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ABSTRACT

Let X be a countable fundamental set in a Hilbert space H, and let T be the operator

T : `2(X) → H : c 7→
∑

x∈X

c(x)x.

Whenever T is well-defined and bounded, X is said to be a Bessel sequence. If, in addition, ranT

is closed, then X is a frame. Finally, a frame whose corresponding T is injective is a stable basis

(also known as a Riesz basis).

This paper considers the above three properties for subspaces H of L2(IR
d), and for sets X of

the form

X = {φ(· − α) : φ ∈ Φ, α ∈ ZZd},

with Φ either a singleton, a finite set, or, more generally, a countable set. The analysis is performed

on the Fourier domain, where the two operators TT ∗ and T ∗T are decomposed into a collection of

simpler “fiber” operators. The main theme of the entire analysis is the characterization of each of

the above three properties in terms of the analogous property of these simpler operators.
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Frames and Stable Bases

for Shift-Invariant Subspaces of L2(IR
d)

Amos Ron and Zuowei Shen

1. Introduction

1.1. General

We study in this paper certain types of “bases” for shift-invariant subspaces of L2(IR
d). Our

primary objective is to connect among three important families of “basis” sets: shift-invariant

sets, Weyl-Heisenberg sets, and affine (wavelet) sets. The present paper is the first in a series of

three, and is concerned with the basic theory of shift-invariant bases for shift-invariant spaces. The

two other papers, [RS1] and [RS2], will focus on the applications of the theory developed here to

Weyl-Heisenberg and affine sets.

Given X ⊂ L2(IR
d), we say that X is a shift-invariant (SI, for short) set if it is invariant

under all possible shifts, i.e., invariant under all integer translations. A shift-invariant subspace

S of L2(IR
d) is a closed subspace which is also a shift-invariant set. Such spaces play an important

role in the areas of Multivariate Splines, Wavelets, Radial Function Approximation and Sampling

Theory.

The following terminology is commonly used in the context of shift-invariant spaces. First, for

a given Φ ⊂ L2(IR
d), the space generated by Φ, denoted by

S(Φ),

is the smallest (closed) shift-invariant space that contains Φ. The set of shifts of Φ

(1.1.1) EΦ := {Eαφ : φ ∈ Φ, α ∈ ZZd},

with

(1.1.2) Eαf 7→ f(· − α),

is then clearly fundamental in S(Φ), and is a natural candidate for the previously discussed X.

The space S is a principal shift-invariant (PSI) space in case S = S(Φ) for a singleton Φ, and,

more generally, is a finitely generated shift-invariant (FSI) space if Φ above is finite. Many

articles are devoted, wholly or in part, to the study of Riesz (=unconditional=stable) bases for PSI

and FSI spaces (cf. e.g. [JM], [BDR1]). In particular, a complete characterization of such bases is

given in [BDR1], which, further, introduces and analyses the more general notion of quasi-stable

bases. These results form the starting point of the present paper.

We provide here a complete characterization of frames and tight frames in FSI spaces, and

draw interesting connections between these notions and the notions of quasi-stability and quasi-

orthogonality of [BDR1]. We further give a comprehensive analysis of infinitely generated SI spaces,

and employ in that course two complementary approaches termed here as “Gramian Analysis” and

“dual Gramian Analysis”.
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1.2. Notations

The Fourier transform of a tempered distribution f is denoted here by f̂ , and is defined, for

f ∈ L1(IR
d), by

f̂(w) :=

∫

IRd

f(t)e−w(t) dt,

where

ew : t 7→ eiw·t.

The inverse Fourier transform of f is denoted by f∨.

We frequently discuss in this paper functions that are defined on TTd, the d-dimensional torus.

Those functions can be viewed as 2π-periodic functions, via the standard transformation IRd 3

w 7→ eiw := (eiw1 , ..., eiwd) ∈ TTd. Though we may refer to such functions as being defined on TTd,

we always treat their argument as real. Thus, “multiplying a function defined on TTd by a function

defined on IRd” simply means “multiplying a 2π-periodic function by ...”. Following this slight

abuse of terminology, we write “Ω ⊂ TTd” and mean “Ω ⊂ [−π dπ]d”. The 2π-periodic extension,

Ω + 2πZZd, of Ω is denoted by

Ω◦.

The inner product (norm) of any Hilbert space H discussed in this paper is denoted by 〈·, ·〉H
(‖ · ‖H , respectively). The default inner product and norm are these of L2(IR

d). We may also

suppress the subscripts in 〈·, ·〉H and ‖ · ‖H if they are clear from the context.

Given a set X, the notation

`2(X)

stands (as usual) for the space of square-summable sequences on X, with the standard inner

product. Also, if Y ⊂ X, we embed `2(Y ) canonically in `2(X) (i.e., by defining each c ∈ `2(Y ) to

be zero on X\Y ). The space

`0(X)

is the space of all finitely supported sequences in `2(X), and is considered as a subspace of the

latter (i.e., equipped with the same norm).

Vectors in IRd are considered as either row vectors or column vectors, and the exact meaning

should be clear from the context.

For a countable Φ ⊂ L2(IR
d), we define the Hilbert space of L2(TT

d)-valued Φ-vectors as follows

LΦ
2 := {(τφ)φ∈Φ : τφ ∈ L2(TT

d);
∑

φ∈Φ

‖τφ‖
2
L2(TTd) <∞}.

The inner product here is

〈τ, τ ′〉LΦ
2

:=
∑

φ∈Φ

〈τφ, τ
′
φ〉L2(TTd).

If τ ∈ LΦ
2 , then τ(w) ∈ `2(Φ), for almost all w ∈ TTd.
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The space LΦ
2 enters the discussion in this paper as the image under the Fourier transform

of the sequence space `2(ZZ
d × Φ). Indeed, given c ∈ `2(ZZ

d × Φ), we denote by cφ, φ ∈ Φ, the

restriction of c to ZZd × (φ). The Fourier series ĉφ of cφ is defined as

ĉφ :=
∑

α∈ZZd

cφ(α)e−α.

Accordingly, the Fourier transform of c ∈ `2(ZZ
d × Φ) is defined as the element

ĉ := (ĉφ)φ∈Φ ∈ LΦ
2 .

Note that this Fourier transformation is an isometry between `2(ZZ
d × Φ) and LΦ

2 .

The following bracket product plays an important role in the analysis of shift-invariant

spaces: given f and g in L2(IR
d), the bracket product is defined as

(1.2.1) [f, g] :=
∑

α∈2πZZd

f(· + α)g(· + α).

Then, [f, g] is a well-defined element of L1(TT
d), and satisfies

(1.2.2) ‖[f, f ]‖L1(TTd) = ‖f‖2
L2(IRd).

Also, a standard periodization argument yields that

(1.2.3) (〈f, g(· − α)〉 = 0, ∀α ∈ ZZd) ⇐⇒ ([f, g] = 0, a.e.).

Finally, we find it convenient to define g/f as follows:

g/f : x 7→

{
g(x)/f(x), x ∈ supp f ∩ supp g,
0, otherwise.

1.3. Preliminaries

In this section we briefly recall some elementary facts concerning fundamental sets in Hilbert

spaces. While most of the material here can be found in [C], [D1,2], [DS], [HW] and in several other

references, it makes the paper more self-contained, and allows us to introduce the basic terminology

in its natural setup. Only occasional proofs are given here.

Let H be a separable Hilbert space and X a countable subset of H. We attempt to introduce

the operator

(1.3.1) T := TX : `2(X) → H : c 7→
∑

x∈X

c(x)x.

T is certainly well-defined on the finitely supported elements of `2(X). X is said to be a Bessel

sequence/set if T is bounded on the subspace of finitely supported sequences. In such a case, it

is continuously extended to a bounded operator on `2(X).

Associated with TX is the map T ∗ := T ∗
X : H defined by

T ∗ : h 7→ {〈h, x〉H}x∈X .

3



Proposition 1.3.2. T ∗ is a bounded map from H into `2(X) if and only if X is a Bessel set. In

such a case T ∗ is the adjoint of T and ‖T‖ = ‖T ∗‖.

Now, let T be any bounded operator from a Hilbert space H ′ into a Hilbert space H. Then

the set

(1.3.3) CT := H ′ 	 kerT.

(i.e., the orthogonal complement of kerT in H ′) is well-defined, T is injective on CT , ranT =

ran(T |CT
), and ranT ∗ is dense in CT . In this paper, we use the notation T |

−1 to denote the inverse

map from ranT to CT and, similarly, denote by T ∗
|
−1 the inverse map from ranT ∗ to H 	 kerT ∗.

These maps are usually referred to as partial (or pseudo) inverses. With these conventions, we

have the following result.

Proposition 1.3.4. Let X be a Bessel set, and T := TX , T ∗ := T ∗
X as before. Then the following

conditions are equivalent:

(a) ranT is closed.

(b) T is bounded below on CT .

(c) T ∗ is onto CT .

(d) T ∗ is bounded below on H 	 kerT ∗.

When one (hence all) of these conditions holds, we have ‖T ∗
|
−1‖ = ‖T |

−1‖.

Definition 1.3.5. Let H be a Hilbert space and X a fundamental Bessel set in H. We say that

X is a frame for H if one (hence all) of the conditions of Proposition 1.3.4 holds. A frame X is

called tight if ‖T‖‖T |
−1‖ = 1. We call a frame for H := L2(IR

d) a fundamental frame.

Thus, X is a frame if and only if there exist constants C1, C2 such that the inequalities

C1‖h‖
2 ≤

∑

x∈X

|〈h, x〉H |
2 ≤ C2‖h‖

2

hold (for all h ∈ H). The sharpest possible constants are C2 = ‖T‖2 = ‖T ∗‖2 and C1 =

1/‖T |
−1‖2 = 1/‖T ∗

|
−1‖2 and are usually referred to as the frame bounds. A frame is tight

if and only if its frame bounds coincide.

A notion closely related to frames is that of a stable basis for H (also known as a Riesz or

unconditional basis) defined as follows:

Definition 1.3.6. A stable basis X for H is a frame for H whose corresponding TX is injective.

Equivalently, it is a frame whose corresponding T ∗
X is onto `2(X).

Given a frame X for H, the map

TT ∗ : H → H : h 7→
∑

x∈X

〈h, x〉H x

is called the frame operator. TT ∗ is continuously invertible, and we use

R := RX

4



for its inverse. Since the map R maps X 1-1 onto RX, we may identify canonically the spaces

`2(X) and `2(RX), as we do hereafter, without further notice.

Since R is self-adjoint, T ∗
XR = T ∗

RX , and hence (i): T ∗
RX is a right inverse of TX , and (ii): RX

is a frame (the latter since T ∗
RX is composed of two continuously invertible maps). The frame RX

is known as the dual frame of X, and some basic facts concerning dual frames are collected in

the following proposition. *

Proposition 1.3.7. Let RX be the dual frame of the frame X. Then:

(a) X is the dual frame of RX (i.e., duality is reflexive).

(b) TXT
∗
RX = TRXT

∗
X = IH , with IH the identity map on H.

(c) kerTX = kerTRX and CTX
= CTRX

.

(d) The dual frame RX is the only Bessel set R′X in H that satisfies TXT
∗
R′X = IH and kerTX =

kerTR′X .

Proof: Since RTX = TRX , we have TRXT
∗
RX = RTXT

∗
XR = R, hence the dual of the frame

RX is R−1RX = X, which shows (a).

For (b), we already know that TXT
∗
RX = IH . Taking adjoints (or, alternatively, interchanging

the roles of X and RX, which is possible thanks to (a)), we get that TRXT
∗
X = IH .

The relation TRX = RTX shows also that kerTX = kerTRX , and hence CTX
= CTRX

, which

proves (c).

Finally, assume R′ : X → H satisfies the conditions in (d). Define (on X) a map K := R−R′.

Then KX is Bessel, and TXT
∗
KX = TX(T ∗

RX − T ∗
R′X) = 0, showing that kerTX ⊃ CTKX

. Further,

since kerTR′X = kerTRX = kerTX (by assumption), we have kerTKX ⊃ kerTX . Thus, kerTKX

contains its orthogonal complement CTKX
. This implies that TKX = 0, hence, KX = 0.

The above proposition allows us to represent the orthogonal projector onto H with the aid of

a frame and its dual:

Proposition 1.3.8. Let S be a closed subspace of a Hilbert space H. Suppose that X is a frame

of S with a dual frame RX. Then TXT
∗
RX is the orthogonal projector PS : H → S, i.e.,

PSh =
∑

x∈X

〈h,Rx〉x.

Proof: The definition of TXT
∗
RX directly implies that its range lies in S, and hence, by

(b) of Proposition 1.3.7, it is, indeed, a projector. It is also orthogonal, since T ∗
RX , hence TXT

∗
RX ,

obviously vanish on the orthogonal complement of S in H.

* The symbol x̃ which is commonly used in the literature to denote the dual frame is used in

this paper for a totally different purpose. In any case, the use of x̃ to denote the dual of x is an

abuse of mathematical notations, since it suppresses the dependence of RXx on X\x. The notation

x̃ for the dual has many other drawbacks. To see one of them, try to rewrite the discussion here

on dual frames using it instead of R.
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Part (d) of Proposition 1.3.7 provides a criterion for checking whether a certain Bessel set

RX is the dual frame of X, or not. However, that criterion might be hard to implement, since it

requires the identification of kerTX and kerTRX . The following corollary provides us with partial

remedy to that difficulty.

Corollary 1.3.9. Let H be a Hilbert space, H ′ a closed subspace of H, X a frame for H ′, and

R a map from X to H ′. Assume that RX is a Bessel set which is fundamental in H ′. Then the

following conditions are equivalent:

(a) RX is the dual frame of X.

(b) T ∗
RXTX , T ∗

XTRX , TXT
∗
RX , and TRXT

∗
X are orthogonal projectors.

(c) T ∗
RXTX , and TRXT

∗
X are orthogonal projectors.

Proof: The equivalence of (b) and (c) follows from the fact that every orthogonal projector

is, in particular, self-adjoint, and hence, assuming (c), we get that T ∗
RXTX = T ∗

XTRX , and TXT
∗
RX =

TRXT
∗
X verifying thereby (b).

Assume (a). The fact that TXT
∗
RX is then an orthogonal projector is the statement of Propo-

sition 1.3.8. This implies that T ∗
XTRX is a projector. Since RX is a frame, TRX maps `2(X) onto

H ′, and since X is a frame, T ∗
X maps H ′ onto CTX

. Hence, T ∗
XTRX must be the indentity on CTX

.

The orthogonal complement of CTX
is kerTX = kerTRX (the equality by (c) of Proposition 1.3.7),

and T ∗
XTRX certainly vanish on kerTRX . Hence it is orthogonal.

Now, assume (b). By statement (d) of Proposition 1.3.7, in order to prove that RX is the

dual frame of X, we only need show that CTX
= CTRX

. For that, we first observe that, since both

X and RX are fundamental in H ′, T ∗
XTRX maps CTRX

1-1 densely into CTX
. Since that operator

certainly vanishes on kerTRX and is assumed to be orthogonal, we must have CTX
= CTRX

.

