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1. Introduction

The basic model in multivariate splines on regular grids consists of a compactly supported

function φ : IRd → IR (or C) and the space Tφ spanned by its integer translates. To establish the

approximation order (for smooth functions) of the dilations of the space Tφ, one identifies first the

maximal k for which

πk−1 ⊂ Tφ,

with πk−1 the space of all polynomials of degree ≤ k−1. With the aid of a suitable quasi-interpolant

scheme this k is then proved to characterize the approximation properties of Tφ. Here, a quasi-

interpolant is a bounded linear operator Qφ from C∞(IRd) (or another space of smooth functions)

into Tφ of the form

Qφf =
∑

α∈ZZd

λ(f(· + α))φ(· − α),

with λ being a bounded linear functional of compact support such that Qφ reproduces πk−1 i.e.,

Qφp = p, ∀p ∈ πk−1.

In case the linear functional is based only on point-evaluations from ZZd, the quasi-interpolant can

also be written in the form

Qφf =
∑

α∈ZZd

f(α)ψ(· − α),

where ψ is a certain compactly supported element in Tφ obtained by applying a finite difference

operator to φ.

Although a discussion concerning polynomial reproduction (for univariate splines) already

appeared in Schoenberg’s paper [S], the characterization of the approximation order of the dilations

of Tφ in terms of polynomial reproduction was first established in [SF] and therefore is usually

referred to as “The Strang-Fix Conditions”. The introduction of box splines in the early 80’s

renewed the interest in this issue by several authors, resulting in various refinements and extensions

of these conditions (cf. [DM1], [DM2], [BJ], [B1] and the survey [B2]).

In this paper we investigate similar questions for smooth functions φ which are neither of

compact support nor even vanish at infinity. Rather though the common property to all the

functions examined here is that some derivatives of them vanish at infinity. More precisely, there

exists a polynomial p such that p(D)φ vanishes at infinity more rapidly than some inverse power

‖x‖−k, with p(D) the linear differential operator induced by p. To simplify the analysis we assume

also that p(D) is either an elliptic operator or is close in some sense to an elliptic operator, an

assumption which allows us to deduce that φ̂, the Fourier transform of φ, is a well defined smooth

function away of the origin. To resolve the singularity of φ at the origin, we approximate p by a

trigonometric polynomial, i.e., approximate p(D) by a difference operator ∇. The function ψ := ∇φ

is then shown to have an algebraic decrease at infinity. Such construction was first suggested in

[DL], and applications of this idea to the computation of scattered data interpolant by certain

radial functions was carried out in [DLR]. The decrease of ψ makes available the quasi-interpolant

Qψf =
∑

α∈ZZd

f(α)ψ(· − α),
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which is well-defined with respect to functions of sufficient slow growth at infinity, where the sum

is calculated in the topology of uniform convergence on compact sets.

This construct allows us to discuss questions of polynomial reproduction and approxmiation

order from the space T φ := the completion in the topology of uniform convergence on compact

sets of Tφ, the latter consists of all finite linear combinations of the integer translates of φ. Indeed,

using the expansion of 1/φ̂ around the origin, we identify in section 2 the space of polynomials that

can be reproduced by the above technique.

Results on polynomial reproduction can be used to obtain approximation rates by scales of

Qψ, hence to provide lower bounds for the approximation order from the dilations

Tφ,h :=
{
f(h−1·) | f ∈ Tφ

}

of T φ. For ψ which decays fast enough at infinity it is easy to get such rates. In the following (and

elsewhere in the paper) A stands for a constant which may vary from one equation to the other.

Proposition 1.1. Assume that for j = 1, ..., d the series
∑

α∈ZZd |xj−αj |
`+1|ψ(x−α)| is uniformely

bounded (in x). Define

Qψ,h : f 7→
∑

α∈ZZd

f(hα)ψ(h−1 · −α).

If Qψp = p for all p ∈ π`, then for every f whose derivatives of order `+ 1 are bounded we have

‖Qψ,hf − f‖∞ ≤ A‖f‖∞,`+1h
`+1,

where ‖f‖∞,`+1 :=
∑

|α|=`+1 ‖D
αf‖∞ <∞.

Proof: By the standard quasi-interpolation argument, we may assume that for any fixed x the

Taylor expansion of f around x up to degree ` is trivial. Since the (` + 1)-order derivatives of f

are uniformely bounded, then

|f(z)| ≤ A‖f‖∞,`+1‖z − x‖`+1
∞ . (1.1)

Therefore

|Qψ,hf(x)| ≤A‖f‖∞,`+1

∑

α∈ZZd

‖hα− x‖`+1
∞ |ψ(h−1x− α)|

≤Ah`+1‖f‖∞,`+1

d∑

j=1

∑

α∈ZZd

|h−1xj − αj |
`+1|ψ(h−1x− α)|. ♠

The following corollary provides an approximation order for ψ of sufficient fast decrease at

infinity.

Corollary 1.2. Assume that

|ψ(x)| ≤ A(1 + ‖x‖∞)−(d+k), (1.2)

for k > `+ 1. If Qψp = p for all p ∈ π`, then, for every function f whose derivatives of order `+ 1

are bounded

‖Qψ,hf − f‖∞ ≤ A‖f‖∞,`+1h
`+1, (1.3)
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where A depends on ψ but not on h and f .

Proof: By (1.2) we have

|xj − αj |
`+1|ψ(x− α)| ≤ A(1 + ‖x− α‖∞)−(d+ε), j = 1, ..., d, ε > 0 . (1.4)

The rest follows from Proposition 1.1. ♠

In section 4 we study the case when ψ satisfies the weaker requirement

|ψ(x)| ≤ A(1 + ‖x‖∞)−(d+`+1). (1.5)

While the above corollary shows that under (1.5) one obtains approximation order O(h`) for all

functions whose `’th order derivatives are bounded, we prove that if also the (` + 1)th order

derivatives of f are bounded then the approximation order is at least O(h`+1| log h|), and under

more restricitive assumptions on f and ψ, one may get approximation order O(h`+1). This extends

the result of [Bu] concerning univariate multiquadrics and the results of [J1] (see also [J2]) where

the rate O(h`+1| logh|) is obtained for a restricted family of radial functions φ, and the rate O(h`+1)

is established for φ(x) = ‖x‖2 in an odd dimension d.

In section 3 we show that the model investigated here includes the fundamental solutions of

homogeneous elliptic operators and also most of the examples of radial basis functions now in the

literature. Finally, we show in section 5 how the convergence rates of section 4 can be obtained for

functions defined only on a bounded domain.

Throughout this paper we use the multi-index notation. For α, β ∈ IRd, α2 = ‖α‖2 =
d∑
k=1

α2
k,

α · β =
d∑
k=1

αkβk, α
β =

d∏
k=1

αβk

k , and for α ∈ ZZd+ := {γ ∈ ZZd | γk ≥ 0}, α! =
d∏
k=1

αk!, |α| =
d∑
k=1

αk,

Dα =
d∏
k=1

∂αk

∂x
αk
k

and f (α) = Dαf . Also πm = span{xα
∣∣ |α| ≤ m}, while π stands for the space of

all d-dimensional polynomials.

2. Polynomial reproduction

In this section we identify the polynomials which are spanned by the integer translates of a

function φ : IRd → IR, in terms of properties of the generalized Fourier transform φ̂ of φ. The

assumptions on φ which are made below, are tailored to provide a unified analysis for fundamental

solutions of homogeneous eliptic operators on the one hand, and certain families of radial functions

on the other hand.

Assume the Fourier transform φ̂ of the given function φ (treated as a tempered distribution,

cf. [GS]) satisfies the equation

Gφ̂ = F , (2.1)

where the functions F ∈ Cm0(IRd) ∩ C∞(IRd\0) and G ∈ C∞(IRd) satisfy

(a) G(w) 6= 0 if w 6= 0,
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(b) G(α)(0) = 0 , |α| < m ,

(c) Gm(w) :=
∑

|α|=m

G(α)(0)
wα

α!
6≡ 0 , (2.2)

(d) F (0) 6= 0 , F (x) −
∑

|α|≤m0

F (α)(0)

α!
xα ∈ Fm0+θ for some θ > 0,

(e) |(F/G)(α)(w)| ≤
Aα

‖w‖d+ε
for ‖w‖ ≥ 1 , ε > 0 , α ∈ ZZd+ ,

where in (d) we have used the notation

Fr =
{
f ∈ C∞(IRd\0) | f (α)(x) = O(‖x‖r−|α|), as x→ 0, α ∈ ZZd+

}
.

