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1. Introduction. As was first pointed out by Hobby and Rice [5], many nonlinear approximation
problems – such as approximation by exponential sums or by splines with variable knots – admit of the
following abstract description: One has given a real normed linear space X and a map

γ : T → X

from some subset T of the real line IR to X. One then defines a γ–polynomial of order n to be any
element of X of the form

p = p(α, τ) =
n∑

i=1

αiγ(τi),

where α = (α1, . . . , αn) is a real vector and τ = (τ1, . . . , τn) ⊂ Tn with τ1 < τ2 < · · · < τn. Let

IPγ,n

denote the set of all γ–polynomials of order n. Then the approximation problem consists in finding, for given
f ∈ X, a p∗ ∈ IPγ,n such that

‖f − p∗‖ = dist (f, IPγ,n) = inf
p∈IPγ,n

‖f − p‖.

As usual, p∗ is called a best approximation (b.a.) to f in (or, by elements of) IPγ,n.
To give some examples, let X = Lp[0, 1] and set γ(t) = G(·, t), where G(s, t) is defined on [0, 1] × T .

With G Green’s function for a k–th order ordinary linear initial value problem on (0, 1] and T = [0, 1),
one has approximation by generalized splines. With G(s, t) = est and T = IR, one has approximation by
exponential sums. With G(s, t) = (1 + st)−1 and T = (−1,∞), one has an approximation problem which
shares many features with approximation by rational functions. The last two examples lend themselves easily
to an extension of T to the complex plane, and reveal their essential properties only after such an extension
has been made [5]. Other examples may be found in [7].

A seemingly different example occurs in Numerical Analysis. Here X is the topological dual Y ∗ of
a normed linear space Y of functions defined on T , and, for t ∈ T , γ(t) is the linear functional of point
evaluation at t, i.e.,

for all y ∈ Y, γ(t)y = y(t).

Best approximation by γ–polynomials of order n to f ∈ X amounts to the construction of a best approximate
rule of the form

∑n
i=1 aiy(ti) for the evaluation of the linear functional f at y.

But it is not difficult to see that many approximation problems by γ–polynomials of fixed order can be
considered to be special cases of the last example. For, with X, γ and T given, let Y be the linear space of
functions on T whose general element y is given by

y(t) = yλ = λγ(t), all t ∈ T,

for some λ ∈ X∗. If the linear span of {γ(t) | t ∈ T} is dense in X, then the map

ϕ : X∗ → Y : λ 7→ yλ

is one–one, hence Y is normed by
‖yλ‖ := ‖λ‖, all yλ ∈ Y,

and X is mapped linearly and isometrically into Y ∗ by (ϕ∗)−1. In particular, γ(t) is mapped by (ϕ∗)−1 to
the linear functional of point evaluation at t, all t ∈ T .
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Hobby and Rice [5] studied the problems of existence, uniqueness, and characterization of best approx-
imations by γ-polynomials when X is an Lp–space on [0, 1], for some p with 1 ≤ p ≤ ∞. It is one purpose
of this paper to give, in a more abstract setting, simpler proofs for some of their results.

2. Existence of best approximations. In most of the examples mentioned in the introduction, IPγ,n

fails to be an existence set of for n > 1, since it fails to be closed. The reason for this is quite clear. If t1 6= t2
are points in T , then IPγ,n contains the first divided difference

γ(t1, t2) = (t2 − t1)−1(γ(t2) − γ(t1))

of γ at the points t1, t2. Hence, if γ is strongly differentiable at t1, then γ(1)(t1) = limt2→t1 γ(t1, t2) is in the
closure of IPγ,n, but usually fails to be in IPγ,n.

