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Abstract:

Let © be a multiset of n points in [a, b], and

we 1= H( —9).

€O

In this paper we investigate the extrema of © — |we||,. Consequences of the results we
obtain include: L,-bounds for Hermite interpolation, error estimates for Gauss quadrature
formulee with multiple nodes, and certain quantitative statements about good and best

approximation by polynomials of fixed degree.
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1. Introduction

Let © be a multiset of n points in [a, b], and

we 1= H(-—@) cIl,.

€O

In this paper we discuss the size of ||we||, as a function of ©. This constant ||we||, arises
naturally in error bounds for Hermite interpolation. For example, if Hgf € Il is the
Hermite interpolant to f at the points O (counting multiplicities), then

oo

I1f - Hofll, < 120l pngy  vrewn (L1)

n
with equality iff f € II,,.

In Section 2, we show that if some of the points in © are prescribed, then |jwel|, is
maximised by an appropriate choice of the remaining points from {a, b}. As an application,
we provide L,-error bounds for Hermite interpolation, in cases where some of the points
in © are known to be from {a, b}.

In Section 3, we show that ||we||, is minimised for a certain choice of O, consisting of n
distinct points in (a, b). These points are precisely the roots of the error in the unique best
L,-approximation from II., to any polynomial of (exact) degree n. This result is closely
related to Gauss quadrature formulae with multiple nodes (via s-orthogonal polynomials),
for which we are able to give error bounds. Other applications in this section include error
bounds for best L,-approximation by polynomials of fixed degree.

2. Maximising |jwe],

Throughout, © will be used for a multiset of n points from [a,b]. Our functions
will be defined on the closed interval [a,b], b —a > 0. Thus || - |, := || - |[z,[a,5, and
W, = W'la,b] the Sobolev space of functions f with D"~ f absolutely continuous on
[a,b] and D" f € L, := Ly[a,b]. The space of polynomials of degree < n will be denoted
by II,,.

(2.1) Theorem. Let ©' be a fixed multiset of < n points from [a,b]. The maximum of
{llwell, : © > 0"}
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is attained when © \ ©' is in {a, b}.

Proof. Let C be the convex hull of the compact set
W = {we : 0 D 0O'} CII,.

Since C — IR : f — ||f||, is a continuous convex function, it attains its maximum at an
extreme point of C. Since each point in C \ W can be written as a (nontrivial) convex
combination of two points in C, the extreme points of C are contained in W.

Suppose wg € W is an extreme point of C, with {£,0'} C O, for some £ € (a,b).

Then for small e )

wo = 5(+ = (= e))were + %(' —({+¢))wene,

a convex combination of points in W, contradicting the fact we 1s an extreme point of C.
Thus the extreme points of C are given by we, where O consists of O together with points
from {a,b}. O

We now use this result to find the maximum of © — |jwel|, over Ay(1, ), which is,
by definition, the set of those © containing one endpoint at least ¢ times and the other
at least j times, where 7 + j < n. Notice that A,(¢,7) is symmetric in ¢, 5, that A4,(0,0)
consists of all ©, and that A, (m,n —m) has at most two elements.

Let B be the beta function

B(x,y) = /0 N1 -ty dt = %, Yo,y > 0.

Recall that B is symmetric, and satisfies: 0 < B(z,y) < min{l,1/max{z,y}}, Vaz,y > 0.
(2.2) Corollary. Let m := min{7,j}, and 0° := 1. Then

ntl _ 5 <
sl = (b— a+ { Bl Lol - ) #1712 p <o

with the maximum achieved iff © € A,(m,n —m).

Proof. By Theorem (2.1), the maximum occurs when all the points in © are from

{a,b}. For © € A,(k,n — k), we compute

—(h—agtEl Bk +1pn—k)+1)r, 1<p<oo
ool = (b—ays { Bk + Loy =)+ 17 122 <

and then observe that the maximum of ||wel|, over m < k < n —max{¢,j} occurs when
k=m. O

This improves upon the weaker result of Agarwal [Ag91], that

o8 [lwolly < (b= )™ (2Byj(pm + Lp(n —m) +1))7, 1<p<oo  (23)
n Z’]



Here B/, is the incomplete beta function

1/2
By a(a.y) = / FL(1 — 1 g, Yo,y > 0.
0

We observe that By, is not symmetric, and satisfies B(x,y) < 2By 5(,y), V1 <z <y,
with strict inequality unless @ = y. Thus Corollary (2.2) gives better bounds than (2.3)
whenever m # n — m, and the same bounds otherwise.

L,-Error bounds for Hermite interpolation

Let 1 < p,q¢ < o0, and Hef € IlI<, be the Hermite interpolant to f at © (counting
multiplicities). Recently, see Waldron [Wa94], the author has shown that:

If = Hoflly < constapgo(b—a)" 74D fll,, vfe Wy, (2.4)

where .

nq
n!