Conditions (b) and (c) are simply specifying m as the order of the zero G has at the origin,

while conditions (d) and (e) are of technical nature. The crucial assumption above is (a), which

implies that φ̂ coincides away from the origin with the function F/G. We also assume that the

order of φ̂ (as a distribution) does not exceed m−1, namely that φ̂ is a well defined linear functional

on Sm−1 given by

φ̂(s) =

∫

IRd

s(w)
F (w)

G(w)
dw , s ∈ Sm−1 , (2.3)

where

Sm−1 = {s ∈ S | s(α)(0) = 0 , |α| ≤ m− 1} ,

and S is the space of C∞ rapidly decreasing test functions.

To understand the nature of solutions of (2.1), we prove

Lemma 2.1. Let φ satisfy (2.1) and (2.3). Then any other φ1 that satisfies Gφ̂1 = F differs from

φ by a polynomial. Precisely,

φ̂1(s) = φ̂(s) +
[
p(D)s

]
(0) , s ∈ S , (2.4)

where

p ∈
{
p ∈ π

∣∣ [
p(α)(D)G

]
(0) = 0 , α ∈ ZZd+} = kerG(D)

∣∣
π
. (2.5)

If in addition φ1 satisfies (2.3) then p ∈ πm−1.

Proof: The equation G(φ̂1 − φ̂) = 0 is equivalent by definition to

G(φ̂1 − φ̂)(s) = 0 , s ∈ S .

Since G(w) 6= 0 for w 6= 0, the support of φ̂1 − φ̂ is the origin, hence there exists p ∈ π such that

(2.4) holds. Furthermore,

[p(D)(Gs)](0) = (φ̂1 − φ̂)(Gs) = G(φ̂1 − φ̂)(s) = 0 , ∀s ∈ S ,
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an equality which is equivalent to

[
p(α)(D)G

]
(0) = 0, α ∈ ZZd+ ,

and thus, indeed, p satisfies (2.5). If in addition φ1 satisfies (2.3), then by (2.4) p(D)s(0) = 0,

s ∈ Sm−1 showing that p ∈ πm−1. The second equality in (2.5) is a straightforward extension of

Theorem 3.3. ♠

To resolve the singularity of φ̂ we multiply it by a trigonometric polynomial with a high order

zero at the origin, i.e., apply a finite difference operator ∇ supported on I ⊂ ZZd to φ, so that the

resulting function ψ is in span
{
φ(x− α)

∣∣ α ∈ I}.

Lemma 2.2. Assume F,G satisfy (2.2). Then G/F ∈ Cm+m0 in a neighborhood of the origin and

(G/F )(α)(0) = 0 , |α| < m . (2.6)

Let

e(w) =
∑

α∈I

aαe
−iα·w (2.7)

be a trigonometric polynomial that satisfies

(e−G/F )(α)(0) = 0 , |α| ≤ m+ ` , (2.8)

for some integer 0 ≤ ` ≤ m0. Then the Fourier transform of

ψ :=
∑

α∈I

aαφ(· − α) (2.9)

is the function

ψ̂ = e
F

G
. (2.10)

Moreover, ψ̂ ∈ C`(IRd) and satisfies

ψ̂(0) = 1 , ψ̂(α)(0) = 0 , 1 ≤ |α| ≤ ` , (2.11)

p(−iD)ψ̂(2πα) = 0 , α ∈ ZZd\0, p ∈ PG ∩ π`+m , (2.12)

where

PG :=
{
p ∈ π

∣∣
(
p(α)(−iD)G

)
(0) = 0 , α ∈ ZZd+

}
. (2.13)

Proof: By (2.2) near the origin

G

F
(w) = F (0)−1Gm(w) +

m+m0∑

j=m+1

qj(w) + q̃(w) (2.14)

where qj is a homogeneous polynomial of degree j and q̃ ∈ Fm+m0+θ. Hence G
F ∈ Cm+m0 in a

neighborhood of the origin and (2.6) holds.
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From the definition (2.9) of ψ it follows that

ψ̂ = eφ̂ . (2.15)

To establish (2.10), we note that by (2.6) and (2.8), es ∈ Sm−1 for any s ∈ S. Thus (2.15) together

with (2.3) yields the equality

ψ̂(s) = φ̂(es) =

∫

IRd

F

G
es , s ∈ S ,

which is equivalent to (2.10). The structure of the zeros of ψ̂ at the origin is obtained from (2.10)

by observing that near the origin

ψ̂(w) =
F (w)

G(w)

[
e(w) −

G(w)

F (w)

]
+ 1

with

F (w)

G(w)
=

m0−m∑

j=−m

ηj(w) + η̃(w) ,

where by (2.2) η̃ ∈ Fm0−m+θ, and ηj is a homogeneous function of order j in w, namely ηj(tw) =

tjηj(w), t ∈ IR\0. Thus, in view of (2.8) and (2.14)

ψ̂(w) = 1 +

m0∑

j=`+1

hj(w) + h̃(w) (2.16)

with h̃ ∈ Fm0+θ and hj a homogeneous function of order j. Since h
(α)
j (0) = 0, 0 ≤ |α| < j, we

conclude that ψ̂ ∈ C`(IRd) and satisfies (2.11).

Finally, since for every smooth enough f and every polynomial p ∈ PG,

p(−iD)(fG)(0) =
∑

ν≥0

[
(−iD)ν

ν!
f

]
(0)

[
p(ν)(−iD)G

]
(0) = 0 ,

we see that

PG ∩ π`+m ⊂
{
p ∈ π

∣∣
(
p(α)(−iD)(G/F )

)
(0) = 0 , α ∈ ZZd+

}
.

Furthermore, e(x+ 2πα) = e(x), α ∈ ZZd while G(w) 6= 0 for w 6= 0, hence, by (2.8),

[
p(−iD)ψ̂

]
(2πα) =

∑

ν≥0

[
(−iD)ν

ν!

(
F

G

)]
(2πα)

[
p(ν)(−iD)e

]
(0) = 0 ,

for any p ∈ π`+m ∩ PG and α ∈ ZZd\0. This completes the proof of (2.12). ♠
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Remark 2.3.

A trigonometric polynomial (2.7) satisfying (2.8) can always be constructed, by choosing I =

{α | 0 ≤ αi ≤ m+ ` , i = 1, . . . , d}, since the tensor-product interpolation problem

e(α)(0) = bα , 0 ≤ αi ≤ m+ ` , i = 1, . . . , d ,

with any {bα | 0 ≤ αi ≤ `+m} admits a unique solution from span{eα·x}α∈I .

Remark 2.4.

A set I supports e of the form (2.7) which satisfies (2.8), if I is total for π`+m, i.e.,

p ∈ π`+m , p|I = 0 ⇒ p = 0 . (2.17)

In case |I| = dimπ`+m, conditions for I satisfying (2.17) can be found in [GM], see also the general

discussion in [BR]. For specific G,F , however, smaller sets I may be available (cf. [J2], [R2]).

The next two lemmas deal with the rate of decay of the function ψ, obtained from properties

of ψ̂. This is a crucial step in the identification of the polynomials spanned by the integer translates

of ψ.

Lemma 2.5. Under the conditions of Lemma 2.2 for 0 ≤ ` ≤ m0

|ψ(x)| = o(‖x‖−d−`) as ‖x‖ → ∞ . (2.19)

Proof: For 0 ≤ ` < m0 it follows from (2.16) that, for α ∈ ZZd+,

ψ̂(α)(w) = O(‖w‖`+1−|α|) as w → 0 ,

while for ` = m0

ψ̂(α)(w) = O(‖w‖m0+θ−|α|) as w → 0 .

