually depends on the application:

The approximation order of the MRA is clearly important since it provides an upper
bound for the approximation order of any framelet system derived from that MRA. Simi-
larly, the approximation order of the framelet system is very important since the wavelet
expansion must be truncated in any practical implementation. MRAs or framelet expan-
sions of low approximation orders transfer to their high frequency scales information about
the function/image/signal that could have been faithfully represented in the (sparser) low
frequency scales of more appropriate framelet expansions.

A further evaluation of the difference between the approximation order of the MRA
and that of the framelet system is as follows. The redundancy of the tight framelet system
entails that a given f ∈ L2(IR

d) can be represented in many different ways as a convergent
sum

(2.14) f =
∑

g∈X(Ψ)

c(g) g.
“tempo

The tight framelet representation

(2.15) f =
∑

g∈X(Ψ)

〈f, g〉 g
“temp

13
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is one of many. One of its major advantages (over other representations of f as linear
combinations of X(Ψ)) is that it is implemented by a fast transform, the fast frame trans-
form. Now, assume that f is, say, a very smooth function. Then, a high approximation
order of the MRA guarantees that some of the (2.14) representations of f are sparse and
compact. Some other (2.14) representations of f may be dense and inefficient. A high
approximation order of the framelet system ensures that the specific representation (2.15)
is a good one, i.e., it is (asymptotically) as compact and as effective as the best possible
(2.14) representation of f .

It might be worthwhile to mention that not every application requires high approxi-
mation orders of the framelet system. For example, in novel image compression algorithms
that are currently under development, one uses the representation (2.15) as a springboard
for finding the sparsest (2.14) representation of f . In this and similar applications the
properties of the representation (2.15) are less crucial, since this representation is only an
intermediate one. More important then is the ability to find a compact representation
among all of those of the type (2.14), and this latter property is more connected to the
approximation order of the MRA itself.

And, what about the impact of vanishing moments? A high number of vanishing mo-
ments is important for algorithms that involve the manipulation of the wavelet coefficients.
For instance, wavelet representations of one-dimensional piecewise-smooth functions be-
come sparser when the number of vanishing moments increases. On the other hand, in
some applications, mother wavelets with varying vanishing moments may be preferred,
since they can serve, e.g., as ‘multiple detectors’. In other applications, the coefficients
associated with the mother wavelet that has the highest vanishing moments can be used
to capture the essential information about the object, while the other coefficients simply
aid in the reconstruction process.

Let us illustrate this discussion by comparing several framelets. The first two exam-
ples, constructed by an application of the UEP, are borrowed from [RS3]:

Example 2.16 (Figure 1). Take τ0(ω) = (1 + e−iω)2/4. Then φ is the B-spline function“splinetwors

of order 2, i.e. the hat function. Let

τ1(ω) := −1

4
(1− e−iω)2 and τ2(ω) := −

√
2

4
(1− e−i2ω).

The corresponding {ψ1, ψ2} generates a tight framelet. The framelet has m0 = 1 vanishing
moments (though one of the wavelets has 2 vanishing moments); the approximation order
of the MRA is 2. The approximation order of the framelet system equals 2 = min(m, 2m0).

Example 2.17 (Figure 2). Take τ0(ω) = (1 + e−iω)4/16. Then φ is the B-spline function“splinefourrs

of order 4 which is a piecewise cubic polynomial. Let

τ1(ω) := 1
4 (1− e−iω)4, τ2(ω) := − 1

4 (1− e−iω)3(1 + e−iω),

τ3(ω) := −
√

6
16 (1− e−iω)2(1 + e−iω)2, τ4(ω) := − 1

4 (1− e−iω)(1 + e−iω)3.

The corresponding {ψ1, ψ2, ψ3, ψ4} generates a tight framelet that has vanishing moments
of order m0 = 1. For this φ we have m = 4. The approximation order of the framelet
system is 2 = min(m, 2m0).

14
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Figure 1. The graphs of the wavelet functions ψ1 and ψ2 derived from the B-
spline function of order 2 in Example 2.16. {ψ1, ψ2} generates a tight
wavelet frame in L2(IR) and has vanishing moments of order 1. The
framelet system provides approximation order 2, which is optimal for a
piecewise-linear system.
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Figure 2. The graphs of the wavelet functions ψ1, ψ2, ψ3, ψ4 derived from the B-
spline function of order 4 in Example 2.17; together, the four wavelets
generate a tight framelet. Wavelet (d) has only one vanishing moment,
hence the approximation order is 2, which is suboptimal since the cor-
responding MRA provides approximation order 4.

The next two examples are linear, respectively cubic spline framelets constructed by
using the OEP, as described below. We list here τ0, Θ and the τj , and revisit these examples
later.
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Example 2.18 (Figure 3). Take τ0(ω) = (1 + e−iω)2/4 and Θ(ω) = (4− cosω)/3. Let“splinetwonew

τ1(ω) := −1

4
(1− e−iω)2 and τ2(ω) := −

√
6

24
(1− e−iω)2(e−iω + 4e−i2ω + e−i3ω).

The set {ψ1, ψ2} generates a tight framelet and has vanishing moments of order 2. Both ψ1

and ψ2 are symmetric and their graphs are given in Figure 3. Even though 2m0 = 4, we still
have m = 2, so that min(m, 2m0) equals 2; this system has thus the same approximation
order as in Example 2.16.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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0.2
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0.6

0.8

1

1.2

Figure 3. The graphs of the symmetric wavelet functions ψ1 and ψ2 derived from
the B-spline function of order 2 in Example 2.18. {ψ1, ψ2} generates
a tight framelet, and each of the wavelets has two vanishing moments,
and hence the approximation order of the system is min{4, 2} = 2; the
higher number of vanishing moments than in Example 2.16 leads to
sparser wavelet coefficients but does not improve the decay of the error
‖Qnf − f‖ for the truncated reconstruction.

Example 2.19 (Figure 4). Take τ0(ω) = (1 + e−iω)4/16 and“splinefournew

Θ(ω) = 2452/945− 1657/840 cos(ω) + 44/105 cos(2ω)− 311/7560 cos(3ω).

Let

τ1(ω) = t1 (1− e−iω)4
[
1 + 8e−iω + e−i2ω

]
,

τ2(ω) = t2 (1− e−iω)4
[
1 + 8e−iω + (7775/4396 t− 53854/1099)e−i2ω + 8e−i3ω + e−i4ω

]
,

τ3(ω) = t3 (1− e−iω)4
[
1 + 8e−iω + (21 + t/8)(e−i2ω + e−i4ω) + t e−i3ω + 8e−i5ω + e−i6ω

]
,

where t3 =
√

32655/20160, t = 317784/7775 + 56
√

16323699891/2418025, and

t1 =

√
11113747578360− 245493856965 t

62697600
, t2 =

√
1543080− 32655 t/40320.

16



011126(.tex) (as of ???) TEX’ed at 11:34 on 27 November 2001

0 1 2 3 4

0

0.2

0.4

0.6

0.8

(a)
0 1 2 3 4 5

−0.2

0

0.2

0.4

(b)

0 2 4 6

−0.5

0

0.5

1

(c)
0 2 4 6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(d)

Figure 4. (b), (c) and (d) are the graphs of the symmetric mother wavelets derived
from the cubic B-spline function (a) in Example 2.19. All the mother
wavelets have 4 vanishing moments, hence the approximation order of
the system is min{4, 8} = 4.

The above masks satisfy the OEP conditions, hence lead to a tight framelet. All the
wavelets here have 4 vanishing moments hence m0 = 4. The mother wavelets ψ1, ψ2, ψ3

are symmetric. Note that for this φ the approximation order of the MRA is m = 4. The
approximation order of the framelet system is 4 = min(m, 2m0). The three filters are of
size 7, 9, 11.

A fifth example is constructed by using the UEP, now starting from a different, non-
spline MRA; this construction will also be revisited in more detail in §3.1.

Example 2.20 (Figure 5). In this case we have one scaling function and three wavelets.“fifth

The filters τ0 and τj , j = 1, 2, 3 are obtained by spectral factorization, i.e. by “taking
a square root”. In particular, we have |τ0(ω)|2 = cos8(ω/2)

(
1 + 4 sin2(ω/2)

)
, τ1(ω) =

eiωτ0(ω+π), τ2(ω) =
√

5
2 sin2(ω), and τ3(ω) = eiωτ2(ω). The wavelets in this system have

2 vanishing moments, so that m0 = 2. The approximation order of the MRA is m = 4;
the approximation order of the framelet is thus min(m, 2m0) = 4.

For these five examples, as well as for the bi-framelet of §6, and for three benchmark
wavelet bases (not frames - we used here the Haar basis and the two bi-orthogonal wavelet
bases known as (5,3) and (9,7)), we provide, for a very smooth function f , the error
‖Qnf −f‖, for increasing n. The results are listed in Table 1 (courtesy of Steven Parker of
UW-Madison). For each system we also list three indices in the header of the column: the
first is the number of vanishing moments of the system, the second is the approximation
order of the system, and the third is the approximation order of the underlying MRA
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Figure 5. (b), (c) and (d) are the graphs of the mother wavelets in Example 2.20
of the Type I pseudo-spline tight framelets derived from the scaling
function, pseudo-spline (4, 1), shown in (a). (See §3.1 for details)

HAAR (5,3) (9,7) Ex. 2.16 Ex. 2.17 Ex. 2.18 Ex. 2.19 Ex. 2.20 Bi-frame
level (1,1,1) (2,2,2) (4,4,4) (1,2,2) (1,2,4) (2,2,2) (4,4,4) (2,4,4) (4/2,4,4)

2 6.36e-01 1.57e-01 9.15e-02 3.26e-01 5.62e-01 1.67e-01 5.44e-02 1.93e-01 1.20e-01
3 3.72e-01 4.83e-02 8.15e-03 1.14e-01 1.86e-01 4.24e-02 9.90e-04 1.64e-02 4.11e-03
4 1.92e-01 1.27e-02 5.54e-04 3.12e-02 5.01e-02 1.23e-02 3.20e-05 1.11e-03 9.96e-05
5 9.63e-02 3.20e-03 3.53e-05 7.97e-03 1.28e-02 3.17e-03 2.08e-06 7.12e-05 2.98e-06
6 4.75e-02 8.02e-04 2.20e-06 2.00e-03 3.20e-03 8.00e-04 1.31e-07 4.47e-06 1.32e-07
7 2.30e-02 2.00e-04 1.35e-07 5.01e-04 8.00e-04 2.00e-04 8.38e-09 2.80e-07 8.09e-09
8 1.07e-02 4.94e-05 8.07e-09 1.25e-04 1.98e-04 4.94e-05 5.81e-10 1.75e-08 5.77e-10
9 4.60e-03 1.18e-05 4.49e-10 3.06e-05 4.71e-05 1.18e-05 4.98e-11 1.09e-09 4.98e-11
10 1.53e-03 2.35e-06 2.47e-11 7.06e-06 9.41e-06 2.35e-06 5.54e-12 6.78e-11 5.56e-12

1.07 2.00 3.99 1.96 1.99 2.00 4.08 3.95 4.13

Table 1. The errors ‖Qnf−f‖ for nine different systems, for increasing n (=level);
the last row gives the slope of −log2‖Qnf − f‖ as a function of n, com-
puted by linear regression.