For a shift-invariant set X = EΦ (with EΦ as in (1.1.1)), we use the abbreviated notations

TΦ := TEΦ
, T ∗

Φ := T ∗
EΦ
.

For this case, the search for the dual frame is simpler due to the following proposition.

Proposition 1.3.10. The dual R(EΦ) of a shift-invariant frame EΦ is the shift-invariant frame

ERΦ generated by RΦ. In particular, the dual of a principal (respectively, finite) shift-invariant

frame is also a principal (finite) shift-invariant frame.

Proof: We need to show that R commutes with shifts Eα : f 7→ f(· − α), α ∈ ZZd. For

that, it suffices to show that the map

TΦT
∗
Φ : f 7→

∑

x∈EΦ

〈f, x〉x

commutes with shifts Eα (and use the fact that R is the inverse of that map). Indeed, for α ∈ ZZd,

(TΦT
∗
Φ )(Eαf) =

∑

x∈EΦ

〈Eαf, x〉x =
∑

x∈EΦ

〈f,E−αx〉x =
∑

x∈EΦ

〈f, x〉Eαx = EαTΦT
∗
Φf,

with the fact that EαEΦ = EΦ being used in the penultimate equality.
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1.4. The Gramian matrices

The central notions in this paper are the pre-Gramian matrix, the Gramian matrix, and the

dual Gramian matrix. In principle, the objective is to decompose the involved operators TΦ and

T ∗
Φ into a collection of simpler operators (“fibers”), indexed by w ∈ TTd. Each one of the “fiber”

operators acts from a sequence space to (the same or another) sequence space and its matrix

representation can be explicitly described in terms of the Fourier transforms of the generators Φ.

The main theme of the entire analysis is as follows: every property of the set EΦ (such as being a

Bessel set, a frame, a stable basis etc.) is equivalent to the “fiber” operators satisfying an analogous

property in a uniform way (here “uniformity” refers to the norms of the underlying operators).

The pre-Gramian operator JΦ is simply the Fourier transform analog of the operator TΦ.

If c ∈ `2(EΦ) is finitely supported, we see that

(1.4.1) (TΦc)̂ =
∑

φ∈Φ

ĉφφ̂.

Hence, we may introduce an operator JΦ, which is defined, at least, on the space

(1.4.2) LΦ
0 := {ĉ : c : EΦ 7→ C is finitely supported},

by the rule

(1.4.3) JΦ : τ 7→
∑

φ∈Φ

τφφ̂.

Since the Fourier transform is an isometry, the boundedness, invertibility, and other properties of

TΦ can be equally studied via JΦ.

The definition of JΦ extends naturally to spaces larger than LΦ
0 ; for instance, if Φ is finite, the

rule in (1.4.3) can be extended to the entire LΦ
2 (In such a case, JΦτ need not be a L2(IR

d)-function,

but is always defined a.e.).

More relevant to our purposes, the pre-Gramian can be “evaluated” on TTd in the following

way: we define the value JΦ(w) of JΦ at w ∈ TTd as the (2πZZd × Φ)-matrix

JΦ(w) := (φ̂(w + α))α,φ.

Since each φ̂ is well-defined only up to a null-set, so is the function w 7→ JΦ(w). In a natural

way, the matrix JΦ(w) can be viewed as a densely defined operator on `2(Φ). In any case, (1.4.1)

together with (1.4.3) show that, for c ∈ `0(EΦ),

(1.4.4) ((TΦc) (̂w + α))α∈2πZZd = JΦ(w)ĉ(w).

In summary, we have decomposed TΦ, on the Fourier domain, into a collection of operators

{JΦ(w) : w ∈ TTd}, defined for almost every w, each of which acts on a dense subspace of `2(Φ) and

represents the action of JΦ on the coset w+2πZZd. Because of the explicit matrix representation of

each JΦ(w), questions like its boundedness, invertibility etc., are by far more accessible than their

TΦ counterparts. Thus, our goal is to study TΦ via the behaviour of the “fibers” JΦ(w), w ∈ TTd.
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The spectrum of the space S(Φ) generated by Φ is defined (up to a null-set) as

σΦ := σS(Φ) := {w ∈ TTd : JΦ(w) 6= 0}.

An equivalent definition of the spectrum is:

(1.4.5) σΦ := {w ∈ TTd : [φ̂, φ̂](w) 6= 0, for some φ ∈ Φ}.

For a FSI space, it was proved in [BDR1] that the spectrum of S only relies on the space and is

independent of any particular selection of the generators of the space. That proof can be carried

on to infinitely generated SI spaces.

Next, we want to decompose the operator T ∗
Φ . Since the Fourier transform is an isometry, the

(formal, say) relation JΦ = T̂Φ, leads to the relation

T̂ ∗
Φ = J∗

Φ.

In §2 (cf. (2.1.1)) we show that, given φ ∈ Φ and f ∈ L2(IR
d), the sequence T ∗

φ f , though need not be

in `2(Eφ), is always in the Wiener algebra of Eφ, more precisely, consists of the Fourier coefficients

of the L1(TT
d)-function [f̂ , φ̂]. This leads to the conclusion that J∗

Φ, the Fourier transform analogue

of T ∗
Φ , has the form

(1.4.6) J∗
Φ : f 7→ ([f, φ̂])φ∈Φ,

and allows us to introduce “point evaluation” with respect to J∗
Φ: we define J∗

Φ(w) to be the

following operator acting on `2(2πZZd):

(1.4.7) J∗
Φ(w) : c 7→ (

∑

α∈2πZZd

c(α)φ̂(w + α))φ∈Φ.

(To compare (1.4.6) and (1.4.7), choose c(α) := f(w + α) in the latter.)

As expected, the analysis above reveals that the matrix representation of the operator J ∗
Φ(w)

is the adjoint of the matrix representation of the operator JΦ(w). I.e., we had verified that “eval-

uation” commutes with taking adjoints. After making that observation, and with only very few

necessary exceptions, we will identify JΦ with its matrix representation (JΦ(w))w∈TTd .

The following lemma collects two useful facts that were just observed.

Lemma 1.4.8. Let Φ ⊂ L2(IR
d) be a countable set. Then for any c ∈ `0(EΦ) and f ∈ L2(IR

d),

and for a.e. w ∈ TTd,

(1.4.9) T̂Φc(w + ·)|2πZZd = JΦ(w)ĉ(w),

and

(1.4.10) T̂ ∗
Φf(w) = J∗

Φ(w)(f̂ |
w+2πZZd

).

Two self-adjoint operators can be constructed from JΦ. The first is the Gramian G := GΦ,

which is defined by

G := J∗
ΦJΦ.

Previous considerations imply that GΦ is the Fourier transform representer of T ∗
ΦTΦ. This fact

allows us to draw the following immediate conclusions.
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Proposition 1.4.11. For the densely defined linear operators TΦ and G:

(i) TΦ is bounded if and only if G, considered as an endomorphism of LΦ
2 , is well-defined and

bounded. Also, ‖G‖ = ‖TΦ‖
2.

(ii) Assume TΦ (hence, G) is bounded. Then, TΦ is partially invertible if and only if G is partially

invertible. Also, ‖G|
−1‖ = ‖TΦ|

−1‖2.

(iii) Assume TΦ is bounded. Then, TΦ is invertible if and only if G is invertible. Also, ‖G−1‖ =

‖TΦ
−1‖2.

We define the value G(w) of G at w ∈ TTd as

(1.4.12) G(w) := J∗
Φ(w)JΦ(w) = ([φ̂, φ̂′](w))φ′,φ∈Φ.

In general, for a.e. w ∈ TTd, the Gramian G(w) is a densely defined self-adjoint operator on `2(Φ)

(hopefully into itself). In order to make any good use of G(w), one needs to make sure that, at

least on LΦ
0 , evaluation commutes with the application of G, i.e., that

(Gτ)(w) = G(w)τ(w), for τ ∈ LΦ
0 , and for a.e. w ∈ TTd.

This is actually obtained by summation-by-parts, whose straightforward justification is omitted

here. Hence:

Lemma 1.4.13. For every c ∈ `0(EΦ), and for a.e. w ∈ TTd,

((T ∗
ΦTΦc) (̂w))φ∈Φ = G(w)ĉ(w).

The notation

Λ(w) := ‖G(w)‖

stands for the operator norm of G(w), and is assumed to be ∞ whenever G(w) is not well-defined or

is unbounded. In case G(w) is also boundedly invertible, we denote its bounded inverse by G(w)−1,

and set

λ(w) := ‖G(w)−1‖−1.

Also, we set

λ+(w) := ‖G(w)|
−1‖−1.

In case Φ is finite, Λ(w) and λ(w) are clearly the largest and smallest eigenvalues of the finite-

order matrix G(w). A closer look may reveal that λ+(w) is, in such a case, the smallest non-zero

eigenvalue of G(w).

Typical results concerning the Gramian analysis can be found in Theorem 2.2.7 (PSI spaces),

Theorem 2.2.14 (PSI spaces, several generators), Theorem 2.3.6 (FSI spaces), and Theorems 3.2.3

and 3.4.1 (infinitely generated SI spaces).

The Gramian approach is efficient for the study of those properties of EΦ which are “visible”

via the operator TΦ, primarily orthogonality and stability properties. In contrast, other properties

such as EΦ being a fundamental frame or a fundamental tight frame are better analysed with the

aid of the adjoint T ∗
Φ . For the analysis of this adjoint operator, we introduce another self-adjoint

operator which we call the dual Gramian G̃. It is obtained by multiplying the pre-Gramians, but

in reverse order, namely,

(1.4.14) G̃ := G̃Φ := JΦJ
∗
Φ.
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Problems of well-definedness are more subtle here than in the Gramian case. Fully detailed discus-

sions of that point are given in §3.3, and we mention here only two facts: first, if EΦ is a Bessel

set, then G̃ is a well-defined self-adjoint bounded endomorphism of L2(IR
d). Second, if EΦ is not

a Bessel set, the definition (1.4.14) may not make sense, and it is safer to view G̃ as a quadratic

form, i.e., to define it by

G̃ : f 7→ ‖J∗
Φf‖

2
LΦ

2

=
∑

φ∈Φ

‖J∗
φf‖

2
L2(TTd) = ‖

∑

φ∈Φ

|[f, φ̂]|2‖L1(TTd).

The evaluation G̃(w) of the dual Gramian is the (2πZZd × 2πZZd)-matrix whose (α, α′)-entry

has the form

(1.4.15)
∑

φ∈Φ

φ̂(w + α)φ̂(w + α′).

The argument w may be restricted to TTd. For a general EΦ, the entries of G̃(w) may not be well-

defined (in the sense that the sum in their definition needs not converge absolutely). Nevertheless,

we will show (in §3.3) that, whenever EΦ is a Bessel set, the sum in (1.4.15) converges absolutely

for every α, α′ ∈ 2πZZd and for a.e. w. Thus, for a Bessel set EΦ, G̃(w) is well-defined a.e., and

can viewed as a densely defined operator from `2(2πZZd) (hopefully into itself). Moreover, we will

show then that the basic relation

(G̃f)(w) = G̃(w)f|w

(with f|w the restriction of f to w + 2πZZd) holds a.e. A similar relation is drawn in §3.3 even in

the non-Bessel case, under the assumption that the entries of G̃(w) are well-defined, and with the

interpretation of G̃ and G̃(w) as quadratic forms.

Analogously to the Gramian case, we define here the following functions

Λ̃(w) := ‖G̃(w)‖,

λ̃(w) := ‖G̃(w)−1‖−1,

λ̃+(w) := ‖G̃(w)|
−1‖−1,

and attempt to study properties of EΦ in terms of the behaviour of these functions. Our main

results in this regard are Theorem 3.3.5, and Theorem 3.4.1.

The Gramian/dual Gramian analyses are also efficient for studying the connection between a

frame and its dual: given two sets Φ,Ψ ⊂ L2(IR
d), and some bijection R : Φ → Ψ, this is done via

the study of the matrices JΦ(w)J∗
RΦ(w), and J∗

Φ(w)JRΦ(w), as discussed in §4.
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1.5. An example

We provide here an example, which is taken from [RS1], (and is a specific type of what we call

there “self-adjoint Weyl-Heisenberg sets”) that illustrates the potential power of the results to be

developed in this paper.

Let φ ∈ L2(IR
d). Let

Φ := (eαφ)α∈2πZZd .

Indexing Φ by 2πZZd, the pre-Gramian JΦ(w) is found to be

JΦ(w) = (φ̂(w + α+ β))α,β∈2πZZd .

Therefore, J∗
Φ(w) = JΦ(w), and hence

GΦ(w) = G̃Φ(w).

Now, Theorem 3.2.3 characterizes the stability property of EΦ in terms of the Gramian fibers

GΦ(w), w ∈ TTd. On the other hand, the same criterion when applied to G̃Φ(w), w ∈ TTd, is shown

to be equivalent to EΦ being the fundamental frame (Theorem 3.3.5). This recovers the following

well-known fact (cf. e.g. [D1,2]):

Corollary 1.5.1. With Φ as above, EΦ is a stable basis if and only if it is a fundamental frame.

1.6. An application: estimating the frame bounds

The main results of this paper are concerned with the connections between the spectrum

of the operators G and G̃ and the spectra of the operators G(w) and G̃(w), w ∈ TTd. As we

mentioned before, information about the fiber operators G(w) and G̃(w) is more readily available

as compared to similar information concerning G and G̃. Still, computing exactly, e.g., the norm

of G(w) (considered as a linear map from `2(Φ) into itself) might appear as a hard task. However,

estimating this norm (either from below or from above) in terms of the Fourier transforms of the

functions in the generating set Φ is quite easy. This subsection is devoted to the discussion of such

estimates.

To this end, we let I be a countable (or finite) index set, and let M be a complex-valued non-

negative Hermitian matrix with rows and columns indexed by I, and considered as an operator

from `2(I) into itself. We use the following estimates of ‖M‖:

(1.6.1) sup
i∈I

(
∑

j∈I

|M(i, j)|2)
1
2 ≤ ‖M‖ ≤ sup

i∈I

∑

j∈I

|M(i, j)|.

Combining these estimates with Theorem 3.2.3, we obtain our first estimate for ‖TΦ‖:

Corollary 1.6.2. Let Φ be a countable (or finite) subset of L2(IR
d).

(a) If the function

B1 : TTd × Φ → IR : (w, φ) 7→
∑

φ′∈Φ

|
∑

α∈2πZZd

φ̂(w + α)φ̂′(w + α)|

11



is essentially bounded, then EΦ is a Bessel set, and ‖TΦ‖
2 ≤ ‖B1‖L∞(TTd×Φ).

(b) If EΦ is a Bessel set, then the function

B2 : TTd × Φ → IR : (w, φ) 7→ (
∑

φ′∈Φ

|
∑

α∈2πZZd

φ̂(w + α)φ̂′(w + α)|2)
1
2

is essentially bounded, and ‖TΦ‖
2 ≥ ‖B2‖L∞(TTd×Φ).

On the other hand, combining (1.6.1) with Theorem 3.3.5, we obtain different estimates:

Corollary 1.6.3. Let Φ be a countable (or finite) subset of L2(IR
d).