Moreover, by (2.2), (2.10) and the boundedness of all the derivatives of e,

ψ̂(α) ∈ L1(IR
d\Bε) , α ∈ ZZd+ , ε > 0 , (2.20)

where Bε = {w ∈ IRd | ‖w‖ < ε}. Hence, for |α| ≤ ` + d, ψ̂(α) ∈ L1(IR
d) which implies, by the

Riemann-Lebesgue lemma, that

lim
‖x‖→∞

xαψ(x) = 0 , |α| ≤ `+ d . ♠

For ` < m0, and under some additional conditions also for ` = m0, the decay of ψ at infinity

is better than in (2.19). For F ∈ C∞(IRd), we can take m0 = ∞, and therefore the result of the

previous lemma holds for any ` > 0.
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Lemma 2.6. Under the conditions of Lemma 2.2, if

ψ̂(w) = f̂(w) + f̃(w) , (2.21)

with f̃ ∈ F`+1+θ, θ > 0, and f(x) = O(‖x‖−d−`−1) as ‖x‖ → ∞, then

ψ(x) = O(‖x‖−d−`−1) as ‖x‖ → ∞ . (2.22)

Proof: Consider the function

R̂(w) = ψ̂(w) − ρ(w)f̂(w)

where ρ ∈ C∞(IRd), 0 ≤ ρ(w) ≤ 1 satisfies, for some δ > 0,

ρ(w) =

{
1, ‖w‖ < δ/2,
0, ‖w‖ > δ.

(2.23)

Then by (2.20) and (2.23) R̂(α) ∈ L1(IRd\Bδ/2) for α ∈ ZZd+, while for w ∈ Bδ/2

R̂(w) = f̃(w) ∈ F`+1+θ

and hence

R̂(α) ∈ L1(Bδ/2) for |α| ≤ `+ 1 + d .

Thus

R̂(α) ∈ L1(IRd) for |α| ≤ `+ 1 + d

implying, as in the proof of Lemma 2.5, that

R(x) = o(‖x||−d−`−1) as ‖x‖ → ∞ .

To complete the proof of the lemma it remains to show that ψ(x)−R(x) = (ρf̂)∨(x) = O(‖x‖−d−`−1)

as ‖x‖ → ∞. First, we conclude that (ρf̂)∨ ∈ C∞(IRd) since ρf̂ is of compact support. Writing

ρf̂ = f̂ + (ρ− 1)f̂ , we observe that (ρ− 1)f̂ ∈ C∞(IRd) and hence
(
(ρ− 1)f̂

)∨
is rapidly decaying

as ‖x‖ → ∞. This together with the assumption f(x) = O(‖x‖−d−`−1) as ‖x‖ → ∞, completes

the proof of the lemma.

Corollary 2.7. Under the assumptions of Lemma 2.2, for 0 ≤ ` < m0, ψ(x) = O(‖x‖−d−`−1) as

‖x‖ → ∞.

Proof: By (2.16), for 0 ≤ ` < m0, the terms f̂ , f̃ in (2.21) may be chosen as

f̂(w) = h`+1(w) , h`+1(tw) = t`+1h`+1(w) , t ∈ IR, (2.24)

and

f̃(w) = 1 +

m0∑

j=`+2

hj(w) + h̃(w) ∈ F`+1+θ .

It follows from (2.24) that f is the inverse Fourier transform of a homogeneous function of order

`+1, therefore is homogeneous of order −`−1−d away of the origin, and hence f(x) = O(‖x‖−d−`−1)

as ‖x‖ → ∞. Thus ψ̂ satisfies the requirements of Lemma 2.6 and (2.22) holds. ♠
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Remark 2.8.

The observation that f ∈ Fr ⇒ xαf ∈ Fr+|α|, α ∈ ZZd+, combined with the same type of

arguments as above, proves that under the conditions of Corollary 2.7

Dαψ(x) = O(‖x‖−d−`−1−|α|) , α ∈ ZZd+ .

We can now state the main result of this section.

Theorem 2.9. Let φ̂ satisfy (2.1), (2.2) and (2.3), and let ψ̂ = eφ̂ where e is a trigonometric

polynomial (2.7) satisfying (2.8) with 0 ≤ ` < m0. Then for p ∈ PG ∩ π`

Qψp :=
∑

α∈ZZd

p(α)ψ(· − α) = p , (2.25)

and the convergence of the infinite sum to p is uniform on compact subsets of IRd.

Proof: For p ∈ PG ∩ π`, consider the function

gx(y) = p(y)ψ(x− y) . (2.26)

By Corollary 2.7, gx(y) ∈ L1(IRd) for any fixed x ∈ IRd, and also the sum
∑

α∈ZZd

gx(·+α) is uniformly

convergent on IRd, since

|gx(y)| = |p(y)ψ(x− y)| = O(‖y‖`‖x− y‖−`−d−1) = O(‖y‖−d−1) , as ‖y‖ → ∞. (2.27)

Hence
∑

α∈ZZd

gx(y + α) defines a continuous function in y which is periodic. Now by (2.26)

ĝx(w) = e−ix·w
[
p(x− iD)ψ̂

]
(−w)

= e−ix·w
∑

|β|≤`

xβ

β!

[
p(β)(−iD)ψ̂

]
(−w)

and in view of (2.16) and (2.2) ĝx ∈ L1(IRd).

Now, since p(β) ∈ π` ∩ PG for all β ≥ 0, it follows from (2.11) and (2.12) that

ĝx(0) =
∑

|β|≤`

xβ

β!
p(β)(0) = p(x) , (2.28)

ĝx(2πα) = 0 for α ∈ ZZd\0 . (2.29)

Hence
∑

α∈ZZd

ĝx(2πα) is absolutely convergent and the Poisson Summation Formula ([SW], see also

[J2]) may be invoked to yield

∑

α∈ZZd

p(α)ψ(x− α) =
∑

α∈ZZd

gx(α) =
∑

α∈ZZd

ĝx(2πα) = p(x). (2.30)

Moreover, the convergence in (2.30) is uniform in x on compact sets of IRd, as is implied by (2.27)

with y = α. ♠
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Corollary 2.10. Under the conditions of Theorem 2.9

PG ∩ πm0−1 ⊂ T φ , Tφ = span{φ(x− α) | α ∈ ZZd} , (2.31)

where the closure is taken in the topology of uniform convergence on compact sets.

It is clear from the proof of Theorem 2.9 and Lemmas 2.5, 2.6 that

Corollary 2.11. Let ψ be as in Theorem 2.9 but with ` = m0. Then (2.25) holds for p ∈

PG∩πm0−1. Moreover, if ψ satisfies the conditions of Lemma 2.6 then (2.25) holds for p ∈ PG∩πm0

and

PG ∩ πm0
⊂ Tφ (2.32)

Remark 2.12.

By (2.2) and (2.13),

PG ∩ π` = π` ⇐⇒ ` ≤ m− 1 . (2.33)

Thus for ` ≤ m − 1 the spaces of polynomials reproduced by sums of the type (2.25) are of

total degree. The value ` = min(m− 1,m0) is the maximal ` such that π` is reproduced by quasi-

interpolation operators of the form (2.25), and hence determines the maximal rate of approximation

by the scaled versions of Qψ

Qψ,hf(x) =
∑

α∈hZZd

f(α)ψ
(
h−1(x− α)

)
(2.34)

(see sections 4 and 5).

It should be noted, in view of Remarks 2.3 and 2.4, that as ` increases the support I of the

difference operator defining ψ ∈ Tφ in (2.9) is likely to increase.

3. Applications

In this section we discuss two classes of functions that satisfy the assumptions in (2.1) and

(2.2): fundamental solutions of homogeneous elliptic operators, and “shifts” of the fundamental

solutions of the iterated Laplacian. In both cases, we employ the results of the previous section for

identification of polynomials in the associated T φ.

Roughly speaking, the difference between these two cases can be summarized as follows: in the

case of a fundamental solution φ of an elliptic operator P (D), the distribution P (D)φ is of compact

support (in effect, the Dirac distribution). Finite difference operators can then “imitate” P (D) to

the extent that the resulting ∇φ decreases to 0 at infinity at any desirable algebraic rate. In the

case of the “shifted” fundamental solutions of the iterated Laplacian, the associated differential

operator when applied to φ, yields a function with only algebraic decrease at infinity. Analogously,

the associated ∇φ’s decrease at infinity no faster then P (D)φ. This observation will lead in the

next section to a saturation result concerning the approximation order by quasi-interpolants which

uses these “shifted” functions.
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I. Fundamental solutions of Elliptic Operators.