(the last system is a bi-frame, meaning that the decomposition masks are different from
the reconstruction masks: the former has four vanishing moments while the latter only
two vanishing moments). At the bottom of Table 1 we give the numerical estimate of
the decay rate of ‖Qnf − f‖ in n; this clearly is (approximately) equal, in all cases, to
the approximation order of the system, and depends only marginally on the other two
indices. Let us look at some particular comparisons. For the linear splines in Examples
2.16 and 2.18, the increase in the number of vanishing moments from Examples 2.16 to
2.18 does not improve the approximation order of the framelet. What this means is that
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the estimates of the sizes of the wavelet coefficients, as given by e.g. maxi,k |〈f, ψi,j,k〉|, will
decay faster as j increases for Example 2.18 than for Example 2.16, but that the truncated
wavelet expansions, using coefficients up to level j only, will exhibit comparable errors. For
the cubic splines in Examples 2.17 and 2.19, the number of vanishing moments increases
from 1 (for Example 2.17) to 4 (for Example 2.19); this is reflected by an increase in the
approximation order of the corresponding framelets, from 2 to 4. In Example 2.20 we have
only 2 vanishing moments, but the framelet approximation order is 4, and the decay of
‖Qnf − f‖ is comparable to that for Example 2.19, even though the decay of the wavelet
coefficients will be less fast.

Let us proceed now with a more systematic tour.

3. A tour through univariate constructions of tight framelets

We restrict our attention here to strongly local MRA-based constructions. Construc-
tions are typically guided by a desire for some of the following properties for the mother
wavelets:
(i) Short filter/support.
(ii) High smoothness.
(iii) High approximation orders of the refinable function.
(iv) High approximation orders for the framelet system.
(v) High order of vanishing moments.
(vi) Small number of mother wavelets (equivalently: low order of oversampling).
(vii) Symmetry (or anti-symmetry) of the wavelets.

The constructions of [RS3-6] are optimal with respect to properties (i-iii) and (vii):
they involve tight and other spline framelets with very small support. However, the ap-
proximation order of these framelet systems is 2 (which is optimal only in the case of the
piecewise-linear tight framelet), because the number of vanishing moments is always 1.
Moreover, the number of mother wavelets increases together with the underlying smooth-
ness.

In order to improve the approximation order of the framelet system or the number of
vanishing moments without changing the underlying MRA, one has to increase the support
of the mother wavelets. Let us examine, as a major example, the case of the spline MRAs.
In this case the refinable function φ is the B-spline of order m (with m some fixed positive
integer) whose mask is

τ0 =

(
1 + e−iω

2

)m
,

for which [RS3,5,6] use the UEP to construct a tight framelet. Since
1 − |τ0|2 = O(| · |2) around the origin, Theorems 2.8 and 2.11 show why the approxi-
mation order of the resulting wavelet system cannot exceed 2 (regardless of the value of
m). We attain better framelet approximation order via the OEP (see below), by choosing
a trigonometric polynomial Θ; since |τ+|2 = Θ− Θ(2·)|τ0|2, we necessarily obtain mother
wavelets with longer support.
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Let us examine another property of the framelet system, viz., the number of mother
wavelets. Using any of the extension principles, we have two requirements to fulfill:

Θ(2·)|τ0|2 +
r∑

i=0

|τi|2 = Θ, and Θ(2·)τ0τ0(·+ π) +
r∑

i=1

τiτi(·+ π) = 0.

So far we have not specified r. Without imposing special conditions on the refinable
function, we will need at least two mother wavelets in order to satisfy the above. A
rigorous statement to that extent is found at the end of this section. (One needs great
care when stating such results: after all, an orthonormal wavelet system can be derived
from any local MRA, without any further conditions on the compactly supported refinable
function [BDR3]. The single mother wavelet, however, may decay then at a very low
rate, in stark contrast with the compact support of the refinable function.) Moreover,
if we impose also the symmetry requirements (vii), then it may reasonably be expected
that we need, at least for generic refinable functions, three mother wavelets. We shall
therefore consider cases where r can be as large as 3. For simplicity, we restrict ourselves
to r = 3, and provide a method to reduce the number of mother wavelets from 3 to 2, if
desired. (This reduction usually comes at a price: the filters may be longer and/or have
less symmetry.) There may, of course, be situations where one wishes to consider larger r,
but we shall not do so here.

We advocate the use of systems in which the approximation order of the framelet
systems matches, or at least does not lag significantly behind, the approximation order of
the MRA itself, and this principle guides us throughout this section.

(3.1) Discussion: MRAs of approximation order 4. As an illustration for the
above, let’s consider several MRAs whose approximation order is 4. The orthonormal
system of that order involves 8-tap filters [D1], and the mother wavelets have relatively
low smoothness. Symmetry of the mother wavelets can be obtained by switching to a bi-
orthogonal system, such as the 7/9 bi-orthogonal wavelets. In all these cases, the system
provides approximation order 4, and the vanishing moments are of order 4, as well.

In [RS3,5] two different tight cubic spline framelets are constructed. One of them
involves four mother wavelets each associated with a 5-tap filter. The approximation order
of the system is 2 and the vanishing moment order is 1; the corresponding τ0, τj were given
in Example 2.17 above. The smoothness is maximal (for 5-tap filters). In order to increase
the approximation order of the system from 2 to 4 we must use longer filters, regardless of
whether we stay with a spline MRA or not.

In our first stop on the tour in this section, we will change the MRA (to a pseudo-
spline MRA of type (4, 1), see below) and obtain three mother wavelets with associated
filters of length 6, 5, 5. We also construct from the same MRA a system with two mother
wavelets with filters of length 6 and 14. The approximation order of the tight framelet
is 4 in both cases, but the vanishing moments are only of order 2. In our second stop,
we construct spline framelets of any order with any number of vanishing moments. In
that construction, the number of wavelets is either 3 (with short filters) or 2 (with longer
filters). In the former case, we achieve approximation order 4 (and vanishing moments
2) with three 7-tap filters, and in the latter case the two filters are of sizes 7 and 17.
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It turns out that one can find (“by hand”) tight spline framelets that have even shorter
filters; examples of the results of such (ad-hoc) constructions within the cubic spline MRA,
yielding two mother wavelets with 9- and 11-tap filters, with 4 vanishing moments, are
given in the Appendix. Note that other framelet constructions with short support and few
wavelets are given in [CH], [P1-2] and [S].

It is clear that one has to consider trade-offs when deciding which of these framelets,
all of which have approximation order 4, one should use. Since gain in vanishing moments
carries a price (in filter size), one should consider it only if the corresponding faster decay of
wavelet coefficients is sought; if the most important feature is the order of approximation,
then there is no need to look for higher numbers of vanishing moments than half the
desired approximation order. The same applies to the gain in smoothness; the switch from
pseudo-splines of (4, 1) to splines of order 4 yields smoother mother wavelets, with longer
associated filters, for the same approximation order. Which one is preferred is dictated by
whether short filters or smooth wavelets are most desirable for the application at hand.

Wavelet mask construction: All the constructions in this section use the following
approach. Suppose that we are given a refinable function with mask τ0, and that we have
chosen the fundamental MRA function to be some 2π-periodic Θ, such that the OEP
condition is satisfied:

Θ−Θ(2·)|τ0|2 ≥ 0.

Let’s assume, in addition, that

A := Θ−Θ(2·)|τ0|2 −Θ(2·)|τ0(·+ π)|2 ≥ 0.

This extra condition will make it easy to find wavelet masks. Choose t2, t3 to be two
2π-periodic trigonometric polynomials such that

|t2|2 + |t3|2 = 1, t2t2(·+ π) + t3t3(·+ π) = 0.

A standard choice for such t2, t3 is

t2(ω) =

√
2

2
, t3(ω): =

√
2

2
eiω.

Define ϑ and a to be square roots of Θ and A respectively. The three wavelet masks
are then

τ1 := e1ϑ(2·)τ0(·+ π),

τi := tia, i = 2, 3,

where e1(ω) = eiω. It is easy to check that the combined mask τ := (τ0, . . . , τ3) satisfies the
OEP conditions (cf. Proposition 1.11). Assuming that all the side-conditions of the OEP
are satisfied (to be checked in individual constructions), we thus obtain a tight framelet.

One can reduce the number of mother wavelets to two by defining

τ1 := e1ϑ(2·)τ0(·+ π),
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τ2 := τ0 a(2·).

Then τ = (τ0, τ1, τ2) satisfies the OEP conditions with a new fundamental function Θ−A.
In the case where one uses the UEP rather than the OEP, Θ = 1, and hence one uses

the assumption that

A := 1− |τ0|2 − |τ0(·+ π)|2 ≥ 0 .