To get an existence set, one must at least adjoin to IPγ,n all strong limits of the form

lim
t0,...,tk→t

γ(t0, . . . , tk),

where γ(t0, . . . , tk) denotes the k–th divided difference of γ at t0, . . . , tk.
We denote by C

(k)
X (T ) the linear space of all functions on T to X which are k times continuously strongly

differentiable on T . If g ∈ CX [a, b], where [a, b] is a finite interval, then

ω[a,b](g, h) = sup{‖g(s) − g(t)‖ | s, t ∈ [a, b], |s − t| ≤ h}

denotes the modulus of continuity of g on [a, b].
(1) Lemma. Let k > 0, [a, b] a finite interval, and g ∈ C

(k)
X [a, b]. If

a ≤ t0 < t1 < · · · < tk ≤ b

and t̂ ∈ [t0, tk], then
‖k! g(t0, . . . , tk) − g(k)(t̂)‖ ≤ ω[a,b](g(k), tk − t0).

Hence
lim

t0,...,tk→t̂

g(t0, . . . , tk) = g(k)(t̂)/k!.

Proof. By Taylor’s theorem with integral remainder (cf., e.g., Graves [3]), one has

g(t) =
k−1∑
i=0

[(t − a)i/i! ]g(i)(a) +
∫ b

a

Mk(t; s)g(k)(s) ds,

where
Mk(t; s) ≡ (t − s)k−1

+ /(k − 1)!.

Hence

g(t0, . . . , tk) =
∫ b

a

Mk(t0, . . . , tk; s)g(k)(s) ds.

Since
Mk(t0, . . . , tk; s) ≥ 0 with equality iff s /∈ (t0, tk),

and ∫ b

a

Mk(t0, . . . , tk; s) ds =
∫ tk

t0

Mk(t0, . . . , tk; s) ds = 1/k!,
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(cf., e.g., [1]), one has

‖k! g(t0, . . . , tk) − g(k)(t̂)‖ = ‖
∫ tk

t0

k! Mk(t0, . . . , tk; s)[g(k)(s) − g(k)(t̂)] ds‖

≤
∫ tk

t0

k! Mk(t0, . . . , tk; s)‖g(k)(s) − g(k)(t̂)‖ ds

≤ max
t0≤s≤tk

‖g(k)(s) − g(k)(t̂)‖k!
∫ tk

t0

Mk(t0, . . . , tk; s) ds

≤ ω[a,b](g(k), tk − t0); q.e.d.

If γ ∈ C
(k−1)
X (T ), then we define a k–extended γ–polynomial of order n to be any element of X of

the form

(2) p = p(α, τ) =
r∑

i=1

mi∑
j=0

αijγ
(i)(ti),

with
mi + 1 ≤ k, ti ∈ T, i = 1, . . . , r,

t1 < t2 < · · · < tr,
r∑

i=1

(mi + 1) = n .

Further, we take the τ–vector for p in (2) to be the vector

τ = (t1, . . . , t1, t2, . . . , t2, t3, . . . , tr),

with ti appearing mi + 1 times, i = 1, . . . , r. Denote by

IPk
γ,n

the set of all k–extended γ–polynomials of order n.
Remark. This rather narrow definition of extended γ–polynomial suffices for this paper. But one may

want to enlarge it at times to include also weak limits of γ(t0, . . . , tk) as t0, . . . , tk → t. Again, the strong
continuity of γ(k−1) is not essential, nor does it seem necessary to demand that γ(k−1) exist on all of T .

(3) Theorem. If (i) T = [a, b] is a finite interval, (ii) γ ∈ C
(n−1)
X (T ) and (iii) the set

{γ(j)(ti) | j = 0, . . . , mi; i = 1, . . . , r}
is linearly independent whenever a ≤ t1 < t2 < · · · < tr ≤ b and

∑r
i=1(mi + 1) = n, then IPn

γ,n is the strong
closure, IPγ,n, of IPγ,n. Further, IPγ,n is boundedly compact in IPn

γ,n; hence, IPn
γ,n is an existence set.