(a) If the function

B̃1 : IRd → IR : w 7→
∑

α∈2πZZd

|
∑

φ∈Φ

φ̂(w)φ̂(w + α)|

is essentially bounded, then EΦ is a Bessel set, and ‖TΦ‖
2 ≤ ‖B̃1‖L∞(IRd).

(b) If EΦ is a Bessel set, then the function

B̃2 : IRd → IR : w 7→ (
∑

α∈2πZZd

|
∑

φ∈Φ

φ̂(w)φ̂(w + α)|2)
1
2

is bounded and ‖TΦ‖
2 ≥ ‖B̃2‖L∞(IRd).

For the estimation of the other frame bound, we need a bound on ‖M−1‖. In what follows we

employ the estimate

(1.6.4) ‖M−1‖ ≤ sup
i∈I

(
|M(i, i)| −

∑

j∈I\i

|M(i, j)|

)−1

,

which is valid for any Hermitian diagonally dominant M . An application of this estimate to

Theorem 3.2.3 yields the following:

Corollary 1.6.5. Let Φ ⊂ L2(IR
d) be countable (or finite), and assume that EΦ is a Bessel set.

Then EΦ is a stable basis if the function

b1 : TTd × Φ :→ IR : (w, φ) 7→

( ∑

α∈2πZZd

|φ̂(w + α)|2 −
∑

φ′∈Φ\φ

|
∑

α∈2πZZd

φ̂(w + α)φ̂′(w + α)|

)−1

is positive and essentially bounded. Furthermore, in this case

‖TΦ
−1‖2 ≤ ‖b1‖L∞(TTd×Φ),

Finally, an application of (1.6.4) to Theorem 3.3.5 yields the following:
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Corollary 1.6.6. Let Φ ⊂ L2(IR
d) be countable (or finite), and assume that EΦ is a Bessel set.

Then EΦ is a fundamental frame if the function

b̃1 : IRd :→ IR : w 7→

(∑

φ∈Φ

|φ̂(w)|2 −
∑

α∈2πZZd\0

|
∑

φ∈Φ

φ̂(w)φ̂(w + α)|

)−1

is positive and essentially bounded. Furthermore,

‖T ∗
Φ

−1‖2 ≤ ‖b̃1‖L∞(IRd).

The simplest example that follows from the above results (and can also be checked directly)

is the following.

Example 1.6.7. Suppose that, for every φ ∈ Φ, for every α ∈ 2πZZd, and for almost every w ∈ IRd,

φ̂(w)φ̂(w+α) = 0 (e.g., each φ̂ is supported in some cube tφ+[0..2π)d, tφ ∈ IRd). Then, the (square

root of the) function B̃1 can be replaced by the function

g : IRd → IR : w 7→ (
∑

φ∈Φ

|φ̂(w)|2)
1
2 .

Similarly, the function b̃1 can be replaced by 1/g. Consequently, we obtain EΦ is a fundamental

frame if the two functions g and 1/g are essentially bounded. In fact, the results of this paper will

show that the converse of this last statement is valid as well.

2. Finitely generated SI spaces

2.1. General

While general SI spaces are best analysed with simultaneous use of the Gramian and dual

Gramian matrices, this is not the case for FSI spaces. The reason is easy to inspect: for a finitely

generated SI space, the dual Gramian matrix is infinite, while the Gramian matrix is finite. This

explains to a large extent the prevalence of Gramian analysis in the study of FSI spaces. Moreover,

in the principal case, the Gramian matrix is reduced to a single function, providing thereby a further

significant simplification in the course of study of such spaces. Therefore, we will first present (in

the next subsection) a detailed analysis of bases for PSI spaces, and only then discuss the FSI

counterpart of that theory. The present subsection is devoted to some simple initial observations

and estimates.

In the PSI case, the generating set Φ is a singleton (φ), and the operator T ∗
φ := T ∗

(φ) then takes

the particularly simple form

T ∗
φ : f 7→ {〈f,Eαφ〉}α∈ZZd .

From Parseval’s identity, and the 2π-periodicity of the exponentials eα, α ∈ ZZd, we obtain that

(2.1.1) 〈f,Eαφ〉 = (2π)−d〈f̂ φ̂, eα〉 = (2π)−d〈[f̂ , φ̂], eα〉L2(TTd).

Therefore, T ∗
φ f is the set of Fourier coefficients of the L1(TT

d)-function [f̂ , φ̂], that is

(2.1.2) T̂ ∗
φ f = [f̂ , φ̂].

In particular,
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Proposition 2.1.3. Given φ, f ∈ L2(IR
d),

‖T ∗
φ f‖`2(ZZd) = (2π)−d/2‖[f̂ , φ̂]‖L2(TTd).

Some coarse estimates can be derived directly from the above. By Schwartz inequality,

|[f̂ , φ̂]|2 ≤ [f̂ , f̂ ][φ̂, φ̂].

Thus, for Φ ⊂ L2(IR
d),

‖T ∗
Φf‖

2
`2(EΦ) ≤ (2π)−d‖[f̂ , f̂ ]

∑

φ∈Φ

[φ̂, φ̂]‖L1(TTd).

Since ‖f‖2 = (2π)−d‖[f̂ , f̂ ]‖L1(TTd), we conclude that

‖T ∗
Φf‖`2(EΦ) ≤ ‖f‖ ‖

∑

φ∈Φ

[φ̂, φ̂]‖
1
2

L∞(TTd)
.

Denoting

Φ̃ := (
∑

φ∈Φ

[φ̂, φ̂])
1
2 ,

we have proved the following result.

Proposition 2.1.4. Given Φ ⊂ L2(IR
d), EΦ is a Bessel set in case Φ̃ ∈ L∞(TTd), and we then

have

‖T ∗
Φ‖ ≤ ‖Φ̃‖L∞(TTd).

We will show later that equality holds in the above in case Φ is taken from some PSI subspace

of L2(IR
d). Further, we will show that for a finite Φ the boundedness of Φ̃ is not only sufficient for

EΦ to be a Bessel sequence, but also necessary. However, the bound provided by ‖Φ̃‖L∞(TTd) is, in

general, not sharp.

2.2. Frames in PSI spaces

Throughout this subsection, S is a PSI subspace of L2(IR
d) generated by some (fixed) function.

Motivated by the search for an explicit representation for the orthogonal projection onto shift-

invariant spaces, [BDR1] introduces and studies the notions of quasi-stable and quasi-orthogonal

bases for FSI spaces. For PSI spaces, in the terminology used in the present paper, its definitions

are as follows:

Definition 2.2.5. ([BDR1]) Let φ ∈ L2(IR
d), and let Tφ be the operator

Tφ : `2(ZZ
d) → S(φ) : c 7→

∑

α∈ZZd

Eαφ c(α).

Then φ is called a quasi-stable generator if Tφ is a well-defined bounded map, and provides an

isomorphism between CTφ
:= (kerTφ)

⊥ and S(φ). If, further, that isomorphism is an isometry, φ

is termed a quasi-orthogonal generator.

In view of (b) of Proposition 1.3.4, and Definition 1.3.5 of frames and tight frames we obtain

the following Corollary.
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Corollary 2.2.6. Let φ ∈ L2(IR
d). Then Eφ is a frame if and only if φ is a quasi-stable generator

of S(φ). Further, this frame is tight if and only if φ is a scalar multiple of a quasi-orthogonal

generator of S(φ).

Thus, implicitly, [BDR1] contains an extensive discussion of frames in PSI spaces. Furthermore,

as we had learnt from the referee of this paper, frames for PSI spaces were (explicitly) studied

by Benedetto and Li [BL]. Indeed, Theorem 7.7 of [BW] (which is attributed there to [BL]) is

essentially equivalent to Theorem 2.2.7.

We recall the definition of the spectrum σS given in (1.4.5), and recall the notation

φ̃ = [φ̂, φ̂]
1
2 = (

∑

β∈2πZZd

|φ̂(· + β)|2)
1
2 .

Theorem 2.2.7. ([BDR1], [BL]) Let φ ∈ L2(IR
d) be given, and let S be the PSI space generated

by φ.

(a) The shifts Eφ of φ form a Bessel sequence in S if and only if φ̃ is essentially bounded.

(b) The shifts Eφ of φ form a frame for S if and only if φ̃ and 1/φ̃ are essentially bounded on σS.

Furthermore,

‖Tφ‖ = ‖φ̃‖L∞(TTd) = ‖φ̃‖L∞(σS),

and

‖Tφ|
−1‖ = ‖1/φ̃‖L∞(σS).

Therefore, for a frame Eφ, the inequalities

‖f‖/‖1/φ̃‖L∞(σS) ≤ (
∑

α∈ZZd

|〈f,Eαφ〉|2)
1
2 ≤ ‖φ̃‖L∞(σS)‖f‖, f ∈ S,

are valid and sharp.

(c) Eφ is a tight frame if and only if φ̃ = const (a.e.) on its support.

(d) With ψ := (φ̂/φ̃)∨, the set Eψ is a tight frame for S(φ) (and hence every PSI space is generated

by some PSI tight frame).

(e) The frame (tight frame) Eφ is a stable (orthogonal) basis for S if and only if σS = TTd.

Proof: By Corollary 2.2.6, the shifts of φ form a frame (tight frame) if and only if φ

is a quasi-stable (quasi-orthogonal) generator of S(φ). Therefore, the theorem follows from the

corresponding results in section 2 of [BDR1].

We observe that the above (d) and (e) imply that S contains an orthonormal basis Eφ if and

only if σS = TTd. That case was termed regular in [BDR1]. Thus (e) above shows that the

notions of a stable basis and a frame coincide for a principal shift-invariant Eφ, provided that S(φ)

is regular. It is worth mentioning that, in case φ is compactly supported, S(φ) is always regular.

The spaces ker Tφ and CTφ
were described explicitly in [BDR1] as follows:

ker Tφ := {c ∈ `2(ZZ
d) : supp ĉ ⊂ (TTd\σS)},

and hence

(2.2.8) CTφ
:= {c ∈ `2(ZZ

d) : supp ĉ ⊂ σS}.

Next, we need the following characterization of the Fourier transforms of the elements of S(φ):
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Result 2.2.9. ([BDR2]) Let φ, f ∈ L2(IR
d). Then f ∈ S(φ) if and only if f̂ = τ φ̂ for some

2π-periodic function τ .

Corollary 2.2.10. Let S := S(φ) be a PSI space, and assume that Eφ forms a frame for S. Then,

given c ∈ `2(ZZ
d), there exists f ∈ S such that

c(α) = 〈f,Eαφ〉, α ∈ ZZd

if and only if ĉ is supported in the spectrum of S. The unique solution f has the form

(2.2.11) f =
∑

α∈ZZd

Eαφ cf (α),

with the sequence cf ∈ CTφ
being the solution of the discrete convolution equation

[φ̂, φ̂]∨ ∗ cf = c.

Proof: By the definition of T ∗
φ , a solution f exists if and only if c lies in the range of T ∗

φ ,

i.e., if and only if c ∈ CTφ
. Therefore, in view of (2.2.8), we only need to prove the statements

concerning the nature of the solution f . Since Eφ is a frame for S, then, given any f ∈ S, there

exists a unique cf ∈ CTφ
that satisfies (2.2.11). Taking Fourier transforms, we obtain that f̂ = ĉf φ̂.

Invoking (2.1.2), we see that

(2.2.12) ĉ = T̂ ∗
φ f = [f̂ , φ̂] = ĉf [φ̂, φ̂],

where, in the last equality, the periodicity of ĉf was used. The desired result then follows by

inversion.

Given a frame Eφ, Proposition 1.3.10 asserts that there exists a function Rφ ∈ S(φ), such that

ERφ is the dual frame of Eφ. Further, we can compute Rφ as follows: first, we seek cφ ∈ CTφ
such

that Tφcφ = φ. Applying Fourier transform, then multiplying by φ̂, and periodizing over 2πZZd, we

obtain the equation ĉφ[φ̂, φ̂] = [φ̂, φ̂]. Since cφ is in CTφ
, it is supported on supp[φ̂, φ̂] = σS, and

so ĉφ is the characteristic function χ of σS. Let c be the solution of [φ̂, φ̂]∨∗? = cφ, and R̂φ := ĉφ̂.

Then ERφ is the dual basis of Eφ by the fact T ∗
Rφφ = cφ and by Corollary 2.2.10. Hence ĉ is defined

by

ĉ =
ĉφ

[φ̂, φ̂]
=

1

[φ̂, φ̂]
,

and Rφ is given by

(2.2.13) R̂φ = φ̂/[φ̂, φ̂].

This representation of Rφ is detailed in [BDR1] (using a different approach) and is well-known in

the special regular case mentioned above (in which a frame becomes a stable basis).

The redundancy offered by frames does not really exist for principal shift-invariant ones. Yet,

given a PSI space, one may use several functions from S to generate a shift-invariant frame for S.

The details of that case are given in the next theorem.
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Theorem 2.2.14. Let S be a PSI space, and Φ ⊂ S be a countable (or finite) set. Then

(a) EΦ is a Bessel set if and only if the function

(2.2.15) Φ̃ := (
∑

φ∈Φ

[φ̂, φ̂])
1
2

is essentially bounded. Furthermore, ‖TΦ‖ = ‖Φ̃‖L∞(TTd).

(b) EΦ is a frame for S if and only if Φ̃ and 1/Φ̃ are essentially bounded on the spectrum σS. In

such a case, ‖TΦ|
−1‖ = ‖1/Φ̃‖L∞(σS).

(c) EΦ is a tight frame if and only if Φ̃ is constant a.e. on its support.

Proof: By Proposition 2.1.3, given f ∈ L2(IR
d),

‖T ∗
Φf‖

2
`2(EΦ) = (2π)−d‖

∑

φ∈Φ

|[f̂ , φ̂]|2‖L1(TTd).

Let ψ be a generator of S. For f ∈ S and φ ∈ Φ, Result 2.2.9 implies the existence of 2π-periodic

τφ, τf such that

f̂ = τf ψ̂, φ̂ = τφψ̂, φ ∈ Φ.

Therefore,

|[f̂ , φ̂]|2 = |τf |
2|τφ|

2|[ψ̂, ψ̂]|2 = |[f̂ , f̂ ][φ̂, φ̂]|.

Consequently,

‖T ∗
Φf‖

2
`2(EΦ) = (2π)−d‖[f̂ , f̂ ]Φ̃2‖L1(TTd).

Since ‖f‖2
L2(IRd)

= (2π)−d‖[f̂ , f̂ ]‖L1(TTd), and since [f̂ , f̂ ] is necessarily supported on σS, the proof

of the theorem relies on the comparison of

‖[f̂ , f̂ ]‖
1
2

L1(σS)

and

‖[f̂ , f̂ ]Φ̃2‖
1
2

L1(σS).

Further, we note that Result 2.2.9 also implies that for any closed Ω ⊂ σS, there exists f ∈ S

for which [f̂ , f̂ ] is the characteristic function of Ω. The proof can be then completed by a routine

argument (cf. e.g., the proof of Theorem 2.16 in [BDR1]).