Let a be the square root of A. One can then define three wavelet masks by

τ1 := e1τ0(·+ π),

τ2 :=
a√
2
, τ3 := e1τ2 .

The reduction from three to two mother wavelets can still be carried out, but one then
joins again the OEP case, now with the new fundamental function 1−A.

This section is organized as follows. First, in §3.1, we use the UEP approach just
sketched to construct univariate tight framelets based on a new class of refinable functions,
pseudo-splines, a class that ranges from B-splines at one end, to the refinable functions
constructed in [D1] at the other end. This yields the pseudo-spline wavelets of Type I; a
variant on the construction gives pseudo-spline wavelets of Type II. The main advantage
of this construction is the ability to increase the approximation order (as compared to a
spline system in [RS3]) of the system, while keeping the filters very short (although not
as short as in the [RS3] construction). We also illustrate (Type III) the reduction to tight
framelets that have only two mother wavelets.

In §3.2 we use the OEP approach sketched above to give a systematic construction
of tight spline framelets, starting from B-splines of arbitrary order. Once again, each
system is generated by two or three mother wavelets, and the wavelets, in general, are
not symmetric. We obtain in this way, from any B-spline MRA, tight spline framelets
of optimal approximation order. The filters, however, are longer than their pseudo-spline
counterparts. The same construction can also yield tight spline framelets with maximal
number of vanishing moments, by requiring then even longer filters.

In this era of Matlab, Maple and Singular (cf. [GPS]), one can also construct systems
by ad-hoc methods, if the approximation order is not too large. In the Appendix, we
present a variety of spline systems that were computed in this way. All the systems have
the maximal number of vanishing moments (the approximation order of the system is,
a fortiori, also maximal). Some of the systems are generated by two (not symmetric)
mother wavelets, and others by three (symmetric) mother wavelets. In all examples the
corresponding wavelet masks are shorter than the spline-masks in §3.2 (but still longer
than the non-spline masks in §3.1).

All the above constructions have their bi-framelet counterparts, which can be a way
to recover symmetry when an associated tight framelet uses non-symmetric wavelets. This
is illustrated in §5; note, however, that at least one of the bi-framelet constructions in §5
cannot be regarded as a ‘symmetrization’ of a tight framelet construction.
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3.1. Pseudo-spline tight framelets

Let ` < m be two non-negative integers. We denote

|τm,`0 (ω)|2 := cos2m(ω/2)
∑̀

i=0

(
m+ `

i

)
sin2i(ω/2) cos2(`−i)(ω/2).

Since |τm,`0 |2 is non-negative, it is, by spectral factorization, the square of some trigono-

metric polynomial τm,`0 . It is easy to prove that the corresponding refinable function φm,`
lies in L2(IR). Moreover, the shifts E(φm,`) of φm,` form a Riesz basis for V0(φm,`). We
refer to this refinable function as a pseudo-spline of order m and type `, or, in
short, of type (m, `). Fixing m, we note that a pseudo-spline of type 0 is an mth order
B-spline, while the pseudo-spline of type m − 1 coincides with the refinable functions of
orthonormal shifts that were constructed in [D1]. τm,`0 is the mask of a filter with m+`+1
non-zero coefficients. The smoothness of φm,` increases with m and decreases with `. For
example, a straightforward computation (based on the transfer operator) shows that the
L2(IR)-smoothness exponent of φm,1 is

α(m, 1) := m− log2

√
(m+ 2).

(I.e., φm,1 ∈ Wα
2 (IR) for every α < α(m, 1), but φm,1 6∈ Wα(m,1)

2 (IR).) In the case m = 4
and ` = 1 (which is of possible practical interest), we obtain that the smoothness parameter
is 4− log2

√
6 ≈ 2.71, hence that φ4,1 ∈ C2(IR). We note that α(4, 0) = 3.5.

Next, we note that |τm,`0 |2 consists of the first `+ 1 terms in the binomial expansion
of

1 = (cos2(ω/2) + sin2(ω/2))m+`.

Thus, |τm,`0 (ω)|2 + |τm,`0 (ω+π)|2 ≤ 1 and therefore we can use the UEP. Also, 1−|τm,`0 |2 =
O(| · |2`+2). This means that, in view of Theorems 2.8 and 2.11, all tight framelets that are
extracted from the (m, `)-pseudo-spline via the UEP will satisfy:
(a) The approximation order provided by the refinable function is m.
(b) The approximation order of the framelet system is min{m, 2`+ 2}.
(c) The order of the vanishing moments is `+ 1.

For example, in the case m = 4 and ` = 1, we obtain optimal approximation order 4,
but we must have at least one wavelet in the system with only two vanishing moments.

We propose two simple UEP-based constructions of pseudo-spline tight framelets.

Type I Pseudo-spline tight framelets. This is a straightforward application of the
principle above. Given τ0 := τm,`0 , we define

τ1 := τm,`1 := e1τ
m,`
0 (·+ π).

where, as before, e1(ω) = eiω. As in Mallat’s construction, [Ma], τ0τ0(·+ π)+τ1τ1(·+ π) =
0. It also follows that

A := 1− |τ0|2 − |τ1|2 =
m−1∑

i=`+1

(
m+ `

i

)
cos2m+2`−2i(ω/2) sin2i(ω/2).
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Since A is a non-negative π-periodic trigonometric polynomial, we can find a π-periodic
trigonometric polynomial a such that A = |a|2. We then define τ2 = a√

2
, and τ3 :=

e1τ2(·+ π) = e1τ2, to conclude that τ := (τ0, . . . , τ3) satisfies the UEP. Hence, the resulting
wavelet system is a tight frame. Note that each mask corresponds to an (m + ` + 1)-tap
filter.

The casem = 4, ` = 1 is depicted in Figure 5. In this case the filters are slightly shorter
compared with the general case; one is 6-tap, and the others are 5-tap (this simplification
happens because

A = 10 cos6(ω/2) sin4(ω/2) + 10 cos4(ω/2) sin6(ω/2) = 10 cos4(ω/2) sin4(ω/2);

a similar reduction occurs in general provided that l = m− 3.) The approximation order
of the system is 4 (optimal), one of the wavelets has 4 vanishing moments, while the two
others have 2 vanishing moments. The L2-smoothness parameter is 2.71.

Type II Pseudo-spline tight framelets. We proceed as in the Type I case to obtain τ1
and A as before. We then split A = A1 +A1(·+π), with A1 defined as the sum of the first
m−`−1

2 terms in the definition of A. (We assume tacitly that m+` is odd; the construction
can be easily adapted to the even case, splitting the middle term evenly between A1 and
A1(·+π).) Choosing τ2 to be a square root of A1, and τ3 := e1τ2(·+ π), we obtain again a
combined mask τ = (τ0, . . . , τ3) that satisfies the UEP. Hence the resulting wavelet system
is a tight frame. The wavelets for the case m = 4 and ` = 1 are given in Figure 6.
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Figure 6. (b), (c) and (d) are the graphs of the mother wavelets of the Type II
Pseudo-spline tight framelets derived from the pseudo-spline (4,1) (a).

Remarks.
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1. The above constructions of pseudo-spline tight framelets, published here for the
first time, have been in use for various applications since 1997. In particular, N. Stefansson
used them, with excellent results, in signal compression experiments.

2. The papers [CH] by Chui and He and [P1,2] by Petukhov present general methods
for solving the equations arising from the UEP method if r = 2, seeking to find two
appropriate τ1 and τ2 where τ0 is given such that |τ0(ω)|2 + |τ0(ω + π)|2 ≤ 1. (If τ0 is
symmetric, they also show how to handle the case when three symmetric τ1, τ2, τ3 are
desired.) Applying their general method to the pseudo-spline τ0 would lead to τ ′1, τ

′
2, τ

′
3

that are closely related to the τi given here. One could also use these methods to obtain
two τ ′′1 , τ

′′
2 . Either of these tight framelets will have the same approximation order as given

here.

Type III Pseudo-spline tight framelets. Applying the “reduction” technique sketched
above, one can define a tight pseudo-framelet with only two mother wavelets, corresponding
to Θ := 1−A. Note that since A = O(| · |2`+2) around the origin, these type III framelets
provide the same approximation orders (and have the same number of vanishing moments)
as their type I and II counterparts. However, the second mother wavelet now has a very
long filter: 3(m+ `) + 1 in general, 14 in the more fortunate (4, 1)-case.

3.2. A systematic construction of spline framelets of high approximation order

We shall here apply the OEP construction. Let φ be a B-spline of order m, then

τ0(ω) =

(
1 + e−iω

2

)m
,

and

|φ̂(ω)|2 =
sin2m(ω/2)

(ω/2)2m
.

To construct tight framelets having approximation order 2`, one needs to find Θ := Θm,`

of the form

(3.2) Θ(ω) = 1 +
`−1∑

j=1

cj sin2j(ω/2)
“ThetaforSpl

such that, at the origin,

(3.3) 1−Θ|φ̂|2 = O(| · |2`).“ThetaOrder

In other words, Θm,` must approximate the function 1/|φ̂|2 at the origin to order `. Such
a Θ can be determined uniquely as shown in the next lemma.

Lemma 3.4. Let φ be the given B-spline of order m; let ` be an integer ` ≤ m. Then“stetml

there is a unique positive trigonometric polynomial of minimal degree

Θ(ω) = 1 +

`−1∑

j=1

cj sin2j(ω/2)
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satisfying, at the origin:

1−Θ|φ̂|2 = O(| · |2`).

Proof: The key in the proof is that the (uniquely determined) coefficients (cj) in
the definition of Θ are non-negative. From (3.3), we have

Θ(ω) =

(
ω/2

sinω/2

)2m

[1 +O(|ω|2`)].

Since

arcsinω = ω +
∞∑

j=1

(2j − 1)!!

(2j)!!(2j + 1)
ω2j+1,

we have

ω/2

sin(ω/2)
=

arcsin(sin(ω/2))

sin(ω/2)
= 1 +

∞∑

j=1

(2j − 1)!!

(2j)!!(2j + 1)
sin2j(ω/2), ω → 0.

