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Abstract. Shift-invariance \�berization techniques" are applied for
the study of the synthesis and analysis operators of a�ne (wavelet)
systems. In this approach, one has �rst to circumvent the fact that
a�ne systems are not shift-invariant. The results obtained include
characterizations of the Bessel property, the Riesz basis property and
the frame property of such sets in terms of the behaviour of simpler
operators. Various estimates of the lower and upper frame (Riesz)
bounds are included, too. Complete details will appear in [7].
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x1 The synthesis and analysis operators

The setup is as follows: given a countable subset X � L2 := L2(lR
d), we

would like to consider X as a \basis" for either the entire L2-space, or, in
case X is not fundamental in L2, for the closed subspace H � L2 \spanned"
by X. The goal is to use X for either decomposing functions in H or for
reconstructing such functions. The reconstruction is done with the aid of
the synthesis operator

TX : `2(X)! L2(lR
d) : c 7!

X
x2X

c(x)x: (1)

The underlying assumption here is that TX is bounded, i.e., that it is
bounded on the �nitely supported elements of `2(X) and is extended to
the entire domain by continuity. In that event, X is said to be a Bessel

system. Otherwise, TX is only densely de�ned (say, on the �nitely sup-
ported sequences). The adjoint of T �X of TX is the analysis operator

T �X : L2 ! `2(X) : f 7! (hf; xi)x2X;

that can be used in the decomposition process.
The possible properties of X which are of interest to us here are listed

in the following de�nition.

Approximation Theory VIII 1
Charles K. Chui and Larry L. Schumaker (eds.), pp. 1{7.

Copyright oc 1995 by World Scienti�c Publishing Co., Inc.

All rights of reproduction in any form reserved.

ISBN 0-12-xxxxxx-x



2 Amos Ron and Zuowei Shen

De�nition 2. Let X be a Bessel system. We say that X is
(a) a basis if TX is 1-1.
(b) a frame if ranTX is closed.
(c) a Riesz basis if it is a basis and a frame.
(d) fundamental if the �nite span of X is dense in L2.

Whenever X is a frame, the restriction of T := TX to the orthogonal
complement (in `2(X)) of kerT is bounded below, hence invertible. This
partial-inverse of T is denoted here by T�1. The frame bounds are then
de�ned as the numbers kTk2 (upper frame bound) and kT�1k�2 (lower
frame bound), and are referred to as the Riesz bounds, if X is a basis.
Quite clearly, the frame bounds can be equivalently de�ned with the aid of
the analysis operator (simply replace T by T �). However one should note
that it is usually easier to handle inverses than partial-inverses, and it is
thus desired to study the operator that is known to be 1-1; consequently,
the study of a basis X is best done with the aid of T , and the study of a
fundamental X is best done with T �. Pseudo-inverses cannot be avoided
if X is neither a basis nor fundamental, e.g., a non-fundamental frame.

x2 Shift-invariant systems

In [4-6,8], we analyse the analysis and synthesis operators under the as-
sumption that X is shift-invariant, i.e., of the form

X = E(�) := fE�� : � 2 �; � 2 ZZdg; (3)

with � a small (but not necessarily �nite) set of \generators", and with
E� the shift operator

E� : f 7! f(� � �):

That shift-invariance assumption allowed us to decompose the Fourier
transform analogues bT and bT � of these operators into a collection of
constant-coe�cient matrices, which we call pre-Gramians, and to relate
basic properties of the �bers to corresponding properties of bT and bT �,
thereby to properties of the original operators T and T �. A typical �ber
J(!), ! 2 lRd, is a matrix whose columns are indexed by �, its rows indexed
by 2�ZZd, and its (�; �)-entry being

J(!)(�; �) = b�(! + �):

Each �ber J(!) is considered as a (possibly only densely de�ned) operator
from `2(�) to `2(2�ZZ

d). In the same manner, one may view the matrix
adjoint J�(!) of J(!) as an operator from `2(2�ZZ

d) to `2(�). In agreement
with previous de�nitions, we say that J(!) is partially invertible whenever
it is bounded and has a closed range. We further denote then the partial
inverse by J(!)�1. Similar de�nitions and notations apply to J�(!). The
following theorem summarizes some of the key observations in [4,8]:
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Theorem 4. Let