1 1

wo( b—a)~("trT),

(diam{x,x(;})l/q Hp(

Here diam denotes the diameter of a (multi)set of points. Using Corollary (2.2), we may

X

consty p g0 =

estimate the constants consty, p 4,0-
(2.5) Hermite error bounds. Let © € A,(¢,7), with m := min{s,j} > 0. Then

ne {B(pm+1,p(n—m)+1)%, I1<p<oo

const < —
napaqa® — n[ mm(n _ 7,',L)TL—T)’l/TLTL7 p = 00.

Proof. Since m > 0, diam{z, 0} = b — a, and we obtain

1

ne —(nal
consty p.g,0 = FHC‘J@Hp(b —a) (nts),
To this, apply Corollary (2.2). O

This improves upon the bounds in [Ag91], which involve By ;. In the case m = 0, the
above argument can be modified, by observing that
we ()

< 1
(diam{x,(a})l/q o <Hw®Hp(1—n_q)>

For a full discussion, including the cases of equality in (2.4), and mention of some
related inequalities of Brink [Br72], see [Wa94].

nq

(2.6)

X

Application to the solution of ordinary differential equations

The Hermite error bounds (2.5) can be applied to the analysis of the boundary value
problem: D"f = ¢, with Hermite multipoint conditions given by Heo f = 0. See, e.g..
Agarwal and Wong [AW93].

3. Minimising ||we||,

To show that © — |jwel|, has a unique minimum, we use the following well-known

result, see, e.g., [DL93:Ch.3,85,510].



(3.1) Theorem. If P C Cla,b| is an n-dimensional Haar space, then ¢*, the unique best
L,-approximation to f € C[a,b] from P, interpolates f at n distinct points in (a,b).

For 1 < p < oo, by the characterisation theorem for best L,-approximation (see, e.g.,
[DLI3:p83]) ¢* is uniquely determined by

b
/ |f—g*[P tsign(f —g*)g =0, VgeP, (3.2)

where sign denotes the signum function.
For a more detailed analysis, dealing with the interlacing of the zeros of errors in best

L,-approximations, see Pinkus and Ziegler [PZ76].
Taking P = Il«,, and f = (-)", we obtain:

(3.3) Corollary. There is a unique © which minimises |lwe||,. This © consists of n
distinct points in (a,b), which are the roots of M, , € II,,, which is, by definition, the error
in the unique best L,-approximation to (-)" from Il.,,. We have

1
4"(

”:}|>—\

b—a)"ts < minflwelly = [[Mallp < 4n(b—a) :

with equality only when p = 1, 00, respectively. In addition

(nl)?
2n)Van 1

Proof. Taking P = Il.,, and f = ()", in Theorem (3.1), we see that M, ,,
the error in best approximation, is of the form M, , = we, for a certain © consisting of
distinet points in (a, b). Thus, this choice of © uniquely minimises ||we||, (even if © is not
restricted to lie within [a, b]).

From Holder’s inequality, it follows that

1

(b—a)""

min [lwe [z = [|Mnz2|l2 =

p = Cp = | Mapllp(b— a)™ ") = min||we|,(b — a)~ "+

is strictly increasing.
For p =1, M, , is, up to an affine change of variables equal to U,, the Chebyshev
polynomial of the second kind, and we calculate

1
A AT

Similarly M, 2, My o are Py, T5,. i.e., the Legendre, Chebyshev polynomials, respec-

tively, and
_ 2ty (n+d) _ #
H()PHQ BCNCES S

1 2
Coo = 270"V ||l 2700 =

S



The facts about U,, P,, T}, that we have used above

on orthogonal polynomials.
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can be found in any standard book
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Fig 3.1 Graphs of the polynomials M7 ; (dotted), Mz 5 (dashed), and My o (line)

Corollary (3.3) is a collection of classical results from the theory of orthogonal poly-
nomials, see, e.g., Szegd [Sz59:p41]. One generalisation of it, of interest to approximation
theorists, is Fejér’s convex hull theorem, see Davis [Da75:p244].

As mentioned in the proof, when p = 1,2, 00, the M, , are well known orthogonal

polynomials. For other values of p, no recurrence relations are known for M, ,. By (3.2),
for 1 < p < oo, M, , is the unique m € II,, with leading term (-)"” and

(3.4)

b
/ m|P~tsign(m) g = 0, Vg € L.

It is possible to view (3.4) as a nonlinear system of equations in the roots of M,, , (with

a unique solution), and solve it numerically. For two different iterative schemes, together
with sample results, see Burgoyne [Bu67], and Vincenti [Vi86].