Let Pm(x) =
∑

|α|=m

aαx
α, m > d, m even, satisfy

Pm(x) 6= 0 , x 6= 0 . (3.1)

We take φ to be a fundamnetal solution of the operator (−1)m/2Pm(D), namely a solution of the

equation

(−1)m/2Pm(D)φ = Pm(−iD)φ = δ .

The equivalent definition of φ, in terms of the generalized Fourier transform φ̂ of φ, reads as

Pmφ̂ = 1 . (3.2)

It is clear that the pair G := Pm and F := 1 satisfies (2.2) with m0 = ∞. Among all solutions φ̂ of

(3.2) we choose φ̂ as the distribution

φ̂(s) =

∫

B

1

Pm(w)


s(w) −

∑

|α|<m

s(α)(0)

α!
wα


 dw +

∫

IRd\B

s(w)

Pm(w)
dw , s ∈ S , (3.3)

where B = {w ∈ IRd
∣∣ ‖w‖ ≤ 1}.

Lemma 3.1. The distribution φ̂ defined by (3.3) satisfies (2.3) and is a solution of equation (3.2).

Proof: Since s(α)(0) = 0, |α| < m for s ∈ Sm−1 then by (3.3)

φ̂(s) =

∫

IRd

1

Pm(w)
s(w) dw , s ∈ Sm−1 . (3.4)

Now, for any s ∈ S, Pms ∈ Sm−1, hence by (3.4)

Pmφ̂(s) = φ̂(Pms) =

∫

IRd

s(w) dw

proving that Pmφ̂ = 1. ♠

It is easy to check that for φ defined by (3.3)

φ(x) =
1

(2π)d

{ ∫

B

1

Pm(w)

{
eiw·x −

m−1∑

j=0

(iw · x)j

j!

}
dw +

∫

IRd\B

1

Pm(w)
eiw·xdw

}
, (3.5)

since

φ(ŝ) = φ̂(s) , s ∈ S .

11



For any ` ≥ 0, let the trigonometric polynomial

e`(w) =
∑

α∈I

aαe
−iα·w (3.6)

satisfy

(e` − Pm)(α)(0) = 0 , |α| ≤ m+ ` .

Then, by Lemma 2.2, the Fourier transform of

ψ`(x) :=
∑

α∈I

aαφ(x− α) ∈ Tφ (3.7)

is the function

ψ̂` =
e`
Pm

. (3.8)

Further, since in this case m0 = ∞, Corollary 2.7 guarantees that ψ`(x) = O(‖x‖−d−`−1) as

‖x‖ → ∞, for ` ≥ 0. Thus we obtain from Theorem 2.9 that

Qψ`
(p) = p , p ∈ PPm ∩ π`, (3.9)

and by Corollary 2.10

PPm ∩ π` ⊂ T φ, (3.10)

where

PPm =
{
p ∈ π

∣∣ (
p(α)(−iD)Pm

)
(0) = 0 ∀ α ∈ ZZd+} .

Since the polynomial Pm is homogeneous, so is the associated space PPm . Hence this space can be

written in the simpler form

PPm =
{
p ∈ π

∣∣ (
p(α)(D)Pm)(0) = 0 , ∀ α ∈ ZZd+

}
. (3.11)

Since in (3.10) ` can be arbitrarily large (with the support I of ψ` in (3.7) changing with `), we

conclude that

Corollary 3.2. PPm ⊂ T φ. In particular

πm−1 ⊂ Tφ. (3.12)

As already indicated in (2.5), spaces of the form PG constitute in π the kernel of a certain

differential operator. In the case in hand this space in simply the kernel in π of Pm(D).

Theorem 3.3. Let

kerPm(D) :=
{
p ∈ π

∣∣ Pm(D)p ≡ 0
}
. (3.13)

Then

kerPm(D) = PPm , (3.14)
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and hence kerPm(D) ⊂ T φ.

Proof: Observe first that p ∈ kerPm(D) if and only if for all α ∈ ZZd+

Pm(D)p(α)(0) = Dα[Pm(D)p](0) = 0. (3.15)

This means that (3.15) identifies kerPm(D) as the largest D-invariant (namely, differentiation-

closed) subspace of

{p ∈ π | Pm(D)p(0) = 0},

while, by its definition, PPm is the largest D-invariant subspace of

{p ∈ π | p(D)Pm(0) = 0}.

Our claim thus follows from the fact that for any two polynomials p, q p(D)q(0) = q(D)p(0). ♠

It is interesting to note that the difference operator defining ψ` in (3.7)

∇`f =
∑

α∈I

aαf(· − α) , (3.16)

approximates the differential operator (−1)m/2Pm(D) in the following sense:

Proposition 3.4. Let ∇` be given by (3.16), where I ⊂ ZZd and {aα, α ∈ I} are chosen so that

e`(w) =
∑
α∈I aαe

−iα·w satisfies

e(α)(0) = P (α)
m (0) , |α| ≤ `+m . (3.17)

Then

∇`f = (−1)m/2Pm(D)f , f ∈ π`+m .

Proof: Let q ∈ π`+m, and consider the polynomial

p = (−1)m/2Pm(D)q −∇`q = Pm(−iD)q −∇`q .

To show that p ≡ 0 we prove that p̂ ≡ 0. Now

p̂(s) =
[
Pm − e`

]
q̂(s) = q̂

(
(Pm − e`)s

)
, s ∈ S , (3.18)

and since q ∈ π`+m

q̂(s) =
∑

|α|≤`+m

cαs
(α)(0) , s ∈ S .

On the other hand by (3.17)
[
(Pm − e`)s

](α)
= 0, |α| ≤ ` + m proving that in (3.18) p̂(s) = 0,

s ∈ S. ♠
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Remark 3.5.

For φ satisfying (2.2), a result similar to Proposition 3.4 holds, namely

∇`f =
G

F
(−iD)f , f ∈ π`+m , ` ≤ m0 ,

where for f ∈ π`+m

(G/F )(−iD)f :=
∑

α∈ZZd

|α|≤m +

·

`

(G/F )(α)(0)

α!
(−iD)αf .

The most interesting cases for Pm are when Pm(D) is the iterated Laplacian, namely

Pm(x) = ‖x‖m , Pm(D) = (D ·D)m/2 , m even .

In these cases for m > d [GS]

φm,d(x) =




Cm,d‖x‖

m−d , d odd ,

Cm,d‖x‖
m−d log ‖x‖ , d even ,

(3.19)

and, by Corollary 3.2, the space of total degree polynomials contained in T φm,d
is πm−1. Thus for

fixed odd ν > 0, πν+d−1 ∈ span{‖x − α‖ν , α ∈ ZZd} in odd dimension, while for even ν > 0,

πν+d−1 ∈ span{‖x − α‖ν log ‖x − α‖ , α ∈ ZZd} in even dimension. This observation shows that

the same radial function has better approximation properties (see sections 4,5) as the dimension of

the space increases.

The functions ψ = ∇0φm,d, m > d, are studied in [R1], and shown to have properties similar to

the univariate B-splines. Explicit construction and properties of ψ = ∇`φm,d, ` > 0, are discussed

in [R2].

II. Radial functions.

The fundamental solutions of the iterated Laplacian (3.19) are radial functions, namely φ(x) =

f(‖x‖), for some univariate f . Here we investigate radial functions which are not fundamental

solutions of elliptic operators, but are obtained from fundamental solutions of the iterated Laplacian

by the change ‖x‖ −→
√

‖x‖2 + c2 with c > 0. Thus we consider the following functions

φ(x) = fλ(x) = (‖x‖2 + c2)λ/2,

φ(x) = gλ(x) = (‖x‖2 + c2)λ/2 log(‖x‖2 + c2)1/2,
(3.20)

without restricting initially the values of λ. The Fourier transforms of these functions satisfy the

equation [GS]:

‖w‖d+λf̂λ(w) = cλK̃(d+λ)/2(‖cw‖), (3.21)

‖w‖d+λĝλ(w) =

(
∂

∂λ
cλ + cλ log c

)
K̃ d+λ

2

(‖cw‖) + cλ‖w‖
d+λ ∂

∂λ

[
‖w‖−d−λK̃ d+λ

2

(‖cw‖)
]
(3.22)
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where cλ = (2π)d/22λ/2+1

Γ(−λ
2 )

and K̃ν(‖w‖) = ‖w‖νKν(‖w‖) with Kν(t) the modified Bessel function

[AS]. The expression (3.22) may be obtained from (3.21) with the aid of the relation ∂
∂λfλ = gλ.