J : lRd ! lR+ : ! 7! kJ(!)k ;
J � : lRd ! lR+ : ! 7! kJ�(!)k ;
J� : lRd ! lR+ : ! 7! kJ(!)�1k ;
J �� : lRd ! lR+ : ! 7! kJ�(!)�1k :

Then, the following is true.
(a) X is a Bessel system i� J 2 L1 i� J � 2 L1. Furthermore, kTk =

kT �k = kJ kL1 = kJ �kL1 .
(b) Assume X is a Bessel system. Then X is a frame i� J� 2 L1 i�

J �� 2 L1. Furthermore, kT�1k = kT ��1k = kJ�kL1 = kJ ��kL1 .
(c) Assume X is a Bessel system. Then X is a basis if and only if J(!)

is 1-1 for a.e. !, and X is fundamental if and only if J�(!) is 1-1 for
a.e. !.

x3 A�ne systems

The notion of an a�ne system corresponds to the case when the \basis"
set X is obtained by shifting and dilating each of the functions in a �nite
	 � L2. Here dilation is meant as any integer power of the unitary operator

D : L2 ! L2 : f 7! j detAj�1=2f(A��1�); (5)

with A a d � d invertible matrix whose 2-norm is < 1, and whose inverse
is an integer matrix. Precisely, the set X is de�ned as

X = fDkE� :  2 	; � 2 ZZd; k 2 ZZg: (6)

One notes that this set X is not shift-invariant: for a negative integer k,
the shifts of Dk that belong to X are taken from the proper sublattice
A�kZZd of ZZd. This means that our analysis of shift-invariant systems from
[4,8] cannot be applied directly to the present situation.

We circumvent this di�culty with the aid of the truncated a�ne sys-

tems Xk, k 2 ZZ, de�ned as follows:

Xk = fDk0E� :  2 	; � 2 ZZd; k0 � �kg: (7)

In what follows, we use the notation T , T � for the operators associated with
the full a�ne system X (viz., TX and T �X) and Tk , T

�
k for the operators

associated with the truncated system Xk.
We start the analysis by observing that Tk and Tk0 are unitarily equiv-

alent (regardless of the values of k; k0), and thus T0 is unitarily equivalent
to each Tk. Since certain properties of the operator T (such as boundedness
and invertibility) are fully captured by analysing the limiting properties of
(Tk)k as k !1, we easily obtain the following:
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Proposition 8. Let X be an a�ne system, and let X0 be its truncated
version. Then:
(a) X is a Bessel system i� X0 is a Bessel system. Moreover, kTk = kT0k:
(b) X is Riesz basis i� X0 is a Riesz basis. Moreover, whenever X and X0

are Riesz bases, we have kT�1k = kT�10 k.
(c) X is a frame if (but not only if!) X0 is a frame. Moreover, kT�1k �

kT�10 k.

Since the truncated systemX0 is shift-invariant, the proposition allows
us to study some of the properties of X by applying our shift-invariance
methods to the system X0. However, as the last statement of the proposi-
tion indicates, not all properties of X can be completely recovered by this
approach. For example, X may fail to be a basis while X0 can still be
so. This further di�culty can also be circumvented; but, before we discuss
these further details, we list two consequences of Proposition 8.

Corollary 9. Let X0 be a truncated a�ne system. Then:
(a) X0 can never be a fundamental Riesz basis.
(b) X0 is a tight frame (fundamental or not) if and only if the system

X1nX0 is a tight frame which is orthogonal to X0.

We recall that a tight frame is a frame whose frame bounds coincide.
In (b), the \only if" assertion is the interesting one. The proof of (a) is
actually trivial: if X0 is a fundamental Riesz basis, its superset X cannot
be a basis, in particular, cannot be a Riesz basis. By Proposition 8, X0 is
not a Riesz basis, either.

It seems instructive to present some heuristics before we proceed with
the general discussion. A typical Fourier transform b of  in the generating
set 	 of the a�ne system X has a high order zero at both the origin and1.
The dilations of 	 that can be found in X0 have their Fourier transform
attracted towards 1. This entails that such system may be useful for
decomposing functions whose Fourier transform vanishes on a su�ciently
large neighborhood of the origin.