The final theorem of this subsection provides the details concerning the dual frame of the above

EΦ and a complete description of ker TΦ and CTΦ
:

Theorem 2.2.16. Let Φ be a countable subset of a PSI space S, EΦ its corresponding shift-

invariant set. If EΦ is a frame then:

(a) Let ψ be any generator of S (i.e., S = S(ψ)), and c = (cφ)φ∈Φ ∈ `2(EΦ) (with cφ the restriction

of c to Eφ). Then c ∈ CTΦ
if and only if

(ĉφ)φ = τ([ψ̂, φ̂])φ,
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for some 2π-periodic function τ , that is supported on σS.

(b) The map R from the frame EΦ to its dual is given by

R : f 7→ (f̂/Φ̃2)∨.

(c) The orthogonal projector P : L2(IR
d) → S can be written in the form

Pf =
∑

φ∈Φ, α∈ZZd

〈f,Eα((φ̂/Φ̃2)∨)〉Eαφ.

Proof: Claim (c) is immediate from (b) and Proposition 1.3.8. To prove (b), we need to

show that the map R inverts TΦT
∗
Φ , and this will follow as soon as we show that (TΦT

∗
Φf)̂ = Φ̃2f̂

on S. For that, note first that Result 2.2.9 implies that, for every f, g ∈ S,

(2.2.17) [f̂ , ĝ] ĝ = [ĝ, ĝ]f̂ .

Now, given f ∈ S, we first recall that, by (2.1.2), for every φ ∈ Φ,

(TφT
∗
φ f)̂ = [f̂ , φ̂]φ̂.

This, together with (2.2.17) and the fact that TΦT
∗
Φ =

∑
φ∈Φ TφT

∗
φ , implies that

(TΦT
∗
Φf)̂ =

∑

φ∈Φ

[f̂ , φ̂]φ̂ =
∑

φ∈Φ

[φ̂, φ̂]f̂ = Φ̃2f̂ .

This proves (b) and thereby (c).

To prove (a), we compute CTΦ
using the identity

CTΦ
= ran T ∗

Φ .

For f ∈ S, there exists, by Result 2.2.9, a function τf supported on σS, such that f̂ = τf ψ̂. By

(2.1.2),

T̂ ∗
φ f = [f̂ , φ̂] = τf [ψ̂, φ̂].

Since CTΦ
is the range of T ∗

Φ , this shows that the Fourier transform of each c = (cφ)φ∈Φ ∈ CTΦ
is

of the form ĉφ = τ [ψ̂, φ̂], ∀φ ∈ Φ, for some 2π-periodic τ supported on σS, i.e., CTΦ
contains only

sequences of the required form.

Conversely, assume that c = (cφ) satisfies ĉφ = τ([ψ̂, φ̂]). We consider the nature of TΦc =∑
φ∈Φ Tφcφ. Applying Fourier transform, and invoking (2.2.17) once again, we obtain that

T̂Φc =
∑

φ∈Φ

ĉφφ̂ =
∑

φ∈Φ

τ [ψ̂, φ̂]φ̂ =
∑

φ∈Φ

τ [φ̂, φ̂]ψ̂ = τ Φ̃2ψ̂.

Since TΦ is bounded, τ Φ̃2ψ̂ ∈ L2(IR
d). On the other hand, since EΦ is a frame, then, by Theorem

2.2.14, Φ̃ is bounded below on (σS)◦ ⊃ supp ψ̂, and therefore τ ψ̂ ∈ L2(IR
d). Thus, f := (τ ψ̂)∨ is in

L2(IR
d), and hence, by Result 2.2.9, is also in S. Since the proof of the previous implication shows

that T ∗
Φf = c, we obtain that c ∈ ran T ∗

Φ , as needed.
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From (a) of Theorem 2.2.16, it easily follows that

ker TΦ = {(cφ)φ ∈ `2(EΦ) :
∑

φ∈Φ

ĉφ[ψ̂, φ̂] = 0},

with ψ some (any) generator of S.

2.3. Frames in FSI spaces

In order to lift the results of the previous section from PSI spaces to FSI spaces, we need first

the following FSI analog of Result 2.2.9 (cf. Theorem 1.7 in [BDR1]):

Result 2.3.1. Let Φ be a finite subset of L2(IR
d). A function f ∈ L2(IR

d) is in S := S(Φ) if and

only if there exists τ := (τφ)φ∈Φ, with each τφ a 2π-periodic function, such that

(2.3.2) f̂ =
∑

φ∈Φ

τφφ̂.

Several different approaches are available for the analysis of frames in FSI spaces. We have

chosen here the one which incorporates efficiently the results on PSI frames that were established

in the previous subsection. We do that by studying first the straightforward case when the finite

generating set Φ of S induces an orthogonal decomposition of S into the sum ⊕φ∈ΦS(φ) of PSI

spaces. We then reduce the general setup to that simple case.

Recall that, by (1.2.3), the space S(φ) is orthogonal to the space S(ψ) if and only if [φ̂, ψ̂] = 0,

a.e. Thus, the sum
∑

φ∈Φ S(φ) is orthogonal if and only if the Gramian matrix G is diagonal.

Proposition 2.3.3. If the Gramian matrix G is diagonal, then:

(a) EΦ is a Bessel set if and only if, for each φ ∈ Φ, φ̃ is bounded on σφ = σ(S(φ)). Furthermore,

‖TΦ‖ = max
φ

‖Tφ‖ = max
φ

‖φ̃‖L∞(TTd).

(b) EΦ is a frame for S(Φ) if and only if, for each φ ∈ Φ, φ̃ and 1/φ̃ are bounded on σφ. The

frame is tight if and only if, for every φ, φ̃ = const on σφ (with const independent of φ).

Furthermore,

‖TΦ|
−1‖ = max

φ
‖Tφ|

−1‖ = max
φ

‖1/φ̃‖L∞(σφ).

Proof: The orthogonal sum decomposition ⊕φS(φ) of S(Φ) implies that T ∗
Φ agrees with

T ∗
φ on S(φ) (recall that we naturally embed the target space `2(Eφ) of the latter into the target

space `2(EΦ) of the former). Since `2(EΦ) is (always) the orthogonal sum ⊕φ`2(Eφ), we conclude

that, indeed,

‖TΦ‖ = ‖T ∗
Φ‖ = max

φ∈Φ
‖T ∗
φ ‖ = max

φ∈Φ
‖Tφ‖,

and

‖TΦ|
−1‖ = ‖T ∗

Φ |
−1‖ = max

φ∈Φ
‖T ∗
φ |

−1‖ = max
φ∈Φ

‖Tφ|
−1‖.

The result then follows by an application of parts (a-c) of Theorem 2.2.7.
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In accordance with the definitions of §1.4, we define here

Λ(w)

to be the largest eigenvalue of G(w),

λ(w)

to be the smallest eigenvalue of G(w), and

λ+(w)

to be the smallest non-zero eigenvalue of G(w). Then, both Λ(w) and λ+(w) are non-negative and

well-defined on σS. Further, Proposition 2.3.3 can be stated as follows:

If G is diagonal, then EΦ is a Bessel set if and only if ‖Λ‖L∞(σS) < ∞. EΦ is a frame for S(Φ) if

and only if

(2.3.4) Λ and 1/λ+ are (essentially) bounded on the spectrum of S,

and, moreover, the frame bounds of EΦ are ‖Λ‖L∞(σS) and ‖1/λ+‖L∞(σS).

As Theorem 2.3.6 below asserts, the above characterizations are valid for general FSI spaces.

The proof of Theorem 2.3.6 is based on the following (technical) lemma:

Lemma 2.3.5. Given a finite order Hermitian matrix G, whose entries are measurable functions

defined on some domain Ω, there exists a matrix U := UΦ×Φ whose entries are measurable functions

defined on Ω, such that U∗GU is a diagonal matrix, and U(w) is unitary for every w ∈ Ω.

Prior to proving the lemma, we state our theorem and show how it follows from that lemma.

Part (d) of the theorem is due to [BDR1] (and was previously proved, under certain decay conditions

on Φ, in [JM]). For the special case of quasi-regular FSI spaces (a notion that will be defined in

the next subsection), Theorem 2.3.6 in its entirety was already proved in [BDR1] (cf. Corollary

3.30 there. In a quasi-regular FSI space S, λ+ = λ on σS, and hence the [BDR1]-analysis, which

is based only on the functions λ and Λ, can still go through).

Theorem 2.3.6. Let Φ ⊂ L2(IR
d) be finite with corresponding Gramian matrix G, and corre-

sponding eigenvalue functions Λ, λ, and λ+. Then

(a) EΦ is a Bessel set if and only if Λ is essentially bounded. Furthermore,

‖TΦ‖
2 = ‖Λ‖L∞(σS(Φ)).

(b) A Bessel set EΦ is also a frame if and only if 1/λ+ is bounded on the spectrum of S(Φ). In

such a case,

‖TΦ|
−1‖2 = ‖1/λ+‖L∞(σS(Φ)).

(c) EΦ is a tight frame if and only if Λ = λ+ = const on σS(Φ).
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(d) The Bessel set EΦ is a stable basis for S(Φ) if and only if 1/λ is essentially bounded.

Proof: Let U := (uφ,φ′)φ,φ′∈Φ be the unitary matrix from Lemma 2.3.5 (with respect to

G := GΦ). Define

Ψ := {ψφ : ψ̂φ := (UT Φ̂)φ :=
∑

φ′∈Φ

uφ′,φφ̂′, φ ∈ Φ}.

Since U(w) is unitary for every w ∈ TTd, it follows that U , considered as an endomorphism of LΦ
2 ,

is also unitary. From that it easily follows that Ψ ⊂ L2(IR
d) (in fact,

∑
ψ∈Ψ ‖ψ̂‖2 =

∑
φ∈Φ ‖φ̂‖2).

Thus, Ψ ⊂ S(Φ) by Result 2.3.1. Similarly, since Φ̂ = UΨ̂, Φ ⊂ S(Ψ), and, consequently, S(Ψ) =

S(Φ). Further, GΨ = U∗GΦU , hence GΦ and GΨ have the same eigenvalue functions.

To prove (a), we let JΦ and JΨ be defined as in (1.4.3). Then JΨ = JΦU . Since U is unitary,

JΨ is bounded if and only if JΦ is, and the two maps have the same norm. Therefore, EΨ is a

Bessel set of S(Ψ) = S(Φ) if and only if EΦ is so. Consequently, (a) follows from Proposition 2.3.3

and the fact that, for each w, {ψ̃(w)}ψ∈Ψ are the eigenvalues of the diagonal matrix GΨ(w).

The proofs of (b), (c) and (d) are similar.

Now, we turn to proof of the Lemma.

Proof of Lemma 2.3.5. Since, for each w ∈ Ω, the Hermitian matrix G(w) can certainly be

unitarily diagonalized, the actual goal of the proof is to achieve the required measurability.

Let Λj(w), w ∈ Ω, j = 1, ..., n := #Φ denote the jth smallest eigenvalue of G(w). Our first

goal is to show that Λj is a measurable function. For that we need the following claim.

Claim 2.3.7. Let {am}n−1
m=0 be a set of convergent sequences am : IN → IR. Let am(0) denote the

limit of (am(k))∞k=1. For each non-negative integer k, let qk be the univariate polynomial

qk(t) := tn +

n−1∑

m=0

am(k)tm.

Assume that each qk has only real roots, and let Λk,j denotes the jth smallest root of qk. Then

Λk,j k→∞−−−−−→ Λ0,j , for each j = 1, ..., n.

Proof of Claim 2.3.7. For each k ≥ 0, let Λk be the vector (Λk,j)
n
j=1. It is clear that

(Λk)k∈IN is bounded (in IRn), hence it suffices to show that Λ0 is the only limit point of (Λk)k. In

this regard, we note that a limit point lj of the sequence (Λk,j)k, is a zero of q0, since
∑n

i=0 ait
i is

a continuous function of a0, . . . , an, t.

To prove that the sequence (Λk)k∈IN has only one limit point, we let l := (lj)
n
j=1 be a limit

point of (Λk)k. Then, it is clear that (lj)
n
j=1 is non-decreasing, and, as observed above, all the n

entries of l are roots of q0. Since q0 has only n roots, l will be proved to equal Λ0 as soon as we

show the following: “if θ occurs m times in l, then its multiplicity as a root of q0 is at least m”.

Assume, therefore, that, ls+1 = ls+2 = ... = ls+m = θ, for some s and m. Let (ki)
∞
i=1 be

a set of increasing integers for which (Λki
)i converges to l. By Rolle’s theorem, for each fixed

r = 0, ...,m − 1, the rth order derivative q
(r)
ki

of the polynomial qki
would have a zero zki

in the

convex hull of {Λki,s+j}1≤j≤m. Since, as i→ ∞, that convex hull shrinks to θ (since each (Λki,s+j)i
converges to ls+j = θ), zki

converges to θ. Thus, θ is a limit point of roots of (q
(r)
ki

)i, r = 0, ...,m−1,

hence θ is a root of q0 of multiplicity ≥ m, as claimed.
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After establishing the claim, we can prove the measurability of the eigenfunctions Λj as follows.

We approximate the matrix G by Hermitian matrices Gk whose entries are simple measurable func-

tions that converge (say, pointwise) to the entries of G. Let q0(w, ·) be the characteristic polynomial

of G(w), and qk(w, ·) the characteristic polynomial of Gk(w), k = 1, 2, .... Since the coefficients

of qk(w, ·) are simple measurable functions, so is the jth smallest eigenvalue function Λk,j(w) of

Gk(w). On the other hand, the coefficients of qk(w, ·) converge to the corresponding coefficients

of q0(w, ·). Since G(w) and Gk(w), k ∈ IN are Hermitian, their characteristic polynomials have

only real roots. By the previous claim, this implies that, for every j = 1, ..., n, and for every w,

the eigenvalue functions (Λk,j(w))k converge to Λj(w). Thus, each Λj is the pointwise limit of

measurable functions, hence is measurable.

Finally, we construct the columns of U inductively. Assume by induction that we already

found V = {v1, ..., vj−1} vectors whose entries are measurable functions, such that Gvi = Λivi, for

each i = 1, ..., j − 1, and such that {v1(w), ..., vj−1(w)} is an orthonormal set for every w ∈ Ω.

For each w, let k(w) be the largest integer that satisfies Λj(w) = Λj−k(w)(w). For k =

0, ..., n − 1, set Kk := {w ∈ Ω : k(w) = k}. Then (Kk)k forms a measurable partition of Ω. On

each set Kk, we augment the matrix ΛjI − G by adding the row vectors vj−k, ..., vj−1 and obtain

in this way a matrix R with measurable entries, that satisfies rankR(w) < n, for every w ∈ Kk.

Precisely, rankR(w) = n −m(w) + k, where m(w) > k is the multiplicity of Λj(w). Applying the

proof of Lemma 2.4 of [JS], we obtain a measurable vector vj such that Rvj = 0 on Kk, and for

every w ∈ Kk, vj(w) (considered as vector in IRn) has norm 1. Since R(w)vj(w) = 0, w ∈ Kk,

vj(w) is an eigenvector of G(w), and is orthogonal to {vj−k(w), ..., vj−1(w)}. It is also orthogonal

to vi(w), i < j − k as well, since vi(w) is an eigenvector that corresponds to the eigenvalue Λi(w)

which is different from the eigenvalue Λj(w) of vj(w). Hence, vj is (pointwise) orthogonal to each

of its predecessors. This completes the inductive step, thereby the proof of the lemma.