Proof. Let {pm}∞m=1 be a bounded sequence in IPγ,n. Since T is compact, we may assume (after
going to a subsequence, if necessary) that the sequence {τ (m)} of corresponding τ–vectors converges to some
τ ∈ Tn. Hence, we can write pm as

(4) pm =
r∑

i=1

mi∑
j=0

α
(m)
ij j! γ(t(m)

i0 , . . . , t
(m)
ij ), m = 1, 2, . . . ,

where
lim

m→∞ t
(m)
ij = ti, j = 0, . . . , mi; i = 1, . . . , r,

with a ≤ t1 < · · · < tr ≤ b and
∑r

i=1(mi + 1) = n. Since γ ∈ C
(n−1)
X and mi + 1 ≤ n, all i, it follows from

Lemma (1) that

(5) lim
m→∞ j! γ(t(m)

i0 , . . . , t
(m)
ij ) = γ(j)(tk), j = 0, . . . , mi; i = 1, . . . , r,
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in norm. By assumption (iii), the set {γ(j)(ti) | j = 0, . . . , mi; i = 1, . . . , r} is linearly independent, hence
there exists K > 0 and m0 such that m ≥ m0 implies

‖pm‖ ≥ K max
i,j

|α(m)
ij |.

Since {pm} is, by assumption, bounded, this implies that each of the n sequences {α(m)
ij }∞m=1 is bounded.

Hence, after going to a subsequence if necessary, we may assume that

lim
m→∞α

(m)
ij = αij , j = 0, . . . , mi; i = 1, . . . , r.

But then

lim
m→∞ pm =

r∑
i=1

mi∑
j=0

αijγ
(j)(ti) ∈ IPn

γ,n.

This proves that IPγ,n is boundedly compact in IPn
γ,n, hence, that IPγ,n ⊂ IPn

γ,n. As to the converse contain-
ment, observe that, by Lemma (1), for j ≤ n − 1 and t ∈ T ,

‖γ(j)(t) − j! γ(t, t + h, . . . , t + jh)‖ ≤ ω[a,b](γ(j), jh),

so that certainly IPn
γ,n ⊂ IPγ,n. q.e.d.

Theorem (3) by itself has little applicability, since in practice either assumption (i) or assumption (ii)
fails. E.g., in the case of approximation by exponential sums in Lp[0, 1], T is the whole real line and (i)
fails, while assumption (ii) is certainly unjustified when approximating by splines of fixed order with a large
enough number of variable knots.

But one can extend the argument for Theorem (3) to include these and other examples in the following
way. Suppose that f ∈ X is to be approximated by elements in IPγ,n, and let {pm} be a minimizing sequence
for f in IPγ,n. Now write

pm = qm + rm, m = 1, 2, . . . ,

where the ”nice” part, qm, involves only those τ
(m)
i which converge to certain ti ∈ T and have, in the limit,

no more than k coincident, where γ is known to be in C
(k−1)
X (T ). It can often be shown that the remainder

sequence {rm} becomes eventually ”orthogonal” to every x ∈ X in the sense that

(6) for all x ∈ X, lim
m→∞

‖rm + x‖ ≥ ‖x‖.

This can be shown to imply, together with the boundedness of {pm}, that {qm} is bounded, hence Theorem
(3) then implies that some subsequence of {qm} converges to some q ∈ IPk

γ,n. Further, (6) then implies that
this subsequence is a minimizing sequence for f in IPγ,n, since {pm} is, thus showing q to be a b.a. to f in
IPγ,n.

As a preliminary for a rigorous argument along the lines just indicated, we investigate in the next section
the ”limit” concept suggested by (6).

3. Weak convergence concepts and existence sets. Let S be a subset of the normed linear space
X. To show that f ∈ X has a b.a. in S, one usually proceeds as follows. One picks a minimizing sequence
{pm} in S for f , and then attempts to show that some subsequence {pj(m)} of {pm} converges to some
element p of S in some sense. The weaker the convergence concept used, the easier it should be to establish
the compactness of {pm} in S. On the other hand, the convergence concept should be strong enough to
imply that

(1) ‖f − p‖ ≤ lim
m→∞ ‖f − pj(m)‖ = dist (f, S),

which then would finish the argument showing p to be a b.a. to f in S.
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To give an example, one might use the following convergence concept: The sequence {xm} in X ”con-
verges” to x iff

for all y ∈ X, lim
m→∞ ‖xm − y‖ ≥ ‖x − y‖.