Therefore, Θ is the unique trigonometric polynomial of minimum degree in (3.2) such that

(
1 +

∞∑

j=1

(2j − 1)!!

(2j)!!(2j + 1)
yj
)2m

= 1 +
`−1∑

j=1

cjy
j +O(|y|`), y → 0.

It follows from the above equation that the cj , j ∈ IN are positive. In particular, Θ(ω) > 0
for all ω ∈ IR.

To apply the approach sketched earlier, we need to check that A is positive:

Proposition 3.5. For integers `,m with ` ≤ m, let Θ be the trigonometric polynomial“keylem

given in Lemma 3.4. Then the trigonometric polynomial

A := Θ−Θ(2·)(cos2m(·/2) + sin2m(·/2))

is non-negative. Furthermore, A = O(| · |2`) near the origin.

Proof: We start by writing A as a homogeneous polynomial of degree n := m +
2`−2 in the arguments x := cos2(ω/2) and y := sin2(ω/2); this can be done by multiplying
each term sin2j(ω/2) in Θ by (cos2(ω/2) + sin2(ω/2))n−j = (x + y)n−j . We thus replace
yj by

(3.6) yj(x+ y)n−j =
n∑

i=0

di(j)y
ixn−i, with di(j) :=

{
0, i < j,(
n−j
i−j
)
, otherwise.

“core

In Θ(2·), we replace each sin2j(ω) = (4xy)j term by 22jyjxj(x+ y)2`−2j−2.
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Let p(x, y) be the homogeneous polynomial in x, y (of degree n) that is obtained from
this conversion of Θ. Then

p(x, y) =
n∑

i=0

diy
ixn−i, di :=

`−1∑

j=0

cjdi(j).

We make the following straightforward observations:
(i) Since di(j) and cj ≥ 0, for all i, j, it follows that di ≥ 0, for all i.
(ii) Since, for each j, and for each i < n

2 , di(j) ≤ di+1(j), we have

di ≤ di+1, i <
n

2
.

(iii) Since, for each j, and for each i < n
2 , di(j) ≤ dn−i(j), we have

di ≤ dn−i, i <
n

2
.

(iv) One calculates that, for every j, 2d`−2(j) ≤ d`−1(j). Therefore,

2d`−2 ≤ d`−1.

Let q(x, y) be the polynomial (of degree 2`− 2) that was obtained from Θ(2·). Then
q(x, y) = q(y, x), and the representation of A is of the form

p(x, y)− q(x, y)(xm + ym) =:
n∑

i=0

biy
ixn−i.

We prove the Proposition by showing that each bi is non-negative. Since q(x, y)(xm + ym)
is symmetric, and in view of observation (iii) above, it suffices to show that bi ≥ 0 for
i ≤ n

2 .

Now the condition 1−Θ|φ̂|2 = O(|·|2`) is equivalent (cf. Theorem 2.8) to the condition

Θ−Θ(2·) cos2m(·/2) = O(| · |2`).

(This shows that A = O(| · |2`) near the origin.) Rewritten in terms of the polynomials p, q,
this last condition says that p(x, y)− q(x, y)xm is divisible by y`. It follows that the terms
in q(x, y) in yi, with i < `, must match up exactly with corresponding terms in p(x, y).
By the symmetry q(x, y) = q(y, x), this determines all the coefficients in q; consequently,

q(x, y) =
`−1∑

i=0

diy
ix2`−2−i +

`−2∑

i=0

dix
iy2`−2−i,

and bi = 0, i = 0, . . . , ` − 1. Let ` ≤ i ≤ n
2 ; then (with dk := 0 for negative k),

bi = di−(d2`−2−i+di−m). From observation (ii), di ≥ d`, while, since 2`−2−i, i−m ≤ `−2,
the same observation yields that d2`−2−i+di−m ≤ 2d`−2. Altogether, bi ≥ d`− 2d`−2 ≥ 0,
by observation (iv).
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Proposition 3.5 and Lemma 3.4 show that we can use our general ansatz, and obtain a
systematic construction of tight framelets (with two or three mother wavelets) with ` ≤ m
vanishing moments, for an arbitrary mth order B-spline.

Remark. The arguments given here for the construction of tight framelets can be ex-
panded easily to “bi-framelets”, where one needs to identify τi and τdi , i = 1, . . . , r, so that
the resulting framelets are symmetric for both pseudo-spline and spline MRAs. Again, the
general case requires an appropriate function Θ (which no longer needs to be positive); all
the equations are the expected bi-orthogonal generalizations of our tight frame equations
here (see §5). Because Θ is less constrained, the construction is much easier; in fact, it
turns out [DH] that one can obtain dual framelets from any two refinable functions, i.e.,
for any pair of τ0, τ

d
0 .

(3.7) Example: spline framelets with approximation order 4. For the mth order
B-spline with m ≥ 4, take

Θ(ω) := 1 +
m sin2(ω/2)

3
.

Then

Θ(ω)
sin2m(ω/2)

(ω/2)2m
= 1 +O(|ω|4)

around the origin. We define

|τ1(ω)|2 := (1 +
m sin2(ω)

3
) sin2m(ω/2).

Then, in the notations of the lemma above,

A(ω) = (x+ y)m+2 +
m

3
y(x+ y)m+1 − (x2 + (2 +

4m

3
)xy + y2)(xm + ym).

This expression is indeed divisible by y2, and is a non-negative linear combination of the
various monomials involved.

For the benchmark case of m = 4 and ` = 1, the type I construction yields three 7-tap
filters, longer than the (6, 5, 5)-tap filters of the corresponding pseudo-spline construction.
The approximation order is (the optimal) 4 in both cases. The two wavelets of type III
now have filters of lengths 7 and 17. The case m = 4, ` = 4 yields wavelets with four
vanishing moments and with filters of lengths 11.

We have shown here how to construct tight spline framelets with 2 and 3 mother
wavelets. A natural question is whether we can construct tight spline framelets with a
single generator. A partial negative answer is given in the following result.

Theorem 3.8. All the constructions of strongly local MRA-based tight frames that are“notonewav

derived from a B-spline of order m > 1 must have at least two mother wavelets.
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Proof: The mask τ0 of the mth order B-spline satisfies |τ0(ω)|2 = cos2m(ω/2).
Suppose we used the OEP conditions to construct a strongly local tight frame based on a
single wavelet mask τ1; that is, τ1 as well as the fundamental function Θ are trigonometric
polynomials. Recall (see the proof of Proposition 1.11) that, equivalently, we could have
applied the UEP with respect to the refinement mask whose square is

Θ(2·)|τ0|2
Θ

.

But that implies that this latter refinement mask is CQF, i.e., Θ(2·)|τ0|2
Θ + Θ(2·)|τ0|2(·+π)

Θ(·+π) = 1,

or, equivalently,

Θ(2·)(t+ t(·+ π)) = ΘΘ(·+ π), t := Θ(·+ π)|τ0|2.

Comparing the degrees of the two sides of the last equality, we conclude that, for some
positive constant c,

(3.9) Θ(2·)c = ΘΘ(·+ π), and t+ t(·+ π) = c.“one

Because |τ0|2|τ0|2(· + π) = 4−m|τ0|2(2 · +π), we conclude from the first equality in (3.9),
that

(3.10) t t(·+ π) = c4−mt(2 ·+π).“two

Suppose that t(ω) =
∑k1

j=j1
α(j)eijω . From (3.9) we conclude that α(0) = c/2, and that

α(2j) = 0 for any j 6= 0. Thus, k1 ≥ 0. If k1 = 0 then (by comparing the constant term
on both sides of (3.10)) (c/2)2 = c4−mc/2, a contradiction.

Thus, k1 > 0. Let k2 be the degree of the second highest non-zero term of t. If k2 > 0,
we are led to a contradiction (since the coefficient of ei(k1+k2)ω in the left-hand side of
(3.10) is then non-zero, while the same coefficient in the right hand-side of (3.10) is zero).
Thus, k2 = 0. Similar arguments hold for the negative frequency contributions to t. We
conclude, therefore, that t is a linear combination of (at most) three exponentials, hence
can have at most a double zero at any given point. This implies that m = 1, since t has a
zero of order 2m at π.

Remarks.
1. The argument of this proof is instructive for non-spline MRA as well. If we have

a strongly local MRA-based tight framelet with only one mother wavelet, then (3.9) still
holds, ensuring that |τ̃0|2 = Θ(2·)|τ0|2/Θ is a trigonometric polynomial, which satisfies the
CQF constraint |τ̃0|2 + |τ̃0|2(· + π) = 1. In summary, all the strongly local tight framelet
constructions in one variable that lead to a single mother wavelet can be equivalently done
by a (strongly local) standard CQF construction.

2. Examples of exponential decay orthogonal spline wavelets constructed in [B] and
[L] confirm that the assumption of the compactly supported mother wavelets is needed in
the above Proposition.
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4. The fast framelet transform

We assume in this section that the reader is familiar with the details of the fast
wavelet transform. Our goal is to highlight the subtle difference between that widely used
transform and its newer sibling, the fast framelet transform. Substantial frame software
is currently under development and will be made available to the public as a part of
the Software Distribution Center of the Wavelet Center for Ideal Data Representation
(www.waveletidr.org).

Let f ∈ L2(IR
d); the function f is held fixed throughout the discussion. Assume

that we are given information about f on some uniform grid, a grid which, for notational
convenience, we assume to be the integer lattice ZZd. The function f is thus assumed to
be ‘given to us’ in terms of the discrete values

(F0,0(k))k∈ZZd .

Concrete assumptions on the exact nature of F0,0 are made in the sequel. As a general
rule, F0,0(k) is a local average of the values of f around the point k.

Let X(Ψ) be an MRA-based wavelet system associated with the combined mask τ =
(τ0, . . . , τr). As before, the refinable function is denoted by ψ0 as well as by φ. We denote
by x = (x0, . . . , xr) the filters associated with (τ0, . . . , τr).

The discussion of the fast framelet transform is made into three parts: (i) the de-
composition algorithm, (ii) the reconstruction algorithm, and (iii) the interpretation of the
wavelet coefficients that were obtained in (i).