Incidentally, the proof of Theorem 2.3.6 shows that every FSI space can be written as a finite

orthogonal sum of PSI spaces. This fact was established before in [BDR1] (cf. Theorem 3.5 there).

It leads to the following interesting corollary.

Corollary 2.3.8. Given any FSI space S, there exists a finite subset Ψ ⊂ S whose corresponding

shift-invariant set EΨ is a tight frame for S.

Proof: We write S as a finite orthogonal sum of PSI spaces {S(η)}η∈H. By (d) of Theorem

2.2.7, each S(η) contains a function ψη whose shifts Eψη
form a tight frame for S(η), say, with

frame bound 1. The totality {ψη}η∈H is the required Ψ.

In general, there are many ways to write S as an orthogonal sum, and, therefore, S contains

many tight frames. Though the norms of the individual generators ψ ∈ Ψ depend in general on

the specific Ψ chosen, the sum
∑

ψ∈Ψ ‖ψ‖2 depends only on the space S, that is: it is the same

for all tight frames EΨ whose frame bound is 1, and whose corresponding S(ψ), ψ ∈ Ψ form an

orthogonal decomposition of S.
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2.4. Frames in quasi-regular FSI spaces

We had proved in the last subsection that every FSI space contains a shift-invariant tight

frame. However, not every FSI space contains a shift-invariant stable basis. A partial solution to

that difficulty was offered in [BDR1] via the more general notion of quasi-stable generating sets.

That notion was defined in (3.16) of [BDR1], and is closely related to the notion of frames. In fact,

Definition 1.3.5 here allows us to rephrase Definition 3.16 of [BDR1] as follows:

Definition 2.4.1. Let Φ be a finite generating set for the FSI space S. We say that (the shifts

EΦ of) Φ is (are) a quasi-stable generating set, if (i): EΦ is a frame for S; (ii):

CTΦ
= {c = (cφ)φ∈Φ ∈ `2(EΦ) : supp ĉφ ⊂ σS, ∀φ ∈ Φ}.

Note that quasi-stability coincides with stability whenever σS = TTd, i.e., whenever S is regular

(indeed, if S is regular and Φ is quasi-stable, then CTΦ
= `2(EΦ), and hence ker TΦ = {0}). Even

with this weakening of the stability notion, [BDR1] shows that not every FSI space has a quasi-

stable basis (we have proved, in Corollary 2.3.8, that every FSI space has a shift-invariant frame,

and even a tight one, therefore, the existence of a quasi-stable basis really relies on the structure

of CTΦ
). Spaces that do have quasi-stable bases are termed in [BDR1] as quasi-regular. We

discuss here several properties of frames in quasi-regular FSI spaces, which may not be valid in

more general FSI spaces. One of these is an explicit representation for the orthogonal projector

onto S: [BDR1] obtains such formulas for quasi-regular spaces by a Cramer-rule-like expression

(see (1.9) there). On the other hand, we know from Proposition 1.3.8 that the orthogonal projector

can also be represented by using a frame for S and its dual frame, and this will lead us to an

alternative representation of this projector.

Before we state our first result, we recall the definition of a quasi-basis from [BDR1]: The

finite Φ is a quasi-basis for the FSI space S if detGΦ is non-zero a.e. on σS. We mention, [BDR1],

that the existence of a quasi-basis for S is equivalent to the quasi-regularity of S, and that every

quasi-stable basis is also a quasi-basis but not vice versa. The cardinality of the quasi-basis is the

length lenS of S and is shown in [BDR1] to depend only on S.

Proposition 2.4.2. Let Φ be a finite quasi-basis for the (quasi-regular) FSI space S. Assume that

EΦ is a Bessel set. Then,

(2.4.3) CTΦ
= {c = (cφ)φ∈Φ ∈ `2(EΦ) : supp ĉφ ⊂ σS}.

Proof: Denoting the right hand side of equation (2.4.3) by CΦ, we will show that (i):

CTΦ
⊂ CΦ, and (ii): ker TΦ ∩CΦ = {0}. Since CTΦ

is the orthogonal complement of ker TΦ, (2.4.3)

would then follow from (i) and (ii) combined.

The required (ii) was proved in [BDR1]: Corollary 3.11 there asserts that, since Φ is a quasi-

basis, the map

`2(EΦ) 3 c 7→ T̂Φc =
∑

φ∈Φ

ĉφφ̂

is 1-1 on CΦ.
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As for (i), given f ∈ S, supp f̂ lies in the 2π-periodic extension (σS)◦ of σS. Thus, if, for some

c = (cφ)φ∈Φ ∈ `2(EΦ), each supp ĉφ is disjoint of σS, we have

T̂Φc =
∑

φ∈Φ

ĉφφ̂ = 0.

This means that the space

KΦ := {c ∈ `2(EΦ) : supp ĉφ ∩ σS is a null-set, ∀φ ∈ Φ}

lies in ker TΦ. Since CΦ is clearly the orthogonal complement of KΦ, we obtain (i) by applying

orthogonal complements to the inclusion KΦ ⊂ ker TΦ.

Theorem 2.4.4. Let Φ be a finite generating set for the quasi-regular FSI space S. Then Φ is a

quasi-stable generating set if and only if it is a quasi-basis and its corresponding shifts EΦ form a

frame for S.

Proof: If EΦ is quasi-stable, then, by definition, it is a frame, and it is also a quasi-basis

by virtue of Proposition 3.18 of [BDR1].

Conversely, if Φ is a quasi-basis and EΦ is a frame, then, for the quasi-stability of Φ, it

remains to show that CTΦ
has the required structure. This follows from Proposition 2.4.2 and the

assumption that Φ is a quasi-basis.

We mention that, given a quasi-regular FSI space S, there exist shift-invariant frames EΦ for

S which are not quasi-stable (hence do not form a quasi-basis). For example, the length of a PSI

space is 1, and hence any quasi-basis for it is formed by the shifts of single function φ. At the same

time, frames for PSI spaces that consist of the shifts of several functions exist, and, in fact, were

discussed in detail in §2.1.

The proof of the second implication in the above theorem could also be done through eigenvalue

functions. The argument is as follows. Since EΦ is a frame, Theorem 2.3.6 implies that the

eigenvalue function Λ(w) (λ+(w)) is essentially bounded above (away from zero) on σS. However,

since GΦ(w) is invertible a.e. on σS (since Φ is a quasi-basis), it follows that λ(w) = λ+(w), a.e.

on σS, where λ(w) is the smallest eigenvalue function. Thus Λ(w) is essentially bounded above and

λ(w) is bounded below on σS. By Corollary 3.30 of [BDR1], Φ is a quasi-stable generating set.

In the rest of the subsection, we consider frame-dual frame representations of the orthogonal

projector onto a quasi-regular FSI space S. The idea is to use the fact that, given a general frame

X for H and a dual frame RX, the map TRXT
∗
X is always the identity on H. Before we develop

that direction further, we point out a relevant result. If X is a stable basis, then the condition

TRXT
∗
X = IH is not only necessary but also sufficient for RX to be the dual of X. The result below

shows that, in the shift-invariant setup, that sufficiency assertion extends to quasi-stable sets:

Corollary 2.4.5. Let EΦ be a quasi-stable basis for the FSI space S, and let R be some map from

Φ into S(Φ). If ERΦ is a Bessel set, then ERΦ is the dual frame of EΦ if (and only if) TRΦT
∗
Φ is

the identity on S, that is, if

(2.4.6) f =
∑

φ∈Φ,α∈ZZd

〈f,Eαφ〉EαRφ, ∀f ∈ S.
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Proof: After extending R from Φ to EΦ by the rule REαφ := EαRφ, we appeal to Propo-

sition 1.3.7. That proposition validates the “only if” implication, and reduces the proof of the “if”

implication to proving that CTRΦ
= CTΦ

. Furthermore, Proposition 2.4.2 asserts that CTΨ
is the

same for all quasi-bases Ψ of S.

Since Φ is already known to be a quasi-basis (by virtue of its quasi-stability, cf. Theorem 2.4.4),

it suffices to show that RΦ is also a quasi-basis. The proof of this statement goes as follows. Since

RΦ ⊂ S, we have S(RΦ) ⊂ S. This, together with (2.4.6), shows that ERΦ is fundamental in

S, and hence S(RΦ) = S(Φ). Since Φ is a quasi-basis for S, its cardinality is the length, lenS,

of S. Therefore, #(RΦ) ≤ #Φ = lenS. However, as asserted by Theorem 3.12 of [BDR1], every

generating set of a quasi-regular FSI space S that contains no more than lenS elements must be a

quasi-basis.

Theorem 2.4.7. Assume that the shifts EΦ of the finite Φ form a quasi-stable basis for the FSI

space S. Then the Fourier transforms of the generators RΦ of the dual quasi-stable basis are given,

on σS, by

R̂Φ = G−1
Φ Φ̂.

with G−1
Φ the (pointwise) inverse of GΦ.

Proof: Since R should invert TΦT
∗
Φ , we compute first TΦT

∗
ΦΦ. Here, we use (2.1.2) (and

the fact that TΦT
∗
Φ =

∑
φ∈Φ TφT

∗
φ ) to conclude that

(TΦT
∗
ΦΦ)̂ = (

∑

φ′∈Φ

[φ̂, φ̂′]φ̂′)φ∈Φ = GΦΦ̂.

Since GΦ is invertible on σS (and is zero elsewhere), the claim follows.

By Proposition 1.3.8, TRΦT
∗
Φ is the orthogonal projector PS of L2(IR

d) on S. The last result

thus allows us to write

P̂Sf =
∑

φ,φ′∈Φ

[f̂ , φ̂]gφ,φ′ φ̂′,

with (gφ,φ′)φ,φ′∈Φ = G−1
Φ . Instead, we could have solved the equation GΦR̂Φ = Φ̂ by applying

Cramer’s rule. That attempt would have resulted in the form for PS that was discussed in [BDR1].

3. Infinitely generated SI spaces

3.1. General

The study of FSI subspaces of L2(IR
d) is pertinent to Approximation Theory, where one

attempts to approximate from small, simple spaces of approximants. In other areas (such as

wavelets) the main goal is to find an attractive basis for the entire L2(IR
d) or to a “big” subspace of

it. We therefore analyse in this section shift-invariant subspaces of L2(IR
d) generated by a countable

set of generators.
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Our results on FSI spaces were stated in terms of the matrix spectrum of each of the “fiber”

matrices G(w), w ∈ TTd. We pause here momentarily in order to have a closer look at the potential

practical value of the obtained characterizations. Assuming we hold in hand the Gramian matrix,

the characterization of stability and of the Bessel property are of a more favorable nature than

those of frames and tight frames: in many cases, the estimation of the largest eigenvalue Λ(w) and

the smallest eigenvalue λ(w) of G(w) can be done directly in terms of the entries of G(w) (as we

did in §1.6). However, estimating the smallest non-zero eigenvalue λ+(w), would, almost certainly,

require the application of a costly iterative process. Consequently, the kind of characterization of

FSI frames that was obtained in Theorem 2.3.6 seems to be practically less useful than its stability

counterpart. This can also be viewed as follows: the invertibility of a certain operator is a more

accessible property than its partial invertibility.

A partial solution to the above problem is obtained with the addition of the complementary

dual Gramian analysis that will be developed. Indeed, as was already explained in the introduction,

the Gramian analysis is engaged with the decomposition of the operator T ∗
ΦTΦ, while in the dual

case the operator TΦT
∗
Φ is the object. In two respects, there is a significant difference between

these two operators: the stability of a Bessel set EΦ is equivalent to the invertibility of T ∗
ΦTΦ,

but is not so nicely reflected by TΦT
∗
Φ (this latter operator should be partially invertible and onto

`2(EΦ), two hard-to-verify properties). On the other hand, a fundamental frame for L2(IR
d) is

characterized nicely through TΦT
∗
Φ (should be invertible), and is hard to be analysed via T ∗

ΦTΦ.

In summary, Gramian analysis is best suited for the study of stable bases, while dual Gramian

analysis is particularly good for fundamental frames for L2(IR
d), hence, indeed, the two approaches

complement each other.

In view of the above, one may wonder why we have not employed the dual Gramian analysis

for the study of frames in FSI spaces. The answer for that is as follows: since an FSI space is

always a proper subspace of L2(IR
d), a frame for it is never fundamental in L2(IR

d). For the

analysis of frames which are not fundamental, both Gramian analysis and dual Gramian analysis

require the (hard-to-verify) partial invertibility of their associated operator, hence the switch from

the finite-order Gramian G to infinite-order dual Gramian G̃ provides no gain.

Throughout the section, we use the notation ΣA for the spectrum of the operator A; namely,

given a bounded linear endomorphism A of a Hilbert space H, we denote

ΣA := {λ ∈ C : the inverse of λI − A is undefined or unbounded}.

To make a clear distinction between this notion and the spectrum σS(Φ) of S(Φ), we will always

refer to the former as the the operator spectrum.

3.2. Gramian Analysis: SI spaces as the limit of FSI spaces

Two different approaches for the study of SI spaces are employed here. The first, that we

discuss in the present subsection, attempts to extend the results from §2 on FSI spaces to general

SI spaces, by viewing the latter as a certain limit of the former. That approach leads to the desired

characterizations of the Bessel property and of the stability property, but is short of characterizing

frames. Therefore, we will develop, (in §3.4) an alternative method, where we inspect directly the
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operator spectrum of each of the “fibers” G(w). This latter direction is more powerful, alas, much

more involved, whence our decision to present both approaches.

The “going-to-the-limit” argument is almost self-suggestive, and is based on an elementary

observation. Let X be a countable subset of the Hilbert space H. Given any subset Y ⊂ X, let

HY be the closure in H of the finite span of Y (that is, Y is fundamental in HY ). As before, the

operator TY is defined on `0(Y ), and, if bounded, is extended to the entire `2(Y ) by continuity.

Further, `2(Y ) is isometrically embedded in `2(X) in the usual way.

For a set X ⊂ H, a chain

.... ⊂ Xn−1 ⊂ Xn ⊂ Xn+1 ⊂ ....

that satisfies ∪nXn = X is called a filtration of X.

Theorem 3.2.1. Let X be a countable fundamental set of the Hilbert space H. Suppose that

{Xn}n is a filtration of X, i.e., Xn ⊂ Xn+1 for all n ∈ IN, and ∪nXn = X. Denote T := TX ,

Tn := TXn
, Hn := HXn

. Then:

(a) X is a Bessel set if and only if the following condition holds “each Xn is a Bessel set, and

supn ‖Tn‖ <∞”. In such a case, ‖T‖ = supn ‖Tn‖ = limn→∞ ‖Tn‖.

(b) Assume X is a Bessel set. Then, X is a stable basis for H if and only if the following

condition holds “each Xn is a stable basis for Hn, and supn ‖Tn
−1‖ < ∞”. In such a case,

‖T−1‖ = supn ‖Tn
−1‖ = limn→∞ ‖Tn

−1‖.