The properties of K̃ν(t) needed in our analysis are:

K̃0(t) ∼ − log t , K̃ν(t) ∼ 2ν−1Γ(ν) , ν > 0 , t→ 0+ , (3.23)

and for integer values of ν

K̃ν(t) =
∞∑

k=0

ak,νt
2k + (log t)t2ν

∞∑

k=0

bk,νt
2k, a0,ν = 2ν−1(ν − 1)! as t→ 0+, b0,ν 6= 0. (3.24)

Defining G(w) := ‖w‖d+λ, we see that G satisfies (2.2) only when d + λ is an even positive

integer. Furthermore, with this choice and with F (w) := cλK̃(d+λ)/2(‖cw‖), F (0) 6= 0 whenever

cλ 6= 0. The interesting choices of (d, λ) here are:

φ(x) = (‖x‖2 + c2)λ/2 d, λ odd, −d < λ,

φ(x) = (‖x‖2 + c2)λ/2 d, λ even, −d < λ < 0 .
(3.25)

The choice λ, d even λ > 0 corresponds to cλ = 0 and is of no interest since then φ is a polynomial

of degree λ, hence its translate generate a finite dimensional polynomial space. For the ranges of λ

in (3.25), (3.24) indicates that (2.2) is satisfied with m := d+ λ, m0 := m− 1,

G(w) := ‖w‖m , F (w) := cm−dK̃m/2(‖cw‖) . (3.26)

Note that φ is infinitely differentiable, hence its Fourier transform is rapidly decreasing at infinity.

In fact, φ̂ decays exponentially at infinity, [AS].

Restricting λ + d to positive even integers is also necessary for equation (3.22) to satisfy

conditions (2.2). Furthemore, choosing λ to be even and non-negative, we get cλ = 0, hence

resulting (up to a constant factor) in the same Fourier transform as in the previous case. Thus we

choose the range of d, λ there to be

φ(x) = (‖x‖2 + c2)λ/2 log(‖x‖2 + c2)1/2 , λ, d even , λ ≥ 0. (3.27)

This range complements that in (3.25) for even d. For this range, G and F in (2.2) are of the form

(3.26) with cm−d being replaced by ∂
∂mcm−d, and with the same choice of m and m0.

Thus for the functions in (3.25) and (3.27) the ratio G/F , can be expanded near the origin in

the form:

G

F
(w) = ‖w‖m

{ ∑

ν≥0

aν‖w‖
2ν + ‖w‖m log ‖w‖

∑

ν≥0

bν‖w‖
2ν + ‖w‖2m(log ‖w‖)2

∑

ν≥0

cν‖w‖
2ν + · · ·

}

(3.28)

In view of this expansion, a trigonometric polynomial e`(x) satisfying

Dα

(
e` −

G

F

)
(0) = 0 , |α| ≤ m+ ` (3.29)

exists only for ` ≤ m− 1, and by Theorem 2.9 with ψ̂` = e`φ̂

Qψ`
(p) = p , p ∈ π` , 0 ≤ ` ≤ m− 2 . (3.30)

This result can be extended to ` = m− 1 by showing that ψ̂m−1 satisfies the conditions of Lemma

2.6 and then applying Corollary 2.11.
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Lemma 3.5. Let em−1 be a trigonometric polynomial satisfying (3.29) with ` = m− 1, and let

ψ̂m−1 = em−1F/G

where G(w) = ‖w‖m and F (w) = c̃K̃m/2(‖cw‖) with c̃ ∈ IR. Then ψ̂ satisfies the conditions of

Lemma 2.6 with ` = m− 1.

Proof: By (3.28),(3.29) and (3.24), near the origin ψ̂ has the expansion

ψ̂m−1(w) = 1 +
F (w)

G(w)

[
e(w) −

G(w)

F (w)

]

= 1 + hm(w) + ã‖w‖m log ‖w‖ + h̃(w) , (3.31)

with hm(tw) = tmhm(w), hm ∈ C∞(IRd\0), h̃ ∈ Fm+θ for any θ ∈ (0, 1), and ã ∈ IR\0. By the

homogeneity of hm its inverse generalized Fourier transform
∨

hm (x) is homogeneous of order −m−d

away of the origin. Hence

∨

hm (x) = O(‖x‖−m−d) , as ‖x‖ → ∞ .

Moreover, since m is even, (‖w‖m log ‖w‖)∨ is infinitely differentiable away of the origin and a

direct calculation yields

(‖w‖m log ‖w‖)∨(tx) = t−(m+d)(‖w‖m log ‖w‖)∨(x) − t−(m+d) log |t|L, t ∈ IR\0,

where L is a distribution supported at the origin. Hence ψ̂ satisfies the requirements of Lemma 2.6

with ` = m− 1. ♠

Remark 3.6.

The same type of arguments together with the two observations:

f ∈ Fr ⇒ xαf ∈ Fr+|α|, α ∈ ZZd+ ,

(wα‖w‖m log ‖w‖)∨(tx) = t−(|α|+m+d)(wα‖w‖m log ‖w‖)∨(x) − t−(|α|+m+d) log |t|Lα, t ∈ IR\0,

for some Lα supported at the origin, prove that under the conditions of Lemma 3.5

Dαψm−1(x) = O(‖x‖−d−m−|α|) as ‖x‖ → ∞ , α ∈ ZZd+ .

Corollary 3.7. Let φλ be one of the functions in (3.25) or (3.27), and let ψ̂λ = e`φ̂λ where e`

satisfies (3.29) with m = λ+ d, ` = m− 1, and F,G as above. Then

Qψλ
p = p , p ∈ π` = πλ+d−1 ,

and hence

πλ+d−1 ⊂ T φλ
.
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Remark 3.8.

The radial functions in (3.25), (3.27) are all obtained from fundamental solutions of the iterated

Laplacian by the change ‖x‖ →
√
‖x‖2 + c2 with c > 0. This “shifted” version of the fundamental

solutions of Pm(D) = (D·D)m/2 correspond to all positive values of the even integerm (= λ+d > 0),

while in the case of the fundamental solutions themselves, (3.19), the possible range for the even

integer m is restricted to m > d. It is clear that this range of m cannot be extended since the

fundamental solutions are singular at the origin for 0 < m ≤ d.

4. Approximation order by quasi-interpolation

In the introduction it is shown that the conversion of the polynomial reproduction of Qψ into

approximation rates of Qψ,h may be done exactly as in the compactly supported case, if ψ decreases

fast enough at infinity, namely if Qψp = p, p ∈ π` and ψ(x) = O
(
‖x‖−(d+k)

)
as ‖x‖ → ∞, with

k > `+ 1. Here we investigate the more subtle case when it is known that

|ψ(x)| ≤ A(1 + ‖x‖∞)−(d+`+1), (4.1)

while

Qψp = p, ∀p ∈ π`. (4.2)

These conditions are satisfied by most of the models considered in Section 2. We assume throughtout

this section that (4.1) and (4.2) hold, and that all functions f approximated by Qψ,h are admissible

in the sense that the partial sums of Qψ,hf converge absolutely and uniformly on compact sets. We

look here for conditions on f and ψ that allow the improvement of the approximation rate O(h`)

provided by Corollary 1.2.

The outline of the discussion is as follows: we show first that for a function f with bounded

derivatives of order ` and ` + 1, the approximation order to f by Qψ,h depends on the behaviour

of the sum ∑

α∈[−h−1,h−1]d∩ZZd

f(hα)ψ(h−1 · −α). (4.3)

Following [J1], we then prove that for such f the approximation rate is (at least) O(h`+1| log h|).