The analysis/decomposition step of the fast framelet transform is identical to that
of the fast wavelet transform, with the only change that we do not necessarily have 2d− 1
high pass filters. This step consists of the convolution of (F0,j) (j ≤ 0) with each of the
filters xi followed by the downsampling ↓:

Fi,j−1 ←− (xi ∗ F0,j)↓, i = 0, . . . , r.

The following simple observation is the basis for the interpretation of Fi,j-sequences. (No
special assumptions on X(Ψ) are required here; we also omit the straightforward proof.)

Proposition 4.1. Assume that“fastdecom

F0,0(k) = 〈f, ψ0,0,k〉, k ∈ ZZd .

Then

Fi,j(k) = 〈f, ψi,j,k〉, i = 0, . . . , r, j ≤ 0, k ∈ ZZd .
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Suppose now that the sequence F0,0 does not satisfy the assumptions of this propo-
sition. For example, suppose that F0,0 comprises the coefficients that synthesize f , i.e.,
suppose that

φ ∗′ F0,0 :=
∑

k∈ZZd

F0,0(k)φ(· − k)

either coincides with f , or provides a good approximation to f . Concretely, let us assume
that φ∗′F0,0 is the orthogonal projection Pf of f onto V0. If the shifts of φ are orthonormal
(an assumption that is natural in the construction of orthonormal X(ψ)), we still have

F0,0(k) = 〈f, ψ0,0,k〉 =: F̃0,0(k). However, for other tight framelets, this is not the case:
the analysis of §2 shows that if φ ∗′ F0,0 is the orthogonal projection of f onto V0, then the
Fourier series of F0,0 is the function

[f̂ , φ̂]

[φ̂, φ̂]
,

whereas the Fourier series for F̃0,0 is [f̂ , φ̂]. Thus, if we denote by a the Fourier coefficients

of [φ̂, φ̂], we have that

(4.2) F̃0,0 = F0,0 ∗ a.

Since we do not assume the shifts of φ to be linearly independent, we might have many
representations of the orthogonal projection Pf in the form Pf = φ ∗′ F0,0; we stress that
(4.2) holds for every such F0,0. We recall also that

a(k) = 〈φ, φ(· − k)〉, k ∈ ZZd .

Thus, in case F0,0 is comprised of the coefficients of the orthogonal projection as above,

we can simply convolve it with a, obtain in this way the inner products F̃0,0 required in

Proposition 4.1, and proceed to decompose F̃0,0. A similar analysis can be carried out if
the data F0,0(k) correspond to averages of the type F0,0(k) = 〈f, g(· − k)〉, with respect to

some “measurement function” g. One then computes F̃0,0(k) as the inner products with

φ(· − k) of the function f̃ in V0 characterized by 〈f̃ , g(· − k)〉 = F0,0(k). The Fourier series

c and c̃ of F0,0 and F̃0,0 are then related by c̃[φ̂, ĝ] = c[φ̂, φ̂].

Let us discuss now the reconstruction process. As in the fast wavelet transform, the
reconstruction employs the filters

xi, i = 0, . . . , r,

whose Fourier series are τi, i = 0, . . . , r. I.e., if xi is real-valued,

xi(k) = xi(−k).

If τ satisfies the assumptions of the UEP, then the reconstruction process is identical to
that of the fast wavelet transform: each sequence Fi,j is upsampled, and subsequently
convolved with xi:

(4.3) Fi,j 7→ xi ∗ (Fi,j↑).“recon
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We then have the perfect reconstruction formula F0,j+1 =
∑r

i=0 xi ∗ (Fi,j↑), and hence the
reconstruction step is as follows:

(4.4) F0,j+1 ←−
r∑

i=0

xi ∗ (Fi,j↑), j = j0, . . . ,−1.
“recons

Note that the perfect reconstruction property is purely technical. It does not require
the sequences (Fi,j)i to carry any useful information; it only requires that τ satisfies the
conditions of the UEP (Proposition 1.9), and that (Fi,j)i are obtained from F0,j+1 via the
frame decomposition algorithm.

If the system X(Ψ) is constructed via the Oblique Extension Principle, then we need
to modify slightly the reconstruction process.

Proposition 4.5. Let X(Ψ) be a tight framelet that is constructed via the OEP, based on“fastoep

a combined mask τ (where xi is the filter associated to each mask τi) and a fundamental
function Θ (whose Fourier coefficients form a sequence b). Let Fi,j , i = 0, . . . , r, j =
0,−1, . . . , j0, be obtained from F0,0 via the decomposition algorithm. Then, for each
j < 0,

b ∗ F0,j+1 = x0 ∗ ((b ∗ F0,j)↑) +

r∑

i=1

xi ∗ (Fi,j↑).

The proposition, thus, entails that the reconstruction can be done as follows:
(i) F0,j0 ←− b ∗ F0,j0 .
(ii) Continue as in (4.4).
(iii) Keep in mind that the reconstructed FR0,j differs from the decomposed FD0,j (i.e.,

we do not satisfy the perfect reconstruction formula). Precisely, FR0,j = FD0,j ∗ b. Since

convolution with b amounts to local averaging, the reconstructed FR0,0 is a somewhat blurred
version of the original F0,0.

Note that, again, the reconstruction algorithm does not require us to have any special
interpretation for the sequences Fi,j . We only need to know that τ,Θ satisfy the assumption
of Proposition 1.11, and that Fi,j were obtained by the decomposition algorithm.

We summarize the discussion above in

The fast framelet transform. Let X(Ψ) be a tight framelet constructed by the OEP,
and associated with the filters (xi)i, the refinable function φ, and the fundamental MRA
function Θ. Let a(k) := 〈φ, φ(· − k)〉, k ∈ ZZd, and let b be the Fourier coefficients of Θ.
Then:

input F0,0 : ZZd → C.

(1) Decomposition:
if f = φ ∗′ F0,0:

F0,0 ←− a ∗ F0,0

end

% at this point we assume F0,0(k) = 〈f, ψ0,0,k〉.
for j = −1,−2, . . . , j0
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for i = 1, . . . , r
Fi,j = (xi ∗ Fi,j+1)↓

end

end

%at this point we obtain that Fi,j(k) = 〈f, ψi,j,k〉
(2) Reconstruction:
F0,j0 ←− b ∗ F0,j0

for j = j0, . . . ,−1
F0,j+1 =

∑r
i=0 xi ∗ (Fi,j↑)

end

if Θ 6= 1, deconvolve b from F0,0, end

if F0,0 was convolved with a during the decomposition

deconvolve a from F0,0, end

We remark that the sequence δ − a ∗ b has at least as many vanishing moments as
the mother wavelets Ψ have (cf. Theorem 2.8). Thus, a ∗ b is a low-pass filter and its
deconvolution has a sharpening effect on F0,0. If f is known to be a smooth function, the
deconvolution of a ∗ b may be then unnecessary because a ∗ b ∗F0,0 is already a high order
approximation of F0,0.

5. Bi-framelets

In this section, we discuss general MRA-based wavelet frames. Two major generaliza-
tions are: (i) we reconstruct bi-framelets, and not only tight framelets, and (ii) we allow
the dilation operator to be based on any expansive matrix s with integer entries: given a
d× d matrix s with integer entries whose entire spectrum lies outside the closed unit disk,
we redefine the dilation operator D to be

(Df)(y) = |det s|1/2f(sy).

Correspondingly, the wavelet ψi,j,k is now defined by

ψi,j,k = Dj(ψi(· − k)) = |det s|j/2ψi(sj · −k).

The notion of a wavelet bi-frame is as follows: let Ψ = (ψ1, . . . , ψr) and Ψd =
(ψd1 , . . . , ψ

d
r ) be two sequences of mother wavelets. We say that the pair of systems

(X(Ψ), X(Ψd))

is a bi-frame if each of the two systems is Bessel, and we have the perfect reconstruction
formula

f =
∑

i,j,k

〈f, ψdi,j,k〉ψi,j,k. for all f ∈ L2(IR
d).
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The definition implies that each of the two systems, is, in particular, a frame. Also, the
roles of X(Ψ) and X(Ψd) in the above definition are interchangeable.

We discuss here MRA-based constructions of such bi-frames (i.e., each of the two
systems is a framelet) and will refer to such constructions as bi-framelets. Note that the
refinement mask τ0 of a given refinable function now satisfies

φ̂(s∗·) = τ0φ̂,

and, similarly, the mother wavelets are determined from their masks by the relation

ψ̂i(s
∗·) = τiφ̂.

Throughout the present section, we impose a smoothness condition on the refinable
functions φ, φd, viz. condition (4.6) of [RS3]. This condition is so mild (it is being satisfied,
e.g., by the support function of the unit cube), that we forgo mentioning it explicitly in
the stated results.

5.1. Mixed extension principles

Suppose that X(Ψ) and X(Ψd) are two MRA-based wavelet systems that correspond
to the combined (bounded) mask vectors τ = (τ0, . . . , τr), and τd = (τd0 , . . . , τ

d
r ). Let φ

and φd be the corresponding refinable functions and let (Vj)j and (V dj )j , respectively, be
the corresponding MRAs.

Associated with the combined masks τ and τ d is the following mixed fundamental
function of the parent vectors:

ΘM (ω) :=
∞∑

j=0

τ+(s∗jω)τd+(s∗jω)

j−1∏

m=0

τ0(s
∗mω)τd0 (s∗mω).

(Here, τ+τd+ :=
∑r

i=1 τiτ
d
i .) The function ΘM is well-defined (a.e.), whenever the two

systems X(Ψ) and X(Ψd) are both Bessel (indeed, the Bessel property implies, [RS3],
that the fundamental functions Θ and Θd of each system are finite a.e., while by Cauchy-
Schwartz, Θ2

M ≤ ΘΘd. Thus the sum that defines ΘM converges absolutely to an a.e.
finite limit). Note that the definition of ΘM implies the following analogue of (1.6):

(5.1) ΘM (ω) = τ+(ω)τd+(ω) + τ0(ω)τd0 (ω)ΘM (s∗ω).“btetrelation

Invoking Corollary 2 of [RS4], we may follow the argument in the proof of Theorem
6.5 of [RS3] to obtain the following result.

