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Abstract A divided difference expansion with remainder for a general divided difference is derived
that contains Floater’s recent derivative expansion as a special case.
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It is the purpose of this note to record a divided difference expansion of a divided difference, as suggested
by the intriguing derivative expansion of a divided difference recently derived by M. Floater (see [F]), and
containing the latter as a special case.

With [t1, . . . , tn] the divided difference (functional) at the point sequence (t1, . . . , tn), here is the formula.

Proposition. Let t := (t1, . . . , tn) and s := (s1, . . . , sm) be real sequences, with n ≤ m, and set

ψi,j :=
j−1∏

k=i

(· − sk), i, j = 1, . . . ,m+ 1.

Then,

(1a) [t1, . . . , tn] =
m∑

j=n

([t1, . . . , tn]ψj−n+2,m+1)[sj−n+1, . . . , sm] +Rm(t, s),

with

(1b) Rm(t, s) =
n∑

i=1

(ti − si) ([ti, . . . , tn]ψi+1,m+1) [t1, . . . , ti, si, . . . , sm].

Proof: The proof is by induction on m, the case m = n being the readily derivable identity

[t1, . . . , tn] − [s1, . . . , sn] =
n∑

i=1

(ti − si)[t1, . . . , ti, si, . . . , sn],

which occurred to me after reading Floater’s account in [F] of an argument in [DL] that proves this identity
for a constant sequence t, but which I eventually found already in Eberhard Hopf’s 1926 dissertation [H].

Assuming (1b) to be correct for a given m, let s0 be an arbitrary point in IR. Since, by Leibniz’ formula,
[ti, . . . , tn]((· − si)f) = (ti − si)[ti, . . . , tn]f + [ti+1, . . . , tn]f , hence

(2) (ti − si)[ti, . . . , tn]f = [ti, . . . , tn](· − si)f − [ti+1, . . . , tn]f,

(1b) implies that

Rm+1(t, (s0, s)) = Rm(t, s) − ([t1, . . . , tn]ψ1,m+1) [s0, . . . , sm]

=
n∑

i=1

([ti, . . . , tn]ψi,m+1 − [ti+1, . . . , tn]ψi+1,m+1)[t1, . . . , ti, si, . . . , sm]

− ([t1, . . . , tn]ψ1,m+1) [s0, . . . , sm]

=
n∑

i=1

([ti, . . . , tn]ψi,m+1) ([t1, . . . , ti, si, . . . , sm] − [t1, . . . , ti−1, si−1, . . . , sm])

=
n∑

i=1

([ti, . . . , tn]ψi,m+1) (ti − si−1)[t1, . . . , ti, si−1, . . . , sm]

and moving the factors (ti − si−1) to the left and renaming (s0, . . . , sm) to (s1, . . . , sm+1) finishes the proof.
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Floater’s formula is the special case when si = x for all i, hence ψi+1,m+1 = (·−x)m−i, while, as Floater
kindly pointed out to me, the Dokken/Lyche formula (see [DL]) for the derivatives of the error in Hermite
interpolation is the special case when t is constant. More than that, Floater also pointed out that, with
p := m− n, (1a-b) can also be written

(3) [t1, . . . , tn] = [t1, . . . , tn]
m∑

j=n

ψ1,j [s1, . . . , sj ] +
n∑

i=1

(ti − si+p)([t1, . . . , ti]ψ1,i+p)[s1, . . . , si+p, ti, . . . , tn].

Indeed, reversing the order of the entries of both t and s converts (1a-b) into (3).
Floater [F] also proves, for the case of constant s and using properties of the elementary symmetric

functions, that, for odd m− n,

(4) Rm(t, s)f = ([t1, . . . , tn]ψ1,m+1) Dmf(ξ)/m!

for some ξ in the interval containing both t and s (and assuming that f is sufficiently smooth). Such a result
can also be proved in our more general context, using elementary properties of the divided difference, as
follows.

By (2) and induction,

(5)

[t1, . . . , tn]ψ1,m+1 = (t1 − s1)[t1, . . . , tn]ψ2,m+1 + [t2, . . . , tn]ψ2,m+1

= · · ·

=
n∑

i=1

(ti − si)[ti, . . . , tn]ψi+1,m+1.

Since this is the sum of the coefficients in (1b), (4) follows provided one can show that these coefficients
are all of the same sign. This is indeed possible for the case m− n odd, under some assumption on s. The
simplest such assumption is that the smallest interval containing s contains no tj in its interior (certainly
satisfied when s is constant).

Since (as already used) [t1, . . . , tn]f = Dn−1f(ξ)/(n− 1)! for some ξ in the smallest interval containing
all the tj , it is clear that [t1, . . . , tn]ψ2,m+1 is positive in case all the tj are to the right of all the si. Also,
when m − n = degDn−1ψ2,m+1 is odd, then [t1, . . . , tn]ψ2,m+1 is negative in case all the tj are to the
left of all the si. Hence, in both cases, (t1 − s1)[t1, . . . , tn]ψ2,m+1 is nonnegative. Otherwise, there are tj
both to the left and to the right of s1, hence, after exchanging t1 with some more suitable tj if necessary,
(t1 − s1)[t1, . . . , tn]ψ2,m+1 is nonnegative in this case, too. Thus, by (5) and induction, there is a reordering
of t so that all the coefficients in (1b) are nonnegative, and (4) follows.

The simple example s = (0, 0, 3), t = (2, 2), for which [t1, . . . , tn]ψ1,m+1 = 0, shows that (4) does not
hold in general.
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