Good approximation by polynomials

Combining Corollaries (2.2) and (3.3), we obtain:

4Tl

maxe [wellp

4Tl

1
2 (np

+ 1)t/e —

mine [lwe |l

T (p+ DY

where (np + 1)1/1’ := 1, when p = co. Thus, a good choice of © can greatly improve the
size of the constant ||we||, occurring in (1.1), over that for a poor choice.
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For example, with Op, consisting of points with equal spacing h := (b —a)/(n — 1),
and O¢y, the Chebyshev points, Isaacson and Keller [IK66:p267] provide the estimate:

n—1
lwopglle V2 <4> |

H(‘UQChHOO n—1

(&

for large n, in support of doing Lagrange interpolation at the Chebyshev points.

Best approximation by polynomials

By Theorem (3.1), the unique best L,-approximation to f € C[a,b] from I, is
obtained by Lagrange interpolation at n points in (a,b). Thus, in view of (1.1), we expect
some relation between ming ||wel|,, and the error

En,p(f) = geiﬁf; Hf - ng

in best L,-approximation. The main result in this direction, which is due to Phillips, is
the following.

(3.5) Theorem ([Ph70]). If f € C"[a,b], then 3£ € [a,b], such that

1 sl e 1 pllp
= 22l prgiey) < IZ2melleyprgy

n! n

Enp(f)

with equality iff € I1,.
Along the same lines, Fink [Fi77], defines B(n, p, ¢) as the smallest constant such that

Eup(f) < Bln,p,g)(b—a)" 5 "7 || D" f|,, VfeWn,

and gives some equivalent definitions.

Since best approximations are given by Lagrange interpolation, we might hope to
estimate B(n,p, ¢) by interpolating f at some O, as does Phillips in Theorem (3.5), where
he shows:

M,, _ 1
Bin,p,o0) = 2nalle -ty (3.6)

n!

Pursuing this idea, we are able to estimate B(n,p,¢) to within a factor of 8n.

(3.7) Estimate for Fink’s constant.

11 T2\ 11
na na

— - < B(n,p,q) < F(él_") §8na4—n-

Proof. Let b — a = 1. First the lower bound. Since M, , is the error in approxi-
mating f = (-)", which has D" f = n!, we must have

[Maslly, o 11

B > .
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By (2.4) and (2.6):

< < 1—L

na 1—-L nd nq
B(n.p,q) < —rllwe lly = 5 (Iloll,a-p) (3.8)

Choosing we = My, p(1—1/ng), then applying Corollary (3.3) to (3.8), we obtain the upper
bound. O

Gauss quadrature formulse with multiple nodes

The polynomials M, , have the following interesting connection with quadrature, see
Turan [Tub0], also Ghizzetti and Ossicini [GOT70:p74].
Ifp=2s42,5=0,1,2,..., then (3.2) reduces to

b
[ty =0, we L,
a

The corresponding m (= My, 2542) is called s-orthogonal (with weight dz).
There is a quadrature formula of the form

ZZ (i,v)D* f(v (3.9)

1=0 vEO

for the integral I(f) := fab f, of precision (25 4+ 2)n — 1, iff © is the zeros of M, 2542. In
keeping with the special case s = 0, such a @) is referred to as a Gauss formulae with
multiple nodes, or simply as a s-Gauss formula, and M, 2,42 is called a Legendre
s-polynomial.

The s-Gauss formulae are interpolatory, i.e. Q(f) = I(He- f), where O is any set
of < n(2s+2) points, which contains each zero of M, 2542 with multiplicity at least 254 1.
This allows us to estimate the error for these formulee.

(3.10) Error bound for s-Gauss formulse. Let © be the zeros of M,, 254+2. Then

1) = QU < gy (Iwollaa) ™ ID 2 o vf € W2tees,

(n(2s + 2
with equality for all f € Il (2542). In addition

2542 9\ 212
<HW®H23+2> < (4_n> (b . a)n(Zs—l—Z)-l-l7

which differs from equality by a factor of < 22512,
Proof. With ©* as above, by (1.1)

1

1I(f)—Q(f)| = [I(f—He~f)| < ||[f—Hex fll1 < n(2s +2))!

lwo- [ 1D+ fllc. (3.11)



Let ©* consist of the points O, each with multiplicity 2s + 2. For this choice,

25+2
worlls = (lwollassa)

Further, if f € II,,(3549), then f — He+ f is a scalar multiple of wés"i'z, which is nonnegative,

and so equality holds in (3.11). Finally by Corollary (3.3)

25+2 2 L 2s+2 9\ 25+2
<Hw@st+2> < <4—n(b — a)"+m> — (4_n> (b — q)n(2s+D+1

which differs from equality by a factor of < 22512, O

Only when s = 0 is this result known; see, e.g., Davis and Rabinowitz [DR75:p98]. In
this case ||we||2 is the Ly-norm of a Legendre polynomial, and can be computed exactly.
For a full account of s-Gauss formule, including other error estimates, see the survey
article of Gautschi [Ga81].

By using (2.4) and (2.6), it is possible to run through the above argument, to get error
bounds for s-Gauss formulee in terms of | D™ f||,, where n(2s + 1) <m < n(2s + 2).
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