Proposition 5.2. Assume that the combined MRA masks τ = (τ0, . . . , τr) and τd =“bthmtet

(τd0 , . . . , τ
d
r ) are bounded. Assume also that φ̂ and φ̂d are continuous at the origin and

φ̂(0) = φ̂d(0) = 1, and that the corresponding wavelet systems X(Ψ) and X(Ψd) are
Bessel systems. Then the following conditions are equivalent:
(a) The system pair (X(Ψ), X(Ψd)) is a bi-framelet.
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(b) For ω ∈ σ(V0) ∩ σ(V d0 ), the mixed fundamental MRA function ΘM satisfies:
(b1) limj→−∞ ΘM (s∗jω) = 1.

(b2) If ν ∈ ZZd /(s∗ ZZd), if ω + ν ∈ σ(V0) ∩ σ(V d0 ), then

〈τ(ω), τd(ω + ν)〉ΘM (s∗ω) = 0.

With this, we have the following result, which extends the Mixed Unitary Extension
Principle of [RS4].

Corollary 5.3: The Mixed Oblique Extension Principle (MOEP). Let τ and τ d“bthmoep

be the combined masks of the wavelet systems X(Ψ) and X(Ψd), respectively. Assume
that Assumptions (1.3) are satisfied by each system and that both X(Ψ) and X(Ψd) are
Bessel systems. Suppose that we were able to find a 2π-periodic function Θ that satisfies
the following:

(i) Θ is essentially bounded, continuous at the origin, and Θ(0) = 1.
(ii) If ω ∈ σ(V0)∩ σ(V d0 ), and ν ∈ ZZd /(s∗ ZZd) such that ω+ ν ∈ σ(V0)∩ σ(V d0 ), then

(5.4) 〈τ(ω), τd(ω + ν)〉Θ(s∗ω) =

{
Θ(ω), if ν = 0,
0, otherwise.“genext

Then (X(Ψ), X(Ψd)) is a bi-framelet.

Proof: By Proposition 5.2, one needs to show only that Θ coincides with the
mixed fundamental function ΘM on σ(V0)∩σ(V d0 ). Let ω ∈ IRd. We consider two different
cases:

(a) For some j, s∗jω 6∈ σ(V0) ∩ σ(V d0 ). In this case, we choose j ≥ 0 to be minimal
with respect to the above property, and iterate j times with the case ν = 0 in (5.4) to
obtain

Θ(ω) = Θ(s∗jω)

j−1∏

m=0

τ0(s
∗mω)τd0 (s∗mω) +

j−1∑

k=0

τ+(s∗kω)τd+(s∗kω)
k−1∏

m=0

τ0(s
∗mω)τd0 (s∗mω).

Since s∗jω 6∈ σ(V0)∩σ(V d0 ), we must have that τ0(s
∗(j−1)ω)τd0 (s∗(j−1)ω) = 0. Now, we can

repeat the same argument with Θ replaced by ΘM (since ΘM always satisfies (5.1) which
is identical to the case ν = 0 of (5.4)). Thus, Θ(ω) = ΘM (ω), since each coincides with

j−1∑

k=0

τ+(s∗kω)τd+(s∗kω)
k−1∏

m=0

τ0(s
∗mω)τd0 (s∗mω).

(b) In the other case, we can also iterate (5.4) j times, where j now is an arbitrary
integer, and obtain the same relation as before. This time, the second term converges
absolutely as j → ∞, thanks to (iii), to the mixed fundamental function ΘM (see the
discussion above (5.1)). It remains to show that the first term converges to 0. For this, for

a given ω ∈ σ(V0)∩σ(V d0 ), one first finds ω1 and ω2 in ω+2π ZZd, such that φ̂(ω1)φ̂
d(ω2) 6= 0.

Then,

Θ(s∗jω)

j−1∏

m=0

τ0(s
∗mω)τd0 (s∗mω) =

Θ(s∗jω)φ̂(s∗jω1)φ̂d(s∗jω2)

φ̂(ω1)φ̂d(ω2)
.
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This completes the proof, since the right hand side converges to 0, for a.e. ω ∈ σ(V0)∩σ(V d0 )
(due to the facts that Θ is bounded and φ and φd are in L2(IR

d)).

5.2. Approximation orders

With (X(Ψ), X(Ψd)) a given pair of bi-framelets, we define the corresponding trun-

cated representation Qn by

Qn : f 7→
∑

ψ∈Ψ,k∈ZZd,j<n

〈f, ψdj,k〉ψj,k.

We note that the roles of Ψ and Ψd are not interchangeable in this definition, since the
interchange of the Ψ and Ψd may lead to a different approximation order. We refer to the
system X(Ψd) as the dual system. An argument similar to the one used in the proof of
Lemma 2.4 leads to the following result:

Lemma 5.5. Let (X(Ψ), X(Ψd)) be a bi-framelet system. Let φ, φd be the two underlying“blemone

refinable functions. Then

Q̂nf =
(
[f̂(s∗n·), φ̂d] φ̂ΘM

)
(s∗−n·), f ∈ L2(IR

d).

In particular, Q̂0f = [f̂ , φ̂d]φ̂ΘM for every f ∈ L2(IR
d).

Assume further that the dilation matrix s is scalar, s = λI, for some integer λ > 1.
We say that the bi-framelet systems X(Ψ) and X(Ψd) provide approximation order m1

if, for every f in the Sobolev space Wm1

2 (IRd),

‖f −Qnf‖L2(IRd) = O(λ−nm1).

The following result can be proven similarly to Theorem 2.8. In fact, it extends to
the more general isotropic dilation case.

Theorem 5.6. Let (X(Ψ), X(Ψd)) be a bi-framelet system. Let φ, φd be the two un-“bcharacao

derlying refinable functions. Assume that φ provides approximation order m. Then the
approximation order provided by the truncated representation Qn coincides with each of
the following (equal) numbers.

(i) min{m,m1}, with m1 the order of the zero of 1−ΘM [φ̂, φ̂d] at the origin.

(ii) min{m,m2}, with m2 the order of the zero of ΘM −ΘM (s∗·)τ0τd0 at the origin.

(iii) min{m,m3}, with m3 the order of the zero of 1−ΘM φ̂φ̂d at the origin.

Next, we discuss the related notion of vanishing moments. We say that the bi-framelet

pair has vanishing moments of order m4 if, for i = 1, . . . , r, each ψ̂iψ̂di has a zero of order
2m4 at the origin. If the bi-framelet is constructed via the MOEP and has moments of
order m4, then

ΘM −ΘM (s∗·)τ0τd0 = τ+τd+ = O(| · |2m4),

near the origin. Thus:
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Proposition 5.7. Let (X(Ψ), X(Ψd)) be a bi-framelet system. Assume that the bi-“bmomao

framelet has vanishing moments of order m4, that the system X(Ψd) has m0 vanishing
moments, and that the refinable function φ provides approximation order m. Then:
(a) φ satisfies the SF conditions of order m0, i.e. φ̂ vanishes at each ω ∈ 2π ZZd \0 to order

m0.
(b) The approximation order m′ of the (Qn) satisfies min(m, 2m4) ≤ m′ ≤ m; in partic-

ular, if 2m4 ≥ m, then m′ = m.

5.3. Constructions

The construction of a bi-framelet is, in fact, simpler than its tight framelet counterpart.
Since there is no need to take the square root of ΘM in MOEP (instead, one needs only to
factor it), it is no longer necessary to require that ΘM be nonnegative. This gives us more
choices for ΘM and more alternatives in the construction. Indeed, in the current section,
(very) short symmetric spline bi-framelets (with only 2 generators!) of desirable vanishing
moments are constructed.

On the other hand, by modifying the tight framelet constructions, one can get bi-
framelet constructions that yield symmetric mother wavelets. If the refinable function
itself is symmetric (for example, if φ is a B-spline), we may not change the MRA (and
hence we will have then that φ = φd). Only the wavelet masks will be modified then. To
capture symmetry, the key is to adhere to real (up to a linear phase) factorizations of the
underlying trigonometric polynomials. If the refinable function φ is not symmetric (which
is the case of all pseudo-splines of positive type), we will alter the underlying MRA first,

i.e., we will choose a real factorization of |φ̂|2 into φ̂1φ̂
d
1.

Here, we give some examples of such constructions. Using the MOEP, one can design
many other examples, suited to particular applications.

Pseudo-spline bi-framelets With t := |τm,`0 |2 and A as in §3.1, we choose any real
factorizations t = τ0τ

d
0 and A = 2τ2τ

d
2 . We define

τj+1 := e1τ
d
j (·+ π), τdj+1 := e1τj(·+ π), j = 0, 2.

Assuming that φ, φd lie in L2(IR), and that each of the above wavelet masks has at least
one vanishing moment, we obtain in this way a bi-framelet. We can choose, e.g., for an
even m, τ0(ω) := cosm ω

2 , and

τd0 (ω) := cosm(ω/2)
∑̀

i=0

(
m+ `

i

)
sin2i(ω/2) cos2(`−i)(ω/2).

(Warning: m, l need to be such that φd lies in L2(IR)! This arises also in the construction
of biorthogonal wavelet bases, see e.g. [CDF].) As to τ2 and τd2 , one can choose any (real)

factorization of 1− τ0τd0 − τ0(·+ π)τd0 (·+ π) with τ2(0) = τd2 (0) = 0.