(c) Assume X is a Bessel set. Then, X is a frame for H if the following condition holds “for

infinitely many n, Xn is a frame for Hn, and lim infn ‖Tn|
−1‖ <∞”. In such a case, ‖T |

−1‖ ≤

lim infn ‖Tn|
−1‖.

Proof: The boundedness and invertibility of T (Tn) is determined by its action on the

finitely supported sequences `0(X) (`0(Xn)) in `2(X) (`2(Xn)). Assertions (a) and (b) thus follow

from the fact that, since {Xn}n is a filter of X, `0(X) is the union of (`0(Xn))n.

(c): Without loss, we may assume that each Xn is a frame for Hn, and that (‖T ∗
n|

−1‖ =

‖Tn|
−1‖)n converges (otherwise, we take a subsequence). Set A := lim ‖T ∗

n|
−1‖−1. Since T is

bounded, A <∞. More importantly, by our assumptions here A > 0. Now, let f ∈ H. Given ε > 0,

we can find, for all sufficiently large k, an element fk ∈ Hk so that ‖f − fk‖ ≤ ε
max{‖T‖,‖T ∗

k|
−1‖−1} .

Then, ‖T ∗f‖ ≥ ‖T ∗fk‖ − ε ≥ ‖T ∗
k fk‖ − ε. Also, ‖T ∗

k fk‖ ≥ ‖T ∗
k|

−1‖−1‖fk‖ ≥ ‖T ∗
k|

−1‖−1‖f‖ − ε. In

summary, for every f ∈ H and for all sufficiently large k,

‖T ∗f‖ ≥ ‖T ∗
k|

−1‖−1‖f‖ − 2ε.

By taking k → ∞, we obtain that ‖T ∗f‖ ≥ A‖f‖ − 2ε. Since ε > 0 is arbitrary, the desired result

follows.

Let S be a shift-invariant space generated by the countable set Φ. Let (Φn)n be a filtration

of Φ by finite sets. Then, (En := EΦn
)n is a filtration of EΦ that employs FSI sets. Let Λn, λn

and λ+
n be the eigenvalue functions of En (cf. the paragraph after Proposition 2.3.3). Combining

Theorem 2.3.6 and Theorem 3.2.1, we obtain the following result.
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Corollary 3.2.2. With Φ ⊂ L2(IR
d) a countable set, with (Φn)n a filtration of Φ that is made of

finite sets, and with Λn, λn and λ+
n as above, we have

(a) EΦ is a Bessel set if and only if the function set {Λn}n is bounded in L∞(TTd). Furthermore,

‖TΦ‖
2 = supn ‖Λn‖L∞(TTd).

(b) Assume EΦ is a Bessel set. Then it is also a stable basis for S if and only if the function

set {1/λn}n is bounded in L∞(TTd). Furthermore, ‖T−1‖ = supn ‖1/λn‖L∞(TTd). (Here,

1/0 := ∞.)

(c) Assume EΦ is a Bessel set. Then it is also a frame if the following holds: “for each n, the func-

tion 1/λ+
n is bounded on the spectrum σn of the FSI space S(Φn), and lim infn ‖1/λ

+
n ‖L∞(σn) <

∞.”

The analysis of EΦ for a finite Φ was done by a spectral-like decomposition of TΦ into the

simpler fiber operators. For a countable Φ, we can still derive from (a) and (b) of the last corollary

similar decomposition results.

We recall the functions Λ(w), λ(w) and λ+(w) that were defined in the introduction. Note

that for a finite Φ these definitions coincide with the definitions of Λ(w), λ(w) and λ+(w) as

eigenvalue functions. Given now a filtration (Φn)n of Φ, Corollary 3.2.2 implies that ‖TΦ‖
2 =

limn→∞ ‖Λn‖L∞(TTd). Moreover, it is straightforward to show that, monotonically, Λn(w) → Λ(w),

and λn(w) → λ(w) a.e. on TTd. This implies that Λ and λ are measurable, and, further, since the

convergence Λn → Λ and λn → λ is monotone,

‖Λ‖L∞(TTd) = lim
n→∞

‖Λn‖L∞(TTd),

and

‖1/λ‖L∞(TTd) = lim
n→∞

‖1/λn‖L∞(TTd).

Thus we obtain the following extension of (a) and (b) of Theorem 2.3.6:

Theorem 3.2.3. Let Φ be a countable subset of L2(IR
d) with Gramian matrix G. Let Λ(w) :=

‖G(w)‖ and λ(w) := ‖G(w)−1‖−1. Then:

(a) EΦ is a Bessel set if and only if Λ is essentially bounded. Moreover, we have ‖TΦ‖
2 =

‖Λ‖L∞(TTd).

(b) Suppose EΦ is a Bessel set. Then EΦ is a stable basis if and only if 1/λ is essentially bounded.

Moreover, we have ‖TΦ
−1‖2 = ‖1/λ‖L∞(TTd).

Theorem 3.2.3 provides characterizations of the Bessel property and the stability property

that, though were derived with the aid of the FSI results, are stated explicitly in terms of the fiber

operators G(w), w ∈ TTd. Such a characterization is valid for frames, but, cannot be derived with

the aid of the filtration argument. Therefore, we develop in §3.4 a direct approach that decompose

G without the use of a filter. Since the proofs there are lengthy and technical, we postpone that

development until after the dual Gramian analysis is presented.
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3.3. Dual Gramian analysis

The starting point of the Gramian analysis is the fact that both G and its fibers (G(w))w

can be viewed as densely defined operator on LΦ
2 and `2(Φ), respectively. An analogous statement

about the dual Gramian is less obvious, and we need surmount here new obstacles.

The first (though, minor) difficulty that one should note is the well-definedness of the entries

of the dual Gramian: while the Gramian entries [φ̂, ψ̂], φ, ψ ∈ Φ are in L1(TT
d) hence well-defined

a.e. regardless of the choice of the set Φ, the same cannot be said about the entries

∑

φ∈Φ

φ̂(· + α)φ̂(· + β), α, β ∈ 2πZZd

of the dual Gramian G̃. We start our discussion by settling that question.

Assume that EΦ is a Bessel set. Then, since
∑

φ∈Φ ‖T ∗
φ f‖

2 = ‖T ∗
Φf‖

2 < ∞, and since the

Fourier transform is an isometry on L2(IR
d), we conclude from (2.1.2) that

∑

φ∈Φ

‖[f̂ , φ̂]‖2
L2(TTd) <∞, ∀f ∈ L2(IR

d).

Choosing now f as the inverse Fourier transform of the characteristic function of the cube α +

[−π..π]d, α ∈ 2πZZd, we compute that [f̂ , φ̂] = φ̂(· − α)|C , and therefore,

‖[f̂ , φ̂]‖2
L2(TTd) = ‖φ̂2‖L1(α+C).

Thus, we have proved that the sum
∑

φ∈Φ

|φ̂(· + α)|2

is L1(TT
d)-convergent, hence is also convergent pointwise a.e. Since that sum is the (α, α)-entry of

the dual Gramian, we conclude the following:

Proposition 3.3.1. Let Φ be a countable subset of L2(IR
d), and assume that EΦ is a Bessel set.

Then, for each α, β ∈ 2πZZd, the (α, β)-entry

∑

φ∈Φ

φ̂(· + α)φ̂(· + β)

of the dual Gramian matrix converges absolutely a.e. to an element of L1(TT
d).

Proof: For α = β, the assertion was proved in the paragraph preceding the proposition.

The extension to a general pair (α, β) follows from Schwartz’ inequality.
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Since the Bessel property of the set EΦ is the weakest property of that set of interest to us

here, we may assume hereafter that, for all α, β ∈ 2πZZd, the sum that defines the (α, β)-entry

G̃α,β

of the dual Gramian converges absolutely a.e.

Another, more substantial, difficulty occurs upon attempting to prove that dual Gramian

operator can be evaluated, i.e., that, under “reasonable assumptions”

(G̃f)(w) = G̃(w)f|w, for a.e. w ∈ TTd.

Here, as before f|w := f|w+2πZZd . Recall that the dual Gramian operator G̃ is defined as G̃ := JΦJ
∗
Φ,

i.e.,

G̃ : f 7→
∑

φ∈Φ

[f, φ̂]φ̂.

If EΦ is a Bessel set, the above sum must converge in L2(IR
d), for every f ∈ L2(IR

d). However,

interpreting the above sum in the non-Bessel case is a non-obvious task. On the other hand, the

connection between G̃ and its evaluation G̃(w) is important even when EΦ is not Bessel, since,

otherwise, we will not be able to use the fibers {G̃(w)}w∈TTd for the characterization of the Bessel

property. For this reason, we view, to this end, G̃ as a quadratic form rather than as an operator,

i.e., make use of the connection

〈G̃f̂ , f̂〉 =
∑

φ∈Φ

‖(T ∗
φ f) ‖̂2 = ‖

∑

φ∈Φ

|[f̂ , φ̂]|2‖L1(TTd).

Assuming f̂ is compactly supported, we may use the a.e. finiteness of
∑

φ∈Φ |φ̂(· + α)φ̂(· + β)| to

sum by parts as follows:

∑

φ∈Φ

|[f̂ , φ̂](w)|2 =
∑

φ∈Φ

∑

α,β∈2πZZd

f̂(w + α)f̂(w + β)φ̂(w + β)φ̂(w + α)

=
∑

α,β

f̂(w + α)f̂(w + β)
∑

φ∈Φ

φ̂(w + β)φ̂(w + α)

= (f̂|w)∗G̃(w)f̂|w.

Therefore, we conclude that

Lemma 3.3.2. Let Φ be a countable subset of L2(IR
d).

(a) If, for some α, β ∈ 2πZZd, the sum
∑

φ∈Φ |φ̂(· + α)φ̂(· + β)| is infinite on a set of positive

measure, then EΦ is not a Bessel set.

(b) If the above sum is finite a.e. for every α, β ∈ 2πZZd, then, for every band-limited f ,

‖T ∗
Φf‖

2 = (2π)−d
∫

TTd

(f̂|w)∗G̃(w)f̂|w dw.

30



The dual Gramian analysis can now be developed along lines parallel to the development of

the Gramian analysis. For that, we set, for α ∈ 2πZZd, Sα to be the subspace of L2(IR
d) consisting

of those functions whose Fourier transform is supported (up to a null-set) in α+ [−π..π]d. Sα is a

translation-invariant space. In fact, it is also a PSI space, and is generated by χα
∨, with χα the

support function of α + [−π..π]d (cf. Result 2.2.9). We consider the restriction T ∗
Φ,α, α ∈ ZZd of

T ∗
Φ to the space Sα, and observe that, for w ∈ TTd and f ∈ Sα, the quadratic form f̂ |w

∗G̃(w)f̂|w,

w ∈ TTd, is reduced to f̂(w + α)G̃α,α(w)f̂(w + α) = G̃α,α(w)|f̂(w + α)|2, and therefore

‖T ∗
Φf‖

2 = (2π)−d‖G̃α,α|f̂(· + α)|2‖L1(TTd).

Since also ‖f‖L2(IRd) = (2π)−d‖|f̂(·+α)|2‖L1(TTd) (since f ∈ Sα), the norm bounds on the restricted

operator T ∗
Φ,α and its inverse are the same as those of the map

L1(TT
d) 3 τ 7→ G̃α,ατ.

Thus, in complete analogy with Theorem 2.2.7 (cf. the argument used in the proof of Theorem

2.2.14) we have the following.

Proposition 3.3.3. Let Φ ⊂ L2(IR
d) be countable (or finite), and assume that the sum

∑
φ∈Φ |φ̂|2

converges a.e. Then, for every α ∈ 2πZZd:

(a) The restricted operator T ∗
Φ,α is bounded if and only if the function G̃α,α is essentially bounded.

Furthermore,

‖T ∗
Φ,α‖

2 = ‖G̃α,α‖L∞(TTd).

(b) Assume T ∗
Φ,α is bounded. Then it is also invertible if and only if the function 1/G̃α,α is

essentially bounded. Further,

‖T ∗
Φ,α

−1‖2 = ‖1/G̃α,α‖L∞(TTd).

(c) Assume T ∗
Φ,α is bounded. Then it is also partially invertible if and only if 1/G̃α,α is essentially

bounded on its support σ̃α ⊂ TTd. Further,

‖T ∗
Φ,α|

−1‖2 = ‖1/G̃α,α‖L∞(σ̃α)
.

The dual Gramian analogue of the FSI results (i.e., Theorem 2.3.6) is obtained by restricting

T ∗
Φ to a larger space of band-limited functions. Here, we take Z to be any finite subset of 2πZZd,

and define ΩZ := Z + [−π..π]d. We then consider the restriction T ∗
Φ,Z of T ∗

Φ to the space

SZ := {f ∈ L2(IR
d) : supp f̂ ⊂ ΩZ}.

Given g defined on ΩZ , and w ∈ TTd, we denote by

gZ(w)

the vector (g(w + z) : z ∈ Z). Also,

G̃Z

stands for the finite-order matrix obtained from the dual Gramian G̃Φ by deleting all rows and

columns not in Z. From Lemma 3.3.2,

‖T ∗
Φf‖

2 = (2π)−d‖f̂∗ZG̃Z f̂Z‖L1(TTd), ∀f ∈ SZ .

Then, following the arguments in §2.3 (that is, establishing the analogous result of Proposition

2.3.3 and invoking then Lemma 2.3.5), we obtain the following analogue of Theorem 2.3.6:
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Proposition 3.3.4. Let Φ ⊂ L2(IR
d) be countable and assume that

∑
φ∈Φ |φ̂|2 is finite a.e. Let

Z be a finite subset of 2πZZd, and let T ∗
Φ,Z be the restriction of T ∗

Φ to SZ . Let Λ̃Z , λ̃Z and λ̃+
Z be

the eigenvalue functions defined as Λ, λ and λ+ of §2.3, but with respect to the dual Gramian G̃Z .

Then:

(a) T ∗
Φ,Z is bounded if and only if Λ̃Z is essentially bounded on TTd. Furthermore, ‖T ∗

Φ,Z‖
2 =

‖Λ̃Z‖L∞(TTd).

(b) Assume T ∗
Φ,Z is bounded. Then it is also invertible if and only if 1/λ̃Z is essentially bounded

on TTd. Furthermore, ‖T ∗
Φ,Z

−1‖2 = ‖1/λ̃Z‖L∞(TTd).

(c) Assume T ∗
Φ,Z is bounded. Then it is also partially invertible if and only if λ̃+

Z is essentially

bounded on σ̃Z := {w ∈ TTd : G̃Z(w) 6= 0}. Furthermore, ‖T ∗
Φ,Z|

−1‖2 = ‖1/λ̃+
Z‖L∞(σ̃Z )

.

To extend Proposition 3.3.4 from spaces of the form SZ to the entire L2(IR
d), we use some

filtration

Z0 ⊂ Z1 ⊂ Z2 ⊂ ...

of 2πZZd. It induces a corresponding filtration of IRd:

Ω0 ⊂ Ω1 ⊂ Ω2 ⊂ ...,

where Ωj := Zj + [−π..π]d. In this way we obtain the increasing space sequence

SZ0
⊂ SZ1

⊂ SZ2
⊂ ...

whose union S is dense in L2(IR
d). Denoting by T ∗

n the restriction of T ∗
Φ to SZn

, we conclude that

the boundedness and invertibility of T ∗
Φ are completely determined by its restriction to S (which is

the space of all band-limited functions). Therefore, we have the following analog of Theorem 3.2.3:

Theorem 3.3.5. Let Φ be a countable subset of L2(IR
d). Then:

(a) If the sum
∑

φ∈Φ |φ̂|2 diverges on some positive measure set, EΦ is not a Bessel set.