Theorem 10. Let H
 be the space of all L2-functions whose Fourier trans-
form vanishes on 
. Given any operator S : L2, let S
 be the restriction of
that operator to H
. Consider, for a Bessel system X, the following two
conditions:
(a) T �0;
 is bounded below, for some large neighborhood 
 of the origin.
(b) X is a fundamental frame.
Then (a)=) (b), and kT ��1k � kT �0;


�1k. If, further, for some � > d=2,
and every  2 	,

j b j = O(j � j��); as �!1; (11)

then (b)=)(a) as well.
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It is worth mentioning that the implication (b)=) (a) in the above
theorem holds under conditions that are weaker than the ones assumed
there. Slightly weaker decay assumptions on each b always su�ce, and,
signi�cantly weaker assumptions may do as well, if we know that the func-
tions in 	 decay in some \nice" way. For further details see [7].

x4 Gramian analysis

The results of the last section allow us to apply our shift-invariant methods
for the analysis of Bessel systems, Riesz bases, and fundamental frames (but
not with respect to non-fundamental frames). The relevant functions are
the functions J , J �, J�, and J ��, calculated with respect to the shift-

invariant set X0. Further, the norms of J
� and J �� should be calculated

on an arbitrarily small neighborhood of1. These calculations can be done
with the aid of the two non-negative matrices G := J�J ; eG := JJ�; with
J the pre-Gramian of X0. We refer to G as the Gramian matrix, to eG
as the dual Gramian matrix, and to entire analysis as Gramian analysis.
Though we do not provide computational details, we do mention that the
set � whose shifts E(�) generate X0 can be chosen as � := fE
Dk :  2
	; k � 0; 
 2 �kg; with �k the quotient group (A�kZZd)=ZZd:

Three di�erent types of results can be derived with aid of the pre-
sented approach. First, and foremost, by computing accurately the entries
of G and eG we can get complete characterizations of the Bessel, Riesz and
fundamental frame properties of the a�ne X. Second, standard techniques
can be applied for estimating from above the `2-norm of the �bers G(!)

and eG(!) and this leads to su�cient conditions for X to be Bessel, as well
as to upper bounds on kTk. Finally, by using straightforward diagonal

dominance estimates with respect to G(!) (respectively, eG(!)) we obtain
su�cient conditions for X to be a Riesz basis (fundamental frame, respec-
tively), together with upper bound estimates on kT�1k. These estimates
are intimately related to Daubechies' estimates in [2,3].

From the discussion concerning the pre-Gramian J and from our de-
scription of the present shift-invariant generators �, one can deduce that
the dual Gramian matrix eG(!) is indexed by 2�ZZd � 2�ZZd, and having
entries of the form

eG(!)(�; �) = X
 2	

k(�;�)X
k=0

b (Ak(! + �)) b (Ak(! + �));

with k(�; �) the maximal integer that satis�es ��� 2 A�kZZd: The results
of [4] allow us to restrict attention to ! 2 C := [�� : : �]d, and Theorem

10 allows us to remove from eG any �nite set of rows, together with their
corresponding columns. We thus remove from eG all rows and columns
whose index � lies in some ball of radius r centered at the origin.
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Theorem 12. Let X be an a�ne system. For r � 0, let eG(r; !) be the
constant coe�cient matrix indexed by Z�Z with Z := f� 2 2�ZZd : j�j �
rg, and whose (�; �)-entry is

X
 2	

k(�;�)X
k=0

b (Ak(! + �)) b (Ak(! + �)):

Consider eG(r; !) as a map from `2(Z) to itself, with norm G�(!) and norm
of inverse G��(!).

(a) X is a Bessel system i� eG(0; !) is bounded for a.e. !, and the then-
well-de�ned G� is in L1. Furthermore, kTk2 = kG�kL1 .

(b) If, for some r � 0, the matrix eG(r; !) is boundedly invertible for a.e.
! 2 C := [�� : : �]d, and if G�� is essentially bounded on C, then X
is a fundamental frame and kT�1k2 � kG��kL1(C).

(c) If each  2 	 satis�es condition (11), then the essential boundedness
of G�� for some r is necessary for X to be a fundamental frame.

The role of the essential in�mum and essential supremum of the ex-
pression

P
 2	; k2ZZ j

b (Ak�)j2 as crude estimators for the frame bounds
(cf. [1,2,3]) is easily revealed now from the fact that the diagonal entry
eG(r; !)(�; �) is the sumP 2	

P
k�0 j

b (Ak(�+�))j2, and the fact that j�j
can be chosen arbitrarily large. The above theorem also leads to \oversam-
pling" results that re�ne corresponding ones presented in [2,3].