Example: bi-framelets of type (4, 1). For the type (4, 1) we have that

t(ω) = cos8(ω/2)(1 + 4 sin2(ω/2)).
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τd
0

= a/16∗ [0 0 1 4 6 4 1 0 0]
τd
1

= a/16∗ [1 −1 −5 10 −5 −1 1 0 0]
τd
2

= s/8∗ [0 0 −1 0 2 0 −1 0 0]
τd
3

= s/8∗ [0 0 1 −2 0 2 −1 0 0]
τ0 = a/16∗ [0 −1 −1 5 10 5 −1 −1 0]
τ1 = a/16∗ [0 1 −4 6 −4 1 0 0 0]
τ2 = s/32∗ [0 −1 −2 1 4 1 −2 −1 0]
τ3 = s/32∗ [0 1 0 −3 0 3 0 −1 0]

1

Table 2. The six masks of the second pseudo-spline bi-framelets of type (4, 1). Here,
a =

√
2 and s =

√
5. Based on signal compression experiments that

were done at UW, we recommend to use τ d for decomposition and τ for
reconstruction.

We split t to obtain

τ0(ω) = cos4(ω/2), τd0 (ω) = cos4(ω/2)(1 + 4 sin2(ω/2)).

One checks then that φd ∈ L2(IR) (in fact, φd ∈ C1(IR)). Also, in this case A(ω) = 5
8 sin4 ω,

hence we can choose

τ2(ω) = τd2 (ω) =

√
5

4
sin2(ω).

Note that all the filters obtained, with the exception of τ d0 , are 5-tap. The system provides
approximation order 4, and has 2 vanishing moments.

Of course, the above factorization is one of many. The masks of another bi-framelet
of type (4,1) are listed in Table 2 (courtesy of Narfi Stefansson, UW-Madison).

Spline bi-framelets. Let φ = φd be a B-spline of order m, then

τ0(ω) = τd0 (ω) =

(
1 + e−iω

2

)m
.

For a given `, let Θ and A be the trigonometric polynomials given in Lemma 3.4 and
Proposition 3.5 respectively in §3.2. We can choose now any real factorization to Θ(2·) =
ttd and A = 2aad. Define

τ1 := e1tτ0(·+ π), τd1 := e1 t
dτ0(·+ π),

τ2 = a, τd2 = ad,

and
τ3 = e1a, τd3 = e1a

d.

Then the systems corresponding to τ := (τ0, . . . , τ3) and τd := (τd0 , . . . , τ
d
3 ) form bi-

framelets, provided that a(0) = ad(0) = 0 (that latter assumption is needed in order
to satisfy condition (iii) of Corollary 5.3).
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Example: Spline bi-framelets generated by two (short) mother wavelets. An
interesting case of the above general approach goes as follows. Let τ0 = τd0 be the mask of
the m order B-spline φ. We choose the trigonometric polynomial Θ such that (say, for an

even m) 1−Θ|φ̂|2 = O(| · |2`), ` > m/2 (cf. §3.2). We define

τ1(ω) = eiω sinm(ω/2), τd1 (ω) = eiωΘ(2ω) sinm(ω/2).

Since A = O(| · |2`) near the origin, the corresponding trigonometric polynomial A must be
divisible by sin2`(ω/2). Since 2` > m, by the assumption, we may split A into A(ω) = 2aad,
with a(ω) = sinm(ω/2). Continuing as in the general construction detailed above, we
obtain

τ2(ω) = sinm(ω/2), τ3(ω) = eiω sinm(ω/2).

The dual system is then

τd2 (ω) = ad(ω), τd3 (ω) = eiωad(ω).

Because these τj , τ
d
j , j = 0, 1, 2, 3 satisfies (5.4), and τ1 = τ3, we can also define a system

with 2 wavelets instead of 3 by putting:

τ̃0 = τ0, τ̃1 = τ1 τ̃2 = τ2.

The dual system is then

τ̃d0 (ω) = τ0, τ̃d1 (ω) = τd1 + τd3 , τ̃d2 (ω) = τ2.

These τ̃j , τ̃
d
j , j = 0, 1, 2 also satisfy (5.4). Note that ψ2 = ψ1(· − 1/2).

For example, if we choose m = l = 4, then all the wavelets and the dual wavelets
have four vanishing moments (and, of course, they are all symmetric). The filters for the
system X(Ψ) are then all of length 5. The dual system X(Ψd) has still a low pass filter of
length 5, while the high pass filters are 17-tap and 15-tap.

General constructions of bi-framelets with two or three (symmetric) wavelets.
Let φ and φd be two univariate symmetric refinable functions with (bounded) masks τ0 and
τd0 , respectively. Let Θ be a bounded real-valued 2π-periodic function, Θ(0) = 1. Assume
that

A := Θ−Θ(2·)(τ0τd0 + τ0(·+ π)τd0 (·+ π))

is real and has (at least) a double zero at the origin. Let ttd be any real factorization
of Θ(2·), and let 2aad be any real factorization of A in a way that a(0) = ad(0) = 0.
Note that if A and Θ are trigonometric polynomials, we can choose all the factors to be
trigonometric polynomials, too. We can then define the wavelet masks exactly as in the
spline bi-framelet discussion (since we do not need to require A to be positive any more).
We obtain in this way a bi-framelet system, provided that X(Ψ) and X(Ψd) are Bessel.
There are three (symmetric) mother wavelets in each system.
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We can modify the above construction and obtain systems generated by two mother
wavelets, following the general recipe of §3.2:

τ1 = e1tτd0 (·+ π), τ2 = τ0a(2·),

while

τd1 = e1t
dτ0(·+ π), τd2 = τd0 a

d(2·).

We then obtain two symmetric generators for each system.
Finally, if φ or φd is not symmetric, the above constructions still work, but the resulting

mother wavelets may not be symmetric (and, of course, we need not require that the
relevant factorizations be real).

In [DH] it is shown that one can, in fact, construct bi-framelets from any pair of
refinable functions φ, φd (with compact support).

6. An especially attractive construction

As we said a few times before, the choice of the “right” framelet system should really
depend on the application. However, we can still point at a few constructions that stand
out, even in the packed group of “useful framelets”. We present in this section one such
example. The highlight of this construction is that we obtain maximal approximation
order, maximal smoothness, maximal vanishing moments and relatively short filters in
one example. Importantly, the example belongs to one of our systematic methods, which
means that similar constructs, for other approximation orders, are possible.

In the example here, we choose the construction of a spline bi-framelet with two short
filters from the previous section. We choose the MRA which is generated by the cubic
B-spline φ, and correspondingly, we choose Θ to be

Θ(ω) = 1 +
4

3
sin2(ω/2) +

62

45
sin4(ω/2).

According to the theory in this paper, the total number (of the decomposition and the
reconstruction masks) of vanishing moments of any bi-framelet system that is based in
these φ and Θ is 6. The general approach for this type of construction entails that we put
a maximum number of vanishing moments, i.e., 4, into the decomposition filters, hence
only 2 vanishing moments into the reconstruction masks. Thus, we enjoy an optimal
approximation order of the framelet system (4), an optimal number of vanishing moments
in the decomposition masks (which is where we really need those moments), and relatively
very short high-pass filters: (5, 5) in the decomposition, and (13, 11) in the reconstruction
(a total of 34 non-zero coefficients. In comparison, the cubic spline tight framelet of
Example A.2, which also has 4 vanishing moments, and which is an ad-hoc construction,
involves a total of 40 non-zero coefficients. And, the bi-framelet here is not an ad-hoc
construction!).
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Figure 7. The graphs of the two decomposition wavelets of the example in §6 are
depicted in the first row. Both are obtained by applying a 4-order differ-
ence to the cubic B-spline. The two reconstruction wavelets are depicted
in the second row.

τ0 τ1 τ2 τ
d
0

τ
d
1

τ
d
2

6 -0.0053819444 -0.0430555556

5 -0.0215277778 -0.1722222222

4 -0.1621527778 -0.3930555556

3 -0.5409722222 -0.7111111111 0.0625

2 0.0625 -0.5987847222 -0.1527777778 0.0625 0.0625 -0.2500

1 0.2500 0.2236111111 2.9444444444 0.2500 -0.2500 0.3750

0 0.3750 2.2104166667 -0.1527777778 0.3750 0.3750 -0.2500

-1 0.2500 0.2236111111 -0.7111111111 0.2500 -0.2500 0.0625

-2 0.0625 -0.5987847222 -0.3930555556 0.0625 0.0625

-3 -0.5409722222 -0.1722222222

-4 -0.1621527778 -0.0430555556

-5 -0.0215277778

-6 -0.0053819444

Table 3. The coefficients of the six filters (two low-pass ones and four high-pass
ones) of the example in §6. The three reconstruction filters are listed first,
followed by the three decomposition filters. Note that all the coefficients
are actually rational.

Figure 7 depicts the graphs of the four wavelets constructed in this way, while Table
3 records the non-zero coefficients of the underlying six filters (courtesy of Steven Parker).
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APPENDIX: Ad-hoc constructions of tight spline framelets with shorter filters.
We construct here some more tight wavelet frames by OEP from several low-order B-spline
functions. The ad-hoc constructions given here typically yield tight framelets whose mother
wavelets have shorter support than the results of the general construction in §3.2. The
computation in the following examples was done with the help of two computer algebra
systems, Maple and Singular [GPS], and the graphs are produced by Matlab.

Example A.1. Let τ0(ω) = (1 + e−iω)3/8; then the refinable function φ is the quadratic
B-spline, whose MRA provides approximation order 3. We choose Θ(ω) = (3− cos(ω))/2,

and find that 1−Θ|φ̂|2 = O(| · |4). This implies that every OEP construction that is based
on this Θ and φ yields a wavelet system with 2 vanishing moments, and with approximation
order min{3, 4} = 3 (cf. Theorem 2.8). One possible construction of the mother wavelets
is as follows:

τ1(ω) = −
√

2

24
(1− e−iω)3,

τ2(ω) := − 1

24
(1− e−iω)3(1 + 6e−iω + e−i2ω),(A.1)

τ3(ω) = −
√

13

48
(1− e−iω)2(1 + 5e−iω + 5e−i2ω + e−i3ω).