(b) Assume that
∑
φ∈Φ |φ̂|2 is finite a.e., and let G̃ be the dual Gramian of EΦ. Further, let Λ̃ and

λ̃ be defined by

Λ̃(w) := ‖G̃(w)‖, λ̃(w) := 1/‖G̃(w)−1‖, w ∈ TTd.

Then:

(b1) EΦ is Bessel set if and only if Λ̃ is essentially bounded. Furthermore,

‖TΦ‖
2 = ‖Λ̃‖L∞(TTd).

(b2) Assume that EΦ is a Bessel set. Then EΦ is a fundamental frame if and only if the following

condition holds: “for a.e. w, G̃(w) is boundedly invertible, and the hence-well-defined function

1/λ̃ is essentially bounded”. Furthermore, ‖T ∗
Φ

−1‖2 = ‖1/λ̃‖L∞(TTd).

Theorem 3.3.5 leads to an interesting conclusion concerning tight frames. Tight frames EΦ

are characterized by the equality ‖TΦ‖‖TΦ|
−1‖ = 1. The theorem shows that the latter condition

is equivalent to the equality

Λ̃(w) = λ̃(w) = const, for a.e. w ∈ TTd.

The equality Λ̃(w) = λ̃(w) says that the operator spectrum of G̃(w) consists of a single point, which

can happen if and only if G̃(w) is a scalar operator. This leads to the following:
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Corollary 3.3.6. Let Φ be a countable subset of L2(IR
d). Then EΦ is a fundamental tight frame

for L2(IR
d) if and only if there exists a constant const such that, for every α, α′ ∈ 2πZZd, and for

almost every w ∈ TTd,

(3.3.7)
∑

φ∈Φ

φ̂(w + α)φ̂(w + α′) = const δα,α′ .

Proof: If the sum in (3.3.7) does not converge absolutely for some α, α′ and on a set of

positive measure. then, by Theorem 3.3.5, EΦ is not a Bessel set. Otherwise, the condition in

(3.3.7) implies, Theorem 3.3.5, that EΦ is a Bessel set. Also, that condition implies that EΦ is

fundamental: if not, there exists f ∈ L2(IR
d) so that T ∗

Φf = 0, hence G̃f̂ = 0, implying thus that

G̃(w)f̂|w = 0, a.e., in contradiction to the assumed structure of G̃(w) in (3.3.7).

Therefore, when proving the required equivalence, we may assume, without loss, that EΦ is a

fundamental Bessel set. The claim then follows from the arguments preceding the present corollary.

If X is a tight frame, then, up to a scalar multiple, it forms its own dual. The above result is

thus a special case of a general relation between a shift-invariant fundamental frame and its dual

(cf. Corollary 4.2).

3.4. Analysis of frames which are not fundamental in L2(IR
d)

Theorems 3.2.3 and 3.3.5 provide us with the desired characterizations of the Bessel property

(twice), the stability property, and the property of being a fundamental frame for L2(IR
d). It

fails to provide similar characterizations for frames of a shift-invariant proper subspace of L2(IR
d)

(unless that frame happens to be a stable basis). The present subsection is aimed at settling this

remaining problem. After a brief introduction, we state the main theorem that will be proved here.

The proof details then follow.

Let B be a bounded operator from a Hilbert space H into a Hilbert space H ′, and let A := B∗B.

Let ΣA be the operator spectrum of A. We define

λ+(A) := inf{µ : µ ∈ ΣA\0}.

The operator A is partially invertible if and only if λ+(A) > 0, and the norm of the partial inverse

is 1/λ+(A) (the “only if” implication is quite clear. The argument for the “if” statement can be

found in the proof of the implication (b) =⇒ (a) of Theorem 3.4.1).

Given a Bessel set EΦ with Gramian G and dual Gramian G̃, our two objectives are to connect

(a): between the function

λ+(w) := λ+(G(w)), w ∈ TTd,

and the number λ+(G); (b): between the function

λ̃+(w) := λ+(G̃(w)), w ∈ TTd,

and the number λ+(G̃). Since λ+(G) = λ+(G̃) = ‖TΦ|
−1‖−1 (with ∞−1 := 0), we will obtain in

this way two characterizations of frames. In fact, we will prove the following:

33



Theorem 3.4.1. Let Φ be a countable subset of L2(IR
d), and assume that EΦ is a Bessel set. Let

σΦ := suppG = supp G̃ ⊂ TTd. Then the following conditions are equivalent:

(a) EΦ is a frame, and the norm of the partial inverse of TΦ is K <∞.

(b) The function λ+ is bounded away from zero on σΦ, and ‖1/λ+‖L∞(σΦ) = K2.

(c) The function λ̃+ is bounded away from zero on σΦ, and ‖1/λ̃+‖L∞(σΦ) = K2.

The equivalence of (b) and (c) is quite straightforward. (Since EΦ is Bessel, then, by The-

orems 3.2.3 and 3.3.5, both G(w) and G̃(w) are bounded for a.e. w. Since G(w) is the product

J∗
Φ(w)JΦ(w), and G̃(w) is the product of the same matrices in reversed order, Σ(G(w)) and Σ(G̃(w))

can differ only by the single point {0}. Thus, λ+ and λ̃+ are equal pointwise.) We will prove here

the equivalence of (a) and (b). The proof of the implication (b)=⇒(a) is based on the following

lemma.

Lemma 3.4.2. Let EΦ be a Bessel set, and let τ ∈ LΦ
2 , G := GΦ. Then,

(a) τ ∈ kerG if and only if τ(w) ∈ kerG(w) for almost every w.

(b) τ ∈ CG := (kerG)⊥ if and only if τ(w) ∈ Cw := (kerG(w))⊥, for a.e. w.

Proof: The first assertion is obvious, since (Gτ)(w) is G(w)τ(w). As for (b), assume first

that τ(w) ∈ Cw for a.e. w. Then, for an arbitrary τ ′ ∈ kerG,

〈τ, τ ′〉LΦ
2

=

∫

TTd

〈τ(w), τ ′(w)〉`2(Φ)dw = 0,

since, by (a), τ ′(w) ∈ kerG(w) = Cw
⊥, a.e. Therefore, τ ∈ (kerG)⊥ = CG.

Conversely, assume that τ ∈ CG. If τ ∈ ranG, then τ = Gτ0, for some τ0, hence, for a.e. w

(precisely, whenever G(w) is bounded, and τ0(w) ∈ `2(Φ)), τ(w) = G(w)τ0(w) ∈ ranG(w) ⊂ Cw.

If τ 6∈ ranG, it can still be approximated in LΦ
2 by a sequence (τn)n ⊂ ranG (since ranG is dense

in CG). By switching to a subsequence, if necessary, we may assume that, for almost every w,

(τn(w))n converges in `2(Φ) to τ(w). Combining this with the argument in the beginning of the

paragraph, we conclude that, for almost every w, (τn(w))n is in Cw and converges in the `2(Φ)-norm

to τ(w). Since Cw is certainly closed, we obtained that τ(w) ∈ Cw, a.e.

Proof of the implication (b)=⇒(a) in Theorem 3.4.1.

We will prove that, assuming (b), EΦ is a frame, and ‖TΦ|
−1‖ ≤ ‖1/λ+‖L∞(σΦ).

Assume that 1/λ+ is essentially bounded on σΦ, and let τ ∈ CG\0. By Lemma 3.4.2, τ(w) ∈

Cw, a.e. on TTd. We claim that, a.e.w, if G(w) 6= 0, it is partially invertible, i.e., bounded below

on Cw. Indeed, the restriction G(w)| of G(w) to Cw is (always) injective. Furthermore, since

λ+(w) > 0, the operator spectrum of G(w) is disjoint from the non-empty interval (0, λ+(w)).

Therefore, the operator spectrum of G(w)| is also disjoint from (0, λ+(w)). Since G(w)| is non-

negative and injective, 0 cannot be an isolated point of its spectrum, hence it must be invertible.

The argument also shows that ‖G(w)|
−1‖ = 1/λ+(w).

This means that, for a.e. w, if τ(w) 6= 0, then

(3.4.3) ‖G(w)τ(w)‖`2(Φ) ≥
‖τ(w)‖`2(Φ)

‖G(w)|−1‖
≥

‖τ(w)‖`2(Φ)

‖1/λ+‖L∞(σΦ)
.
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For τ ∈ LΦ
2 ,

‖τ‖2
LΦ

2

=

∫

TTd

‖τ(w)‖2
`2(Φ),

hence also

‖Gτ‖2
LΦ

2

=

∫

TTd

‖G(w)τ(w)‖2
`2(Φ),

hence (3.4.3) implies that

‖Gτ‖LΦ
2
≥

‖τ‖LΦ
2

‖1/λ+‖L∞(σΦ)
.

Therefore, G is partially invertible, and hence, Proposition 1.4.11, EΦ is a frame. Also,

‖TΦ|
−1‖2 = ‖G|

−1‖ ≤ ‖1/λ+‖L∞(σΦ), with the inequality by the proof above, and the equality

by Proposition 1.4.11.

Proof of the implication (a)=⇒(b) in Theorem 3.4.1.

Since we will need, in the next section, a closely related result, we will prove herein the following

more general statement:

Theorem 3.4.4. Let G be a non-negative self-adjoint bounded endomorphism of LΦ
2 . Let (G(w))w

be a collection of non-negative self-adjoint bounded endomorphisms of `2(Φ), that satisfy, for every

τ ∈ LΦ
2 , and for a.e. w ∈ TTd, (Gτ)(w) = G(w)τ(w). Let Λ(w) := ‖G(w)‖, and assume that

Λ ∈ L∞(TTd). Let λ+(w) := inf{µ ∈ Σ(G(w))\0}. Let Ω be the set Ω := {w ∈ TTd : G(w) 6= 0}.

If G is partially invertible, then 1/λ+ is essentially bounded on Ω, and

‖1/λ+‖L∞(Ω) ≤ ‖G|
−1‖.

The fact that Theorem 3.4.4 is a generalization of the required implication (a) =⇒ (b) is clear.

To this end, we prove Theorem 3.4.4.

In the proof, we use the following lemma, whose proof is postponed until after the proof of

Theorem 3.4.4 is done.

Lemma 3.4.5. Under the conditions of Theorem 3.4.4, there exists a countable dense subset D of

`2(Φ), and a null-set Z ⊂ Ω, such that, for every c ∈ D, for every w′ ∈ Ω\Z, and every ε > 0, the

set

Kc,w′,ε := {w ∈ Ω : ‖(G(w) −G(w′))c‖`2(Φ) < ε‖c‖`2(Φ)}

has a positive measure.

Proof of Theorem 3.4.4. Let D and Z be the sets specified in the above lemma. Recall also

the notations CG := (kerG)⊥, Cw := (kerG(w))⊥.

Choose any w′ ∈ Ω\Z, and let µ > 0 be any point in the operator spectrum Σ(G(w′)). We

will construct an element τ ∈ CG, for which

(3.4.6) ‖Gτ‖LΦ
2
≤ (1 + δ)µ‖τ‖LΦ

2
,
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with δ positive and arbitrarily close to 0. This would yield that ‖G|
−1‖ ≥ 1/µ, implying thus that

λ+(w′) > 0, and that

‖G|
−1‖ ≥ 1/λ+(w′).

Since Z is a null-set, we will then conclude that

‖G|
−1‖ ≥ ‖1/λ+‖L∞(Ω),

which is the desired result.

The actual construction of τ in (3.4.6) is as follows: we will find 0 6= τ ∈ LΦ
2 , supported in

A× Φ, where A ⊂ Ω is some set of positive measure, such that (i): τ(w) ∈ Cw, for every w ∈ TTd,

and (ii): ‖G(w)τ(w)‖`2(Φ) ≤ (1 + δ)µ‖τ(w)‖`2(Φ). Condition (i) would imply (as in Lemma 3.4.2)

that τ ∈ CG, while condition (ii) is needed for the conclusion that ‖Gτ‖LΦ
2
≤ (1 + δ)µ‖τ‖LΦ

2
(cf.

the two displays after (3.4.3)).

In general, for the sake of (i) above, it might be hard to know whether a particular sequence

lies in Cw. The most efficient way is, probably, to select elements in ranG(w) (and use the fact

that ranG(w) is dense in Cw, by virtue of the self-adjointness of G(w)). Indeed, our element τ will

be defined as

τ(w) :=

{
G(w)c, w ∈ A,
0, otherwise,

with c some fixed sequence in `2(Φ).

Here are the details: since µ ∈ Σ(G(w′)), G(w′) − µI has no bounded inverse, and so we can

find an element c ∈ `2(Φ), such that ‖c‖`2(Φ) = 1/µ, and

(3.4.7) ‖G(w′)c− µc‖`2(Φ) ≤ ε,

with ε > 0 arbitrarily small. It follows then that

(3.4.8) ‖G(w′)c‖`2(Φ) ≤ 1 + ε.

Since G(w′) is bounded and D is dense in `2(Φ), we may assume that span c ∩D 6= ∅. Therefore,

by Lemma 3.4.5, there exists a subset A of Ω with positive measure, such that

‖(G(w) −G(w′))c‖`2(Φ) ≤ ε/µ, ∀w ∈ A.

We define τ ∈ LΦ
2 by

τ(w) :=

{
G(w)c, w ∈ A,
0, otherwise.

Thus, condition (i) (i.e., that τ(w) ∈ Cw, all w) is satisfied. Also, the uniform boundedness of the

operators {G(w)}w∈TTd easily implies that τ ∈ LΦ
2 . Thus, to complete the proof, it remains to show

that, for almost all w ∈ TTd,

‖G(w)τ(w)‖`2(Φ) ≤ (1 + δ)µ‖τ(w)‖`2(Φ).
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This last claim is trivial for w ∈ TTd\A, so we may assume that w ∈ A. We first choose w = w′.

For that specific choice, we get

(3.4.9) ‖G(w′)τ(w′)‖`2(Φ) = ‖G(w′)G(w′)c‖`2(Φ) ≤ ‖µG(w′)c‖`2(Φ) + ‖G(w′)(G(w′)c− µc)‖`2(Φ).

Denoting

C := ‖Λ‖L∞(TTd) <∞,

we obtain from (3.4.9), (3.4.8), and (3.4.7) that

‖G(w′)τ(w′)‖`2(Φ) ≤ µ(1 + ε) + Cε.

On the other hand, by (3.4.7),

(3.4.10) 1 − ‖τ(w′)‖`2(Φ) = µ‖c‖`2(Φ) − ‖G(w′)c‖`2(Φ) ≤ ε.

Altogether, we obtained for that case the inequality

‖G(w′)τ(w′)‖`2(Φ) ≤
µ(1 + ε) + Cε

1 − ε
‖τ(w′)‖`2(Φ).