Finer estimates for the frame bounds are derived from Theorem 12
as follows. For estimating the upper frame bound from below one can
use the `2-norm of any row of any eG(0; !). The upper frame bound can
be estimated from above by �nding the supremum of the `1-norms of the
rows of all �ber matrices eG(0; !), ! 2 C. The lower frame bound can be

estimated from below in case the �bers eG(r; !) are diagonally dominant for
su�ciently large r. We collect some of these resulted estimates below.

Corollary 13. Let X be an a�ne system.
(a) If the function F :=

P
 2	; �22�ZZd; k�0 j

b (Ak�) b (Ak �+�)j is essentially
bounded, then X is a Bessel system whose upper frame bound is no
larger than kFkL1.

(b) If X is Bessel, and if, with F1 := 2
P
 2	; k�0 j

b (Ak�)j2 � F , inf F1
is essentially positive on some neighborhood V of 1, then X is a
fundamental frame with lower frame bound no smaller than ess inf F1.

(c) If each b is non-negative a.e., and X is a Bessel system, then the
function

F2 := (
X

 2	; k2ZZ

j b (Ak�)j2)2 + X
 2	; �22�ZZdn0; k2ZZ

j b (Ak�) b (Ak �+�)j2
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is essentially bounded. Furthermore, kTk2 � kF2k
1=2
L1

; thus, if X is a
frame, kF2kL1 bounds the upper frame bound from below.

The results concerning the Gramian matrix G are analogous, with the
following notable di�erences. First, the parameter ! need not be restricted
to any neighborhood of 1, and no a-priori assumption on 	 should be
made. Second, the approach applies to the study of the Riesz basis prop-
erty, not to frames. Third (and most obviously), the entries of the Gramian
are quite di�erent from these of the dual Gramian. In fact, we applied some
unitary transformations in order to arrive at the entries listed below. As
before, we state two results: one is a characterization of the Riesz basis
property and the other contains estimates on the Riesz bounds.

Theorem 14. Let X be an a�ne system generated by 	. For each k � 0,
let e�k be the quotient group 2�(ZZd=(A�kZZd)). For each ! 2 lRd, let G(!)
be a Hermitian matrix whose rows and columns are indexed by ( ; k; 
) 2

	� ZZ+ � e�k, and whose (( ; k; 
); ( 0; k0; 
0))-entry is, say, for k0 � k,

�
;
0
X

�22�ZZd

b (!k + �) b 0(Ak0�k(!k + �));

with !k := Ak(! + 
), and with �
;
0 = 0 whenever the cosets represented
by 
, 
0 have an empty intersection. Then:
(a) X is a Bessel system i� the map G(!) is bounded a.e., and the function

G : ! ! kG(!)k is essentially bounded. Moreover, kTk2 = kGkL1 .
(b) Assume that X is Bessel. Then X is a Riesz basis if and only if G(!)

is boundedly invertible for a.e. !, and the map G� : ! 7! kG(!)�1k is
essentially bounded. Moreover, kT�1k2 = kG�kL1 :

Corollary 15. Let X be an a�ne system generated by 	.
(a) Given  2 	, de�ne

R :=
X

 02	; �22�ZZd; k2ZZ

j b (�+ �) b 0(Ak(�+ �))j:

Then X is a Bessel system if R 2 L1, for every  2 	. Moreover,
the upper Riesz bound cannot exceed max 2	 kR kL1 .

(b) Assume that X is a Bessel system, and de�ne

R ;1 = 2
X

�22�ZZd

j b (�+ �)j2 �R :

If the essential in�mum of each R ;1 is positive, then X is a Riesz basis,
and the lower Riesz bound is no smaller than the minimum among the
aforementioned in�ma.
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It follows, in particular, that X is a Bessel system if the functions
RE := max 2	

P
�22�ZZd j

b (� + �)j, and RD :=
P
 2	;k2ZZ j

b (Ak�)j are in
L1; more precisely, Theorem 15 implies the crude (yet simple) estimate
kTk2 � kREkL1kRDkL1 . That latter estimate improves Theorem 2 of [1].
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