Then the (symmetric!) filters are of sizes 4, 6, 6. For the sake of comparison, note that
among the (6, 5, 5) filters of the type I construction of pseudo-splines of type (4, 1), one is
not symmetric; that system does have approximation order 4 (as compared to only 3 here).
The corresponding ψ1, ψ2, ψ3 are shown in Figure 8. Another choice is the following: Let
Θ(ω) =

(
219− 112 cos(ω) + 13 cos(2ω)

)
/120. Set

τ1(ω) = t1(1− e−iω)3
[
(5776 + 8t0)(1 + 6e−iω) + 4849e−i2ω

]
,

τ2(ω) = t2(1− e−iω)3
[
(73233 + 60t0)(1 + 6e−iω) + (957098 + 700t0)e

−i2ω(A.2)

+ 616278e−i3ω + 102713e−i4ω
]
.

where t0 =
√

458247, t1 =
√

154244433994641−226211192304t0
284121413784 and t2 =

√
37714995−30900t0

15234392160 . Then
{ψ1, ψ2} generates a tight framelet and has vanishing moments of order 3, as well as ap-
proximation order 3. The filters are 6-tap and 8-tap, hence are much shorter than the type
III (4, 1) pseudo-spline wavelets (whose filters are 6-tap and 14-tap. The approximation
order of the systems there is 4, however, and the wavelets there are a notch smoother).
The graphs of the corresponding ψ1, ψ2 are given in Figure 9.

The exact (but more complex) expressions of the wavelet filters in radicals can be
obtained for the following examples as well; for simplicity, however, we will present them
in decimal notation.

Example A.2. Take τ0(ω) = (1 + e−iω)4/16; then the refinable function φ is the cubic
B-spline. Choosing

Θ(ω) = 2452/945− 1657/840 cos(ω) + 44/105 cos(2ω)− 311/7560 cos(3ω).
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Figure 8. (b), (c) and (d) are the graphs of the symmetric wavelet functions ψ1,
ψ2 and ψ3 corresponding to (A.1) in Example A.1. The tight framelet
provides approximation order 3 and has two vanishing moments. The
filters are of size (4, 6, 6).
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Figure 9. The graphs of the mother wavelets corresponding to (A.2) in Example A.1
The system provides approximation order 3 and has 3 vanishing moments.
The filters are of lengths 6 and 8.

we define

τ1(ω) = (1− e−iω)4
[
0.004648178373 + 0.037185426987e−iω + 0.231579575890e−i2ω

+ 0.077492027449e−i3ω + 0.009686503431e−i4ω
]
,

τ2(ω) = (1− e−iω)4
[
0.00815406597 + 0.065232527739e−iω + 0.221444746610e−i2ω

+ 0.401674890361e−i3ω + 0.257134715206e−i4ω

+ 0.078828706252e−i5ω + 0.009853588281e−i6ω
]
.
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Then {ψ1, ψ2} generates a tight framelet with vanishing moments of order 4, hence with
approximation order 4. The filter are 9- and 11-tap. The functions ψ1, ψ2 are shown in
Figure 10.
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Figure 10. The graphs of the wavelet functions ψ1 and ψ2 in Example
A.2. {ψ1, ψ2} generates a wavelet tight frame in L2(IR) and
has vanishing moments of order 4.

Example A.3.

Let τ0(ω) = (1 + e−iω)5/32. Then φ is the B-spline function of order 5. Let

Θ(ω) =
[
3274− 2853 cos(ω) + 654 cos(2ω)− 67 cos(3ω)

]
/1008.

Define

τ1(ω) = t1(1− e−iω)5
[
1 + 10e−iω + c1e

−i2ω + 10e−i3ω + e−i4ω
]
,

τ2(ω) = t2(1− e−iω)5
[
1 + 10e−iω + c2e

−i2ω + (10c2 − 330)e−i3ω + c2e
−i4ω + 10e−i5ω + e−i6ω

]

τ3(ω) = t3(1− e−iω)4
[
1 + 9e−iω + c3e

−i2ω + (9c3 − 240)(e−i3ω + e−i4ω) + c3e
−i5ω+

9e−i6ω + e−i7ω
]
,

where t1 = 0.002079820445, t2 = 0.002143933408, t3 = 0.006087006866 and

c1 = 27.8020039303, c2 = 43.597827553, c3 = 34.9890169103.

Then we obtain tight framelet that has vanishing moments of order 4, hence provides
approximation order 5. The three filters are of sizes 10, 12, 12, which is longer than the
(8, 7, 7) filters of the type I construction of pseudo-spline of type (5, 2), which also provide
approximation order 5; the increase in length is the price to pay for having splines and
4 instead of 3 vanishing moments; moreover the wavelets in this example are symmetric.
The scaling function φ and the three wavelets ψ1, ψ2, ψ3 are shown in Figure 11.
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Figure 11. (b), (c) and (d) are the graphs of the symmetric mother wavelets
derived from the B-spline function of order 5 in (a) in Exam-
ple A.3. This tight framelet has vanishing moments of order 4,
hence the approximation order is maximal, i.e., 5.

Another choice is the following:

Θ(ω) =
[
927230− 455536 cos(ω) + 135068 cos(2ω)− 24208 cos(3ω) + 2021 cos(4ω)

]
/120960,

τ1(ω) = (1− e−iω)5
[
0.025119887085 + 0.251198870848e−iω + 0.262546371853e−i2ω

+ 0.166262760002e−i3ω + 0.065011596958e−i4ω

+ 0.014662218472e−i5ω + 0.001466221847e−i6ω
]
,

τ2(ω) = (1− e−iω)5
[
0.008881894968 + 0.088818949683e−iω + 0.328950148428e−i2ω

+ 0.358476144742e−i3ω + 0.250181103408e−i4ω + 0.123734867140e−i5ω

+ 0.042684669937e−i6ω + 0.009185207037e−i7ω + 0.000918520704e−i8ω
]
.

This time we obtain a tight framelet with 5 vanishing moments, hence with approximation
order 5. The two wavelets are shown in Figure 12.

Example A.4. Take τ0(ω) = (1 + e−iω)6/64. Then φ is the B-spline function of order 6.
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Let

Θ(ω) =
[
78020840− 91378878 cos(ω) + 33897504 cos(2ω)− 8438339 cos(3ω)

+ 1298168 cos(4ω)− 93695 cos(5ω)
]
/13305600,

τ1(ω) = (1− e−iω)6
[
0.002145656868 + 0.025747882416 e−iω + 0.119255331090 e−i2ω

+ 0.203748244582 e−i3ω + 0.119255331090 e−i4ω + 0.025747882416 e−i5ω

+ 0.002145656868e−i6ω
]
,

τ2(ω) = (1− e−iω)6
[
0.002080123603 + 0.02496148323 e−iω + 0.1259950758241 e−i2ω

+ 0.322110209123 e−i3ω + 0.398690839006 e−i4ω + 0.322110209123 e−i5ω

+ 0.125995075824 e−i6ω + 0.024961483233 e−i7ω + 0.002080123603e−i8ω
]
,

τ3(ω) = (1− e−iω)6
[
0.000927141464 + 0.011125697570 e−iω + 0.057997824965 e−i2ω

+ 0.165648982061 e−i3ω + 0.266351327951 e−i4ω + 0.249980354007 e−i5ω

+ 0.266351327951 e−i6ω + 0.165648982061 e−i7ω + 0.057997824965 e−i8ω

+ 0.011125697570 e−i9ω + 0.000927141464e−i10ω
]
.

Here, we obtain a tight framelet with vanishing moments of order 6, and with symmetric
mother wavelets, shown in Figure 13.
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Figure 12. The graphs of the two (non-symmetric) mother wavelets in Example A.3.
The tight framelet has approximation order 5 as well as vanishing moments
of order 5. Note that the filters are 12- and 14-tap.
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Figure 13. (b), (c) and (d) are the graphs of the symmetric mother framelets derived
from the B-spline function of order 6 in (a) in Example A.4. The tight
framelets has 6 vanishing moments, hence approximation order 6, as well.
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[P1] A. Petukhov, Explicit construction of framelets, Preprint #3 (2000), IMI, University

of South Carolina. Also available at http://www.math.sc.edu/~imip/0003.ps.
[P2] A. Petukhov, Symmetric framelets, preprint, 2000.
[Pl] G. Plonka (1997), “Approximation order provided by refinable function vectors”, Con-

str. Approx. 13(2), 221-244.
[PR] G. Plonka and A. Ron (2001), “A new factorization technique of the matrix mask of

univariate refinable functions”, Numer. Math. 87(3), 555–595.
[RS1] A. Ron and Z. Shen (1995), “Frames and stable bases for shift-invariant subspaces of

L2(IR
d)”, Canad. J. Math. 47(5), 1051–1094.

Ftp site: ftp://ftp.cs.wisc.edu/Approx file frame1.ps.
[RS2] A. Ron and Zuowei Shen (1995), “Gramian analysis of affine bases and affine frames”,

in Approximation Theory VIII, Vol. 2: Wavelets (Charles K. Chui and Larry L.
Schumaker, eds), World Scientific Publishing Co., Inc. (Singapore), 375–382.

[RS3] A. Ron and Z. Shen (1997), “Affine systems in L2(IR
d): the analysis of the analysis

operator”, J. Functional Anal. 148, 408–447.
Ftp site: ftp://ftp.cs.wisc.edu/Approx file affine.ps.

[RS4] A. Ron and Z. Shen (1997), “Affine systems in L2(IR
d) II: dual systems”, J. Fourier

Anal. Appl. 3, 617–637. Ftp site: ftp://ftp.cs.wisc.edu/Approx file dframe.ps.
[RS5] A. Ron and Z. Shen (1998), “Compactly supported tight affine spline frames in

L2(IR
d)”, Math. Comp. 67, 191–207. Ftp site: ftp://ftp.cs.wisc.edu/Approx

file tight.ps.
[RS6] A. Ron and Z. Shen (1998), Construction of compactly supported affine frames in

L2(IR
d), (Advances in Wavelets), K. S. Lau (ed.). Springer-Verlag (New York), 27-49.

Ftp site: ftp://ftp.cs.wisc.edu/Approx file hk.ps

[S] I Selesnick (2001), “Smooth wavelet tight frames with zero moments”, Appl. Comput.

Harmonic Anal. 10 (2), 163-181.

49