Aiming at achieving better rates, we assume that the (`+ 2)-order derivatives of f are bounded as

well. That latter case is treated by a sequence of reductions: first it is shown that approximation

order O(h`+1) is equivalent to the uniform boundeness of the sums

∑

α∈[−h−1,h−1]d∩ZZd

αβψ(h−1 · −α), h > 0, |β| = `+ 1.

Under further assumptions on the behaviour of the first order derivatives of ψ, the boundedness of

these sums is converted in the usual way to the uniform boundedness of the integrals

∫

[−h−1,h−1]d
()βψ, h > 0, |β| = `+ 1, (4.4)
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where ()β stands for the monomial of power β. We then exploit the precise connection between

the uniform boundedness of (4.4) and the behaviour of Dβψ̂ near the origin, showing that this

uniform boundedness is equivalent to the boundedness of the integrals (Dβψ̂ ∗uh)(0) for a suitable

approximate identity {uh}. Using the decay of Dβψ̂ at infinity, the boundedness of (4.4) is reduced

to the boundedness of Dβψ̂ around the origin, a property which is valid in the case of fundamental

solutions of homogeneous elliptic operators. On the other hand, if Dβψ̂ admits a log singularity

at the origin (as in the case of the “shifted” fundamental solution), the boundedness condition

is violated, hence the approximation order in general is necessarily O(h`+1| log h|). The following

theorem summarizes the resulting consequences with regard to the examples considered in the

previous section.

Theorem 4.1. Let m be an even integer and ` < m.

(a) Assume that φ is a fundamental solution of a homogeneous elliptic operator of order m and

ψ = ∇φ satisfies (4.1) and (4.2). Then, for f with bounded derivatives of order ` and `+ 1,

‖Qψ,hf − f‖∞ = O(h`+1| log h|). (4.5)

If in addition the derivatives of f of order `+ 2 are bounded, then

‖Qψ,hf − f‖∞ = O(h`+1). (4.6)

(b) Assume that φ is a “shifted” fundamental solution of the (m/2)th iterated Laplacian, and that

ψ = ∇φ satisfies (4.1) and (4.2). Then for f with bounded derivatives of order ` and ` + 1,

(4.5) holds. If, in addition, the derivatives of order `+ 2 of f are bounded then (4.6) holds for

` < m − 1, yet for ` = m − 1 = m0 the | log h| factor cannot be removed and (4.5) gives the

best rate: precisely, there exists an infinitely differentiable compactly supported f for which

‖Qφ,hf − f‖∞ 6= o(hd|logh|).

We now commence on the detailed analysis. The first two lemmas will be used as a simple

technical device for the analysis to follow. We use the notation

Sx,h := ZZd ∩ h−1(x+ [−1, 1]d).

Lemma 4.2. With Sx,h as above

(a) Gx,h :=
∑

α∈Sx,h

(1 + ‖α− h−1x‖∞)−(d+k) ≤ A

{
| log h|, k = 0,
hk, −d < k < 0.

(b)
∑

α∈ZZd\Sx,h

(1 + ‖α− h−1x‖∞)−(d+k) ≤ Ahk, k > 0.

Proof: We treat first the case x = 0 in (a). For d = 1 all the above results can be obtained say,

by an integral test. The multivariate case is then reduced to the univariate one, since

∑

α∈Sx,h

(1 + ‖α‖∞)−(d+k) ≤ 2d

[h−1]∑

j=0

(2j + 1)d−1(1 + j)−(d+k) ≤ 2dd

[h−1]∑

j=0

(1 + j)−(k+1).
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For the case of general x in (a), we first note that Gx,h ≤
∑

α∈(δ+ZZd)∩[−h−1,h−1]d(1+ ‖α‖∞)−(d+k),

with δ ∈ [0, 1]d. Using the estimate

‖δ + α‖∞ ≥ ‖ν + α‖∞ , νi =

{
0 αi ≥ 0
1 αi < 0 ,

we may divide the cube [−h−1, h−1]d by the coordinate hyperplanes, while on each subcube the

corresponding partial sum is bounded by

∑

α∈ZZd∩C̃

(1 + ‖α‖∞)−(d+k) ,

where C̃ is a cube with a main diagonal connecting the origin with a vertex of [−h−1, h−1]d.

Summing up over all the 2d subcubes with this property, we conclude that Gx,h ≤ 2dG0,h.

Part (b) is proved similarly. ♠

Lemma 4.3. Let γ be a continuous function which satisfies the following conditions:

(a) |γ(x)| ≤ A1(1 + ‖x‖∞)−d.

(b) |γ(x) − γ(x+ δ)| ≤ A2(1 + ‖x‖∞)−(d+1), for all δ ∈ [−1/2, 1/2]d.

Then

|
∑

α∈S0,h

γ(α) −

∫

[−h−1,h−1]d
γ(t) dt| = O(1). (4.7)

Proof: For each α ∈ S0,h let Cα := α+[−1/2, 1/2]d, C := ∪α∈S0,h
Cα. Note first that (a) implies

that

|

∫

[−h−1,h−1]d
γ(t) dt−

∫

C

γ(t) dt|

≤2dd(1 + h−1)d−1 max{|γ(t)| : h−1 − 1 ≤ ‖t‖∞ ≤ h−1 + 1}

≤2ddA1(1 + h−1)d−1hd = O(h),

hence we may replace the domain of integration in (4.7) by C. The claim now easily follows, since

by (b) and the continuity of γ

|γ(α) −

∫

Cα

γ(t) dt| ≤ A2(1 + ‖α‖∞)−(d+1),

and the series
∑

α∈ZZd(1 + ‖α‖∞)−(d+1) is convergent. ♠

Next, we employ the quasi-interpolation argument in

Proposition 4.4. For a given non-negative integer j and a smooth function f whose derivatives

of order `, `+1, ..., `+ j are all bounded, set Kf,j :=
∑j

s=0 ‖f‖∞,`+s. Then Qψ,h with ψ satisfying

(4.1) and (4.2) has the property that for every smooth function f with bounded derivatives of order

`, `+ 1, ..., `+ j,

‖Qψ,hf − f‖∞ ≤ AKf,j h
`+1 resp. AKf,j h

`+1| log h| ,
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if for every function g with bounded derivatives of order `, `+1, ..., `+j, which satisfies Dαg(x) = 0,

|α| ≤ ` for some x ∈ IRd,

|
∑

α∈Sx,h

g(hα)ψ(h−1x− α)| ≤ AKg,j h
`+1 resp. AKg,j h

`+1| log h| .

Proof: For x ∈ IRd and a smooth f as above let T`,xf be the Taylor expansion of degree ` of f

around x. Then, with g := f − T`,xf one has Kg,j ≤ 2Kf,j , and Dαg(x) = 0, |α| ≤ `. Thus, since

Qψ,h reproduces π`,

(Qψ,hf − f)(x) = Qψ,hg(x) =
∑

α∈ZZd

g(hα)ψ(h−1x− α) ,

and the claim of the proposition follows if for g = f − T`,xf ,

|
∑

α∈ZZd\Sx,h

g(hα)ψ(h−1x− α)| ≤ AKg,jh
`+1.

For that, we first observe that the assumptions on g provide the estimate

|g(hα)| ≤ A‖g‖∞,`‖hα− x‖`∞ = Ah`‖g‖∞,`‖h
−1x− α‖`∞. (4.8)

Therefore,

|
∑

α∈ZZd\Sx,h

g(hα)ψ(h−1x− α)| ≤ Ah`‖g‖∞,`

∑

α∈ZZd\Sx,h

(1 + ‖h−1x− α‖∞)−(d+1) ≤ A‖g‖∞,`h
`+1,

where in the last inequality Lemma 4.2(b) has been employed. ♠

Following [J1], we improve the approximation order O(h`) implied by Corollary 1.2, for ψ

satisfying (4.1) and (4.2).

Theorem 4.5. Under conditions (4.1) and (4.2), one has

‖Qψ,hf − f‖∞ = O(h`+1| log h|),

for every smooth function f whose derivatives of order ` and `+ 1 are all bounded.