By choosing ε sufficiently small (and adjusting A if necessary to that ε), we obtain that

(3.4.11) ‖G(w′)τ(w′)‖`2(Φ) ≤ (1 + δ)µ‖τ(w′)‖`2(Φ).

To extend that to a general w ∈ A, we show that both τ(w) − τ(w′), and G(w′)τ(w′) −G(w)τ(w)

can be made arbitrarily small (in norm), and then invoke (3.4.11). First, since span c ∩D 6= ∅,

(3.4.12) ‖τ(w) − τ(w′)‖`2(Φ) = ‖(G(w) −G(w′))c‖`2(Φ) ≤ ε/µ.

Therefore, ‖τ(w)‖`2(Φ) ≥ ‖τ(w′)‖`2(Φ) − ε/µ ≥ 1− ε− ε/µ, the second inequality by (3.4.10). This

verifies that τ(w)−τ(w′) is, indeed, small, and also means that, on A, τ(w) is being kept away from

zero, a consequence that will be required shortly. Second, to estimate G(w)τ(w)−G(w′)τ(w′), we

write

(3.4.13) G(w)2 −G(w′)2 = G(w)(G(w) −G(w′)) + (G(w) −G(w′))G(w′).

Now, since ‖(G(w) −G(w′))c‖`2(Φ) ≤ ε/µ, we have that

‖G(w)(G(w) −G(w′))c‖`2(Φ) ≤ Cε/µ.

Also, due to (3.4.7) and the fact that ‖(G(w) −G(w′))c‖`2(Φ) ≤ ε/µ,

‖(G(w)−G(w′))G(w′)c‖`2(Φ) ≤ ‖µ(G(w)−G(w′))c‖`2(Φ)+‖(G(w)−G(w′))(µc−G(w′)c)‖`2(Φ) ≤ ε+2Cε.

So, we conclude from (3.4.13) that

‖G(w)τ(w) −G(w′)τ(w′)‖`2(Φ) = ‖G(w)2c−G(w′)2c‖`2(Φ) ≤ (C/µ+ 2C + 1)ε.
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Therefore, by (3.4.11) and (3.4.12),

‖G(w)τ(w)‖`2(Φ) ≤‖G(w′)τ(w′)‖`2(Φ) + (C/µ+ 2C + 1)ε

≤(1 + δ)µ‖τ(w′)‖`2(Φ) + (C/µ+ 2C + 1)ε

≤(1 + δ)µ(‖τ(w)‖`2(Φ) + ε/µ) + (C/µ+ 2C + 1)ε

=(1 + δ)µ‖τ(w)‖`2(Φ) + (C/µ+ 2C + 2 + δ)ε.

Since we have already proved that ‖τ(w)‖`2(Φ) is kept away from zero, we can modify ε (hence A)

to guarantee that, say,

‖G(w)τ(w)‖`2(Φ) ≤ (1 + 2δ)µ‖τ(w)‖`2(Φ),

and the desired result then follows.

Finally we prove Lemma 3.4.5. For that we first recall the definition of measurable maps:

Definition 3.4.14. Let M be a measure space, and B a topological space. A map f : M → B is

measurable provided that f−1(Ω) is a measurable set in M for every open set Ω in B.

Clearly, if f : M → B is measurable, then f−1(U) is measurable for every Borel set U ⊂ B.

Proposition 3.4.15. Let M be a positive measure space and B be a separable normed space.

If the map f : M → B is measurable, then, there exists a null-set Z ⊂ M, such that, for every

w′ ∈ M\Z and for arbitrary ε > 0, there is a positive-measure set A := Aw′,ε ⊂ M, such that for

arbitrary w ∈ A,

‖f(w) − f(w′)‖B < ε.

Proof: All norms in the proof below are B-norms.

Let X be a countable dense subset of B, and let “ < ” be some well-ordering of X. Given

n ∈ IN, let

Ox,n := {u ∈ B : ‖u− x‖ < 1/n}.

Then (Ox,n)x∈X is an open covering of B, and, defining

Ux,n := Ox,n\(∪y<xOy,n), x ∈ X,

we obtain a partition of B into Borel sets. That partition induces a partition

(Ax.n := f−1(Ux,n))x∈X

of M into measurable sets. We then define a map sn : M → B (as a matter of fact, ran sn ⊂ X) as

follows:

sn(w) =
∑

x∈X

xχ
Ax,n

(w).

Then, sn converges to f uniformly. Indeed, we have that ‖f(w) − sn(w)‖ < 1/n for all n ∈ IN,

w ∈ M.

Let Z be a null-set that contains all those Ax,n (x ∈ X, n ∈ IN) whose measure is zero. Let

w′ ∈ M\Z. For arbitrary ε, pick n with 2/n < ε. Since w′ 6∈ Z, w′ is in some positive-measure

Ax,n. For w ∈ Ax,n,

‖f(w′) − f(w)‖ ≤ ‖f(w′) − sn(w
′)‖ + ‖sn(w

′) − sn(w)‖ + ‖sn(w) − f(w)‖ < ε.
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Proof of Lemma 3.4.5. Let D be a dense countable subset of `2(Φ). Given c ∈ D, let Bc be the

space of all (bounded) linear operators from span{c} into `2(Φ).

Since we know that G(w), w ∈ Ω, is a bounded linear endomorphism of `2(Φ), then, certainly,

G(w)| span{c} is bounded for every w ∈ Ω. This defines a.e. the map

f : Ω → Bc : w 7→ G(w)| span{c}.

We need to prove that this map is measurable.

Given L ∈ Bc and w ∈ Ω, one observes that

‖G(w) − L‖Bc
=

‖G(w)c− Lc‖`2(Φ)

‖c‖`2(Φ)
.

Further, since G is bounded, Gc ∈ LΦ
2 , and in particular, its entries are measurable functions (for

the sake of applying G to c, c should be interpreted as the element τ ∈ LΦ
2 with constant entries

τφ = cφ). Also, since ‖G(w)c−Lc‖`2(Φ) is finite, the series that defines ‖G(w)c−Lc‖`2(Φ) converges

(unconditionally). Combining that with the previous observation, viz., that the entries of Gc− Lc

are measurable, we conclude that the map w 7→ ‖G(w)c− Lc‖`2(Φ) is measurable, hence so is our

f .

An application of Proposition 3.4.15 with respect to the map f , yields the existence of a null-set

Zc ⊂ Ω, such that for every ε > 0 and every w′ ∈ Ω\Zc, the set

{w : ‖G(w) −G(w′)‖Bc
} < ε

has a positive measure. Defining Z := ∪c∈DZc, we obtain that (a): Z is a null-set, (b) the claim of

the lemma holds for this Z.

4. Dual frames

Let Φ be a countable (or finite) subset of L2(IR
d), and assume that EΦ is a frame. Let

R : Φ → L2(IR
d) be some map, and assume that ERΦ is a Bessel set. Let JΦ and JRΦ be the

pre-Gramian of Φ and RΦ respectively. Our objective in this brief section is to study the property

“ERΦ is the dual frame of EΦ” via the fiber matrices JΦ(w) and JRΦ(w).

Our initial tool is Corollary 1.3.9. Part (b) of that Corollary says that, if ERΦ is the dual of

EΦ, then TΦT
∗
RΦ is an orthogonal projector. On the Fourier domain, this operator is represented

by JΦJ
∗
RΦ whose matrix representation is

JΦJ
∗
RΦ = (

∑

φ∈Φ

φ̂(· + α)R̂φ(· + α′))α,α′∈2πZZd .

The sum above that defines the entries of JΦJ
∗
RΦ can be shown to converge absolutely for every

α, α′ ∈ 2πZZd, and for almost every w ∈ TTd (Schwartz’ inequality followed by an application of

Proposition 3.3.1). Corollary 1.3.9 also implies that the operator T ∗
ΦTRΦ is an orthogonal projector.

Here, the Fourier transform analogue is J∗
ΦJRΦ, whose matrix representation is

J∗
ΦJRΦ = ([R̂φ′, φ̂])φ,φ′∈Φ.

The entries of this latter matrix are certainly well-defined (a.e.).

39



Lemma 4.1. With Φ and RΦ as above,

(a) TΦT
∗
RΦ is an orthogonal projector if and only if, for almost every w ∈ TTd, JΦ(w)J∗

RΦ(w) is an

orthogonal projector (on `2(2πZZd)).

(b) T ∗
ΦTRΦ is an orthogonal projector if and only if, for almost every w ∈ TTd, J∗

Φ(w)JRΦ(w) is an

orthogonal projector (on `2(Φ) = `2(RΦ)).

Proof: The arguments for proving (a) and (b) are essentially the same, hence we prove

only (b).

Since the Fourier transformation is an isometry, we may replace in the proof the operator

T ∗
ΦTRΦ by its Fourier transform analogue J∗

ΦJRΦ. Also, for the sake of notational simplicity, we set

G := J∗
ΦJRΦ, though, of course, this G is the Gramian of neither Φ nor RΦ.

First, one checks that G is non-negative self-adjoint if and only if almost every G(w) is so.

Assume that G(w) is an orthogonal projector for a.e.w. In particular, each G(w) is self-adjoint,

hence, by the above, G is self-adjoint, too. To show that G is an orthogonal projector, we need

to prove that Gτ = τ for every τ ∈ (kerG)⊥. Let, therefore, τ ∈ (kerG)⊥. By a proof identical

to that of Lemma 3.4.2, for a.e. w ∈ TTd, τ(w) ∈ (kerG(w))⊥. Since G(w) is assumed to be an

orthogonal projector (a.e.), we conclude that G(w)τ(w) = τ(w) (a.e.), implying that Gτ = τ . This

proves that G is an orthogonal projector, as needed.

Now assume that G is an orthogonal projector. We want to invoke here Theorem 3.4.4, hence

need to verify its assumptions. The basic relation (Gτ)(w) = G(w)τ(w) is straightforward. The fact

that each G(w) is non-negative self-adjoint follows from the fact that G is assumed to be so. Finally,

analogously to the derivation of (a) in Theorem 3.2.3, one proves the relation ‖G‖ = ‖Λ‖L∞(TTd),

with Λ(w) := ‖G(w)‖. Since ‖G‖ = 1 here, we conclude that, for a.e. w ∈ TTd, Σ(G(w)) ⊂ [0, 1].

Now, we invoke Theorem 3.4.4. Since G is partially invertible (being an orthogonal projector),

and ‖G|
−1‖ = 1, that theorem tells us that λ+(w) ≥ 1, for almost all w that satisfy G(w) 6= 0.

This implies that, a.e., Σ(G(w)) ⊂ {0} ∪ [1,∞). Combining that with the result of the previous

paragraph, we conclude that, a.e., Σ(G(w)) ⊂ {0, 1}. Each such G(w) is also known to be self-

adjoint, hence must be an orthogonal projector.

In case EΦ is fundamental in L2(IR
d), JΦJ

∗
RΦ is the identity operator, and this immediately

implies that almost every operator JΦ(w)J∗
RΦ(w) is the identity. Thus, we get the following:

Corollary 4.2. Let EΦ be a frame and let ERΦ be its dual. Then:

(a) For every α, α′ ∈ 2πZZd, and for almost every w ∈ TTd,

∑

φ∈Φ

φ̂(w + α)R̂φ(w + α′) =
∑

φ∈Φ

R̂φ(w + α)φ̂(w + α′).

(b) If EΦ is fundamental in L2(IR
d), then, for every α, α′ ∈ 2πZZd and for almost every w ∈ TTd,

∑

φ∈Φ

φ̂(w + α)R̂φ(w + α′) = δα,α′ .

Proof: The first claim follows from the self-adjointness of the JΦ(w)J∗
RΦ(w)-matrices. The

second claim follows from Lemma 4.1 and also directly from the remarks preceding the present

corollary.
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Corollary 1.3.9 provides us also with a sufficient condition for ERΦ to be the dual frame of

the frame EΦ. In the shift-invariant case, that corollary, combined with Lemma 4.1, leads to the

following conclusion:

Corollary 4.3. Let H be a closed subspace of L2(IR
d), and let EΦ be a frame for H. Let ERΦ be

a Bessel set which is fundamental in H. Then ERΦ is the dual of EΦ if and only if for almost every

w ∈ TTd each of the operators J∗
RΦ(w)JΦ(w), J∗

Φ(w)JRΦ(w), JRΦ(w)J∗
Φ(w), and JΦ(w)J∗

RΦ(w) is

an orthogonal projector.

We have stated Corollary 4.3 primarily for proving our following final result. That result,

though might look very special, will play a crucial role in the development of the duality principle

of Weyl-Heisenberg frames in [RS1].

Corollary 4.4. Let EΦ be a frame for H ⊂ L2(IR
d), with a dual ERΦ. Let EΨ be a frame for

H ′ ⊂ L2(IR
d), and let R′ : Ψ → L2(IR

d). Assume that, for almost every w ∈ TTd,

(4.5) JΦ(w) = J∗
Ψ(w), JRΦ(w) = J∗

R′Ψ(w).

(That is, for some indexing Φ = (φα)α∈2πZZd , and Ψ = (ψα)α∈2πZZd , φ̂α(w + β) = ψ̂β(w + α), etc.)

Then ER′Ψ is the dual frame of EΨ.

Proof: Since ERΦ is a frame, the equality JRΦ(w) = J∗
R′Ψ(w) easily implies (by Theorems

3.2.3, 3.3.5, and 3.4.1) that ER′Ψ is a frame, as well.

Since ERΦ is the dual frame of EΦ, then, by Corollary 4.3, for almost every w ∈ TTd each of the

operators J∗
RΦ(w)JΦ(w), J∗

Φ(w)JRΦ(w), JRΦ(w)J∗
Φ(w), and JΦ(w)J∗

RΦ(w) is an orthogonal projec-

tor. By virtue of (4.5), we get that for almost every w ∈ TTd each of the operators J∗
R′Ψ(w)JΨ(w),

J∗
Ψ(w)JR′Ψ(w), JR′Ψ(w)J∗

Ψ(w), and JΨ(w)J∗
R′Ψ(w) is an orthogonal projector. Therefore, Corollary

4.3 would imply that ER′Ψ is a frame dual to EΨ as soon as we show that ER′Ψ is a fundamental

set of H ′.

LetH ′′ be the closure of the algebraic span of ER′Ψ. IfH ′′ 6= H ′, then, since EΨ is fundamental

in H ′, there exists, say, some f ∈ L2(IR
d) such that T ∗

Ψf = 0, but T ∗
R′Ψf 6= 0. (Otherwise, there

exists f such that T ∗
Ψf 6= 0, but T ∗

R′Ψf = 0, and the argument below can be adapted to this case,

as well). By Lemma 1.4.8, this implies that, while

J∗
Ψ(w)f̂|w = 0, a.e. w,

J∗
R′Ψ(w)f̂|w 6= 0, on a set of positive measure.

On the other hand, since ERΦ is the dual frame of EΦ, Proposition 1.3.7 implies that ker TΦ =

ker TRΦ, and hence that, for a.e. w, ker J∗
Ψ(w) = kerJΦ(w) = kerJRΦ(w) = kerJ∗

R′Ψ(w), and we

have reached a contradiction.
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