Clearly, if some subsequence of the minimizing sequence {pm} for f in S ”converges” to some p ∈ S, then
p is a b.a. to f in S. But since such ”convergence” is not even preserved when going to a subsequence, we
prefer the following slightly stronger notion.

(2) Definition. The sequence {xm} in the normed linear space X comes close to x ∈ X iff

for all y ∈ X, lim
m→∞

‖xm − y‖ ≥ ‖x − y‖.

A subset S of X is nearly compact iff every sequence in S has a subsequence which ”comes close to” some
element of S. With this, the preceding discussion establishes

(3) Theorem. Let S be a subset of the normed linear space X. If bounded subsets of S are nearly
compact, then S is an existence set.

It seems worthwhile to point out by an example that bounded existence sets need not be nearly compact.
For this, let X = c0 = {f : IN → IR | limn→∞ f(n) = 0} be the Banach space of real null sequences with
norm

‖f‖ = sup
n∈IN

|f(n)|,

and set
S = {fn | n = 1, 2, . . .},

where

fn(m) =
{

1, m ≤ n

0, m > n, n, m = 1, 2 . . . .

Then S is an existence set: If f ∈ X, then there is n0 such that n ≥ n0 implies |f(n)| < 1/2. But then, for
all n ≥ n0,

|(f − fn)(m)| = |(f − fn−1)(m)|, all m 6= n,

while
|(f − fn)(n)| > |f(n)| = |(f − fn−1)(n)|.

Hence
for all n ≥ n0, ‖f − fn‖ ≥ ‖f − fn−1‖,

therefore,
dist (f, S) = min

n≤n0
‖f − fn‖.

Further, S is bounded. But, S is not nearly compact. For, if f ∈ X, then there exists n0 such that
|f(n0)| < 1. Set

g(n) = 2δn,n0 , n = 1, 2 . . . .

Then g ∈ X and
‖f − g‖ ≥ |(f − g)(n0)| > 1 = lim

n→∞ ‖fn − g‖.

Hence, every subsequence of the sequence {fn} in S ”comes close to” no f ∈ X, let alone an f ∈ S.
In the remainder of this section, we make some simple remarks, and prove two technical lemmata

concerning sequences which ”come close to” some element, and, finally, prove an existence theorem.
(4) Remarks. (i) If {xm} ”comes close to” x, then so does every subsequence of {xm}.

(ii) But, a sequence may ”come close to” more than one element. Thus, the sequence
{xm} in L1[0, 1] given by

xm(t) =
{

m, 0 ≤ t ≤ 1/m,

0, 1/m < t ≤ 1, m = 1, 2, . . . ,
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”comes close to” every y ∈ L1[0, 1] with ‖y‖1 ≤ 1.
(iii) If {xm} ”comes close to” x and {ym} converges in norm to y, then {xm+ym} ”comes

close to” x + y.
(iv) If {xm} ”comes close to” x and is bounded, and the sequence {αm} of scalars

converges to α, then {αmxm} ”comes close to” αx.
(v) If {xm} converges in norm to x, then {xm} ”comes close to” x and to no other element

of X. Hence, if {xm} ”comes close to” x, then all strongly convergent subsequences of {xm} converge to x.
(vi) If {xm} converges weakly to x, then {xm} ”comes close to” x. This is just a restate-

ment of the fact that the norm is lower semicontinuous with respect to weak sequential convergence.
A slight but important generalization of (4) (vi) concerns convergence with respect to a family of

seminorms.
(5) Definition. Let X be a linear space, and Φ a family of seminorms on X. The sequence {xm} in X

converges Φ to x ∈ X iff
for all ϕ ∈ Φ, lim

m→∞ϕ(x − xm) = 0.