Proof: By Proposition 4.4 (for the choice j = 1 there), it suffices to prove an inequality

|
∑

α∈Sx,h

g(hα)ψ(h−1x− α)| ≤ A‖g‖∞,`+1h
`+1| log h|,

for any g of the form g = f − T`,xf . As in (4.8), we estimate

|g(hα)| ≤ Ah`+1‖g‖∞,`+1‖h
−1x− α‖`+1

∞ ,

and hence

|g(hα)ψ(h−1x− α)| ≤ Ah`+1‖g‖∞,`+1(1 + ‖h−1x− α‖∞)−d.

An application of Lemma 4.2(a) thus completes the proof. ♠

In order to identify situations where the above | log h| term can be removed, we assume hereafter

that ψ satisfies also the additional requirement

|Dβψ(x)| ≤ A(1 + ‖x‖∞)−(d+`+2), |β| = 1 . (4.9)

Under this further assumption, the problem of obtaining the exact order of Qψ,h can be further

reduced:
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Proposition 4.6. Suppose that ψ satisfies (4.1), (4.2) and (4.9). Then the approximation order

‖Qψ,hf − f‖∞ = O(h`+1)

holds for every smooth function with bounded derivatives of order `, `+ 1 and `+ 2 if and only if

the integrals

Iη,h :=

∫

[−h−1,h−1]d
tηψ(t) dt , |η| = `+ 1 ,

are uniformly bounded in h. Moreover, if Iη,h 6= o(| log h|) for some |η| = ` + 1, then for any

compactly supported infinitely differentiable f , which coincides with tη on the cube [−1, 1]d,

|(Qψ,hf − f)(0)| 6= o(h`+1| logh|) .

Proof: By Proposition 4.4 (with j = 2), it is sufficient to show that the above integrals are

bounded if and only if the inequality

|
∑

α∈Sx,h

g(hα)ψ(h−1x− α)| ≤ AKg,2h
`+1 (4.10)

holds for every g whose derivatives of order `+ s, s = 0, 1, 2 are all bounded, and whose derivatives

of order ≤ ` vanish at x.

By our assumptions, T`+1,xg, the Taylor expansion of degree ` + 1 of g around x, is a homo-

geneous polynomial of degree `+ 1, and

|(g − T`+1,xg)(z)| ≤ A‖g‖∞,`+2‖z − x‖`+2
∞ . (4.11)

Now, by (4.1), (4.11), and Lemma 4.2(a),

|
∑

α∈Sx,h

[g(hα) − T`+1,xg(hα)]ψ(h−1x− α)|

≤Ah`+2‖g‖∞,`+2

∑

α∈Sx,h

(1 + ‖h−1x− α‖∞)−(d−1)

≤A1h
`+1‖g‖∞,`+2,

which reduces (4.10) to the behaviour of the sum

∑

α∈Sx,h

T`+1,xg(hα)ψ(h−1x− α).

Thus (4.10) is satisfied for all admissible functions g if and only if the sums

∑

α∈Sx,h

(α− h−1x)ηψ(h−1x− α), |η| = `+ 1 , (4.12)

are uniformly bounded in h and x. To proceed, we define γ(x) := xηψ(−x), |η| = `+1. From (4.9)

we conclude that

|Dβγ(x)| ≤ A(1 + ‖x‖∞)−(d+1), |β| = 1 , (4.13)
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showing that the boundedness of the sums in (4.12) is equivalent to that of the sums

∑

α∈S0,h

αηψ(−α) , |η| = `+ 1 .

To complete the proof of the first claim, it remains to show that γ satisfies the requirements in

Lemma 4.3. Yet this is evident: condition (a) of that lemma is a direct consequence of (4.1), while

condition (b) follows from (4.13).

For the second claim, choose x = 0 to obtain

∑

α∈S0,h

f(hα)ψ(−α) =
∑

α∈S0,h

(hα)ηψ(−α).

Since the argument used in the proof of Proposition 4.4 shows that
∑

ZZd\S0,h
|f(hα)ψ(−α)| =

O(h`+1), Lemma 4.3 provides the desired result. ♠

At this point we wish to connect the behaviour of the integrals Iη,h, |η| = ` + 1 with the

behaviour of Dβψ̂, with |β| = ` + 1. For this, we take ρ to be as in (2.23) with δ = 1 and ‖ · ‖2

being replaced by ‖ · ‖∞ (any rapidly decreasing C∞
0 function which is 1 in a neighborhood of the

origin will do as well). Defining ρh := ρ(h·), we see that for an arbitrary measurable function f ,

|

∫

[−h−1,h−1]d
f −

∫

IRd

ρhf | ≤

∫

1/2h−1≤‖t‖∞≤h−1

|f(t)| dt,

which is bounded independently of h provided that

|f(t)| = O(‖t‖−d∞ ), as t→ ∞. (4.14)

As for the integral

J :=

∫

IRd

ρhf,

the definition of the generalized Fourier transform of f̂ implies that

J = f̂(ρ̂h).

For the case of interest, viz, when f := ()βψ, |β| = `+ 1, (4.14) is satisfied and f̂ coincides, up to

a constant, with Dβψ̂. We thus conclude

Proposition 4.7. The integrals Iβ,h, |β| = `+1, are uniformly bounded in h if and only if Jβ,h :=

(Dβψ̂)(uh), |β| = `+ 1, are uniformly bounded in h, with uh = ρ̂h = h−dρ̂(h−1·). Furthermore, for

each |β| = `+ 1, Jβ,h 6= o(| logh|) if and only if Iβ,h 6= o(| logh|).

We are now in a position to improve the result of Theorem 4.5.
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Theorem 4.8. Let ψ satisfy (4.1),(4.2),(4.9) and the additional condition

‖Dβψ̂‖∞ ≤ A , |β| = `+ 1 . (4.15)

Then

‖Qψ,hf − f‖∞ = O(h`+1) , (4.16)

for f with bounded derivatives of order `, `+ 1 and `+ 2.

Proof: By Propositions 4.6 and 4.7, the proof of the theorem is reduced to the proof of the

boundedness in h of

Jβ,h =

∫

IRd

uhD
βψ̂ , |β| = `+ 1 . (4.17)

Now, by the boundedness of Dβψ̂, and since uh = h−dρ̂(h−1·)

∣∣∣∣
∫

IRd

uhD
βψ̂

∣∣∣∣ ≤ A

∫

IRd

|uh| = A

∫

IRd

|ρ̂| . ♠

This result applies to most of the cases considered in Section 2.

Corollary 4.9. Let φ satisfy conditions (2.2) and let ψ = ∇`φ satisfy the conditions of Lemma

2.2 with ` < min(m0,m). Then for f with bounded derivatives of order `, `+ 1 and `+ 2,

∥∥Qψ,hf − f
∥∥
∞

= O(h`+1).

Proof: To show that ψ satisfies the conditions of Theorem 4.8, observe that (4.1) and (4.9) follow

from Lemma 2.7 and Remark 2.8, and that (4.2) is guaranteed by Theorem 2.9. Finally condition

(4.15) follows from (2.2)(e) and expression (2.16) with ` < m0. ♠

Theorem 4.5 and Corollary 4.9 when specialized to a fundamental solution of a homogeneous

elliptic operator φ, yield part (a) of Theorem 4.1, since m0 = ∞. For φ a “shifted” fundamental

solution of the (m/2)th-iterated Laplacian, Theorem 4.5 and Corollary 4.9, yield part (b) of The-

orem 4.1 for ` < m− 1, since in this case m0 = m− 1. To complete the proof of Theorem 4.1. it is

sufficient, in view of Propositions 4.6 and 4.7, to show that

Lemma 4.10. Let φ be a “shifted” fundamental solution of the (m/2)th iterated Laplacian and

let ψ = ∇`φ satisfy the conditions of Lemma 2.2 with ` = m − 1. Then ψ satisfies conditions

(4.1),(4.2),(4.9), and for β = (m, 0, ..., 0)

Jβ,h =

∫

IRd

uhD
βψ̂ 6= o(| logh|). (4.18)

Proof: By Lemma 3.5, Corollary 2.11, and Remark 3.6, ψ satisfies (4.1),(4.2) and (4.9), while,

by (3.26), Dβψ̂ decays to zero at infinity. The behavior near w = 0 of Dβψ̂(w) is obtained from

(3.31). For w ∈ Bε, application of Dβ to (3.31) yields

Dβψ̂(w) = ãm! log ‖w‖ +O(1) , ã 6= 0. (4.19)
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Now, for any f with at most polynomial growth at infinity

lim
h→0

∫

‖w‖>1

f(w)uh(w)dw = lim
h→∞

∫

‖λ‖≥h−1

f(λh)ρ̂(λ)dλ = 0 (4.20)

since ρ̂ decays faster than any polynomial at infinity, being the Fourier transform of a C∞
0 -function

[GS].

Thus for β as above, we obtain in view of (4.20) (when applied to f = Dβψ̂ − ãm! log ‖w‖)

and (4.19), ∫

IRd

uhD
βψ̂ = A

∫

IRd

uh(w) log ‖w‖dw +O(1) .

The claim (4.18) now follows from the observation that

∫

IRd

uh(w) log ‖w‖dw = log h

∫

IRd

ρ̂(λ)dλ+O(1) ,

in which we have used the fact that ρ̂ log ‖ · ‖ is integrable, as the product of a rapidly decreasing

function by a tempered one.

5. Approximation order by quasi-interpolation over a bounded domain

We now come to the more practical question of determining the rate of convergence for quasi-

interpolation over a bounded region. We take Ω to be an open bounded region of IRd and suppose

that we have a function f ∈ C`+1(Ω). We now define the quasi-interpolant to f on Ω by

Qψ,h,Ωf(x) =
∑

α∈ZZd∩h−1Ω

f(hα)ψ(h−1x− α) . (5.1)

Assuming as before that ψ satisfies conditions of the form

Qψp = p , p ∈ π` , |ψ(x)| ≤ A(1 + ‖x‖∞)−(d+k) , k ≥ `+ 1 , (5.2)

we cannot expect convergence on the whole of Ω, but look for convergence on a domain smaller by

size δ := δ(h):

Ωδ = {y ∈ Ω : ‖y − z‖∞ ≤ δ ⇒ z ∈ Ω}. (5.3)

We think of δ as being fixed or going to 0, as h goes to 0. In the compactly supported case

one may define δ(h) = ch, where c depends on the diam suppψ, to get the same approximation

order as obtained with respect to the whole domain IRd. However, in our analysis we will have

to impose slower decrease on δ in order to preserve the approximation orders established in the

previous section. In case δ is fixed, we take it small enough so that Ωδ 6= ∅. It is possible to

attempt to establish the rate of convergence by first extending the function f to a function fE over

the whole of IRd. If fE satisfies e.g., the conditions of Proposition 1.1 or Theorem 4.5 then the

rate of convergence can be deduced from an estimate of the error between Qψ,h,Ωf and Qψ,hfE.
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Suitable fE can be provided in many cases by the Whitney Extension Theorem [H], although this

cannot be used for all domains Ω. We take here a different approach: since the error is measured

in the ∞-norm, we must treat the worst case, occuring when approximating next to the boundary

of Ωδ, where the contribution then to the approximant may be based only on a small cube (of

size 2δ) centered at the point in question. Therefore, we consider, instead of the above Qψ,h,Ω, a

quasi-interpolant Qψ,h,Ω,δ of the form

Qψ,h,Ω,δf(x) :=
∑

{α∈ZZd: ‖hα−x‖∞≤δ(h)}

f(hα)ψ(h−1x− α). (5.4)

Such an approach is independent of the topology of Ω: it requires, in the quasi-interpolation

argument, an estimation of a new term in the error, associated with the error obtained when

approximating p ∈ π` by Qψ,h,Ω,δp. Such term did not occur in the case Ω = IRd, since Qψ,h

reproduces π`. The admissible functions that are being approximated here, are always assumed to

lie in C`+1(Ω) with their derivatives up to order ` + 1 bounded in Ω. As a preparation we first

sketch the approach taken here.

For x ∈ Ωδ, we estimate |(Qψ,h,Ωf − f)(x)| by writing

|(Qψ,h,Ωf − f)(x)| ≤

|Qψ,h,Ω,δ(f − Tf)(x)|+ |(Qψ,h,Ω,δTf − Tf)(x)|+ |(Qψ,h,Ω −Qψ,h,Ω,δ)f(x)|+ |(Tf − f)(x)| , (5.5)

where Tf := Tx,`f , namely the Taylor polynomial of degree ` of f at x. We then estimate each

summnand on the right-hand side of (5.5) separately.

The last term in (5.5) is evidently 0. Bounding expressions like the first term in (5.5) was

the focal point in Section 4. This was done, under various conditions on ψ and f , in Proposition

1.1/Corollary 1.2 and in Theorems 4.5, 4.8, and 4.1. We therefore need to bound the two middle

terms in (5.5). Our first lemma treats the third term there.

Lemma 5.1. For an admissible function f and x ∈ Ωδ

|(Qψ,h,Ω −Qψ,h,Ω,δ)f(x)| ≤ A‖f‖∞(h/δ)k, (5.6)

where A is independent of h, f and x ∈ Ωδ, and k is as in (5.2).

Proof: Since f is bounded, it is sufficient to prove the claim for the choice f = 1. In this case,

by (5.2), the left hand of (5.6) is dominated by the sum

A
∑

{α∈ZZd: ‖x−hα‖∞>δ}

(1 + ‖α− h−1x‖∞)−(d+k).

The required estimate now follows from Lemma 4.2(b). ♠

The next lemma treats the second term in (5.5).
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Lemma 5.2. For an admissible function f and x ∈ Ωδ

|(Qψ,h,Ω,δTf − Tf)(x)| ≤ A(h/δ)k, (5.7)

where A is independent of x, δ, and h, and k is as in (5.2).

Proof: Using the polynomial reproduction property of Qψ,h, we have

(Qψ,h,Ω,δTf − Tf)(x) =
∑

{α∈ZZd: ‖x−hα‖∞>δ}

Tf(hα)ψ(h−1x− α). (5.8)

We may assume without loss that Tf is a monomial of degree j ≤ `, which in turn can be bounded

by ‖ · −x‖j∞. Now, (5.2) with Lemma 4.2(b) provide the estimate

∑

{α∈ZZd: ‖x−hα‖∞>δ}

‖hα− x‖j∞|ψ(h−1x− α)|

≤
∑

{α∈ZZd: ‖x−hα‖∞>δ}

hj‖α− h−1x‖j∞(1 + ‖h−1x− α‖∞)−(d+k)

≤
∑

{α∈ZZd: ‖x−hα‖∞>δ}

hj(1 + ‖h−1x− α‖∞)j−(d+k) ≤ hj(h/δ)k−j .

(5.9)

Thus (5.7) records the worst case in (5.9), which corresponds to the choice j = 0. ♠

The above lemmas show that for approximation order O(h`+1) one should restrict δ(h) by

assuming

δ(h) ≥ ch1−(`+1)/k,

for some positive c, while for approximation order O(h`+1| log h|) in the case k = ` + 1, it is even

sufficient to take

δ(h) ≥ c| logh|−1/(`+1).

We refer to δ(h) which satisfies the restrictions above as admissible. For an admissible δ, the

approximation order on IRd by Qψ,h established in sections 1 and 4, can be converted to approxi-

mation orders by Qψ,h,Ω on Ωδ(h), provided that f , in addition to other relevant requirements (as

specified in each theorem) has bounded derivatives in Ω up and including order `. We summarize

this as follows

Theorem 5.3. Assume that Ω ⊂ IRd is open and bounded, and δ = δ(h) is admissible in the

above meaning. Then, under the various conditions required from ψ and f in Proposition 1.1,

Corollary 1.2, Theorem 4.1, Theorem 4.5, Theorem 4.8, and Corollary 4.9, the approximation rates

established there for ‖Qψ,hf − f‖∞ are valid for ‖Qψ,h,Ωf − f‖∞,Ωδ
, provided that in addition all

the derivatives of f of order up to ` are bounded in Ω.

Note that for the case studied in Theorem 4.8, k = `+ 1, and thus, in contrast with all other

cases, δ must be held fixed, so that the approximation rate ` + 1 is proved only for fixed closed

subsets of Ω.
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