(6) Lemma. Let X be a normed linear space, let Φ be a family of seminorms on X with the property
that

(7) for all x ∈ X, sup
ϕ∈Φ

ϕx = ‖x‖.

If the sequence {xm} in X converges Φ to x, then {xm} ”comes close to” x.
Proof. Since vector addition is continuous with respect to Φ–convergence, it is sufficient to prove that

lim
m→∞

‖xm‖ ≥ ‖x‖,

whenever {xm} converges Φ to x. For this, observe that ϕ ∈ Φ and limm→∞ ϕ(x − xm) = 0 implies

ϕx = lim
m→∞ ϕxm.

By (7), ϕxm ≤ ‖xm‖, therefore,
ϕx = lim

m→∞ϕxm = lim
m→∞

‖xm‖,

hence, again by (7),
‖x‖ = sup

ϕ∈Φ
ϕx ≤ lim

m→∞
‖xm‖

q.e.d.

(8) Lemma. Let X be a normed linear space, and let {xm} be a bounded sequence in X which ”comes
close to” a certain x ∈ X; if x = 0, assume in addition that lim ‖xm‖ > 0. Further, let {ym} be a sequence in
X converging in norm to some y ∈ X which does not depend linearly on x. If the sequence {αmym +βmxm}
is bounded, then so is the sequence {αmym}.

Proof. Since {ym} converges in norm, it is bounded. Hence, if {αmym} is not bounded, then, (after
going to a subsequence if necessary) one has

lim
m→∞ |αm| = ∞.

By assumption, there exists C such that

for all m, ‖αmxm + βmym‖ ≤ C.

Hence,

‖ym +
βm

αm
xm‖ ≤ C/|αm| m→∞−−−−−→ 0,
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showing that { βm

αm
xm} converges in norm to −y. In particular, { βm

αm
xm} is bounded, hence, as lim ‖xm‖ > 0

by assumption, {βm/αm} is bounded, therefore, – after going to a subsequence, if necessary, – we may
assume that

lim
m→∞βm/αm = α.

But then, by (4) (iv) above, {(βm/αm)xm} ”comes close to” αx, hence, with (4) (v) above,

−y = αx,

contradicting the assumption that y does not depend linearly on x. q.e.d.

(9) Definition. If {xm} is a sequence in the normed linear space X, then the normalization of {xm}
is the sequence {x̂m}, given by

x̂m =




xm/‖xm‖, xm 6= 0
, m = 1, 2, . . . .

0 , xm = 0

(10) Theorem. Let X be a normed linear space, and let S, Ŝ be nonempty subsets of X, closed under
scalar multiplication, with the properties: (i) Ŝ ⊂ S, the (norm) closure of S; (ii) every sequence in S can be
written as the sum of two sequences, {qm} and {rm}, such that the normalization {q̂m} of {qm} is compact in
Ŝ, and some subsequence of the normalization {r̂m} of {rm} ”comes close to” zero. Then, Ŝ is an existence
set.

Proof. Let f ∈ X, and let {pm} be a minimizing sequence for f in S. We may assume that {pm} is
in S. After going to a subsequence, if necessary, we may assume that {pm} is the sum of two sequences
{qm} and {rm}, such that the normalization {q̂m} of {qm} converges in norm to some q̂ ∈ Ŝ, while the
normalization {r̂m} of {rm} ”comes close to” zero. Also,

{pm} = {‖qm‖q̂m + ‖rm‖r̂m}

is bounded.
We begin by proving that some subsequence of {qm} converges to an element of Ŝ. Since {q̂m} converges

to q̂ ∈ Ŝ, and Ŝ is closed under scalar multiplication, it is sufficient to show that some subsequence of {qm} is
bounded. This, in turn, is trivial in case lim ‖qm‖ = 0. It is also trivial in case lim ‖rm‖ = 0, since {qm +rm}
is bounded by assumption. Otherwise, ‖q̂‖ = lim ‖q̂m‖ = 1, hence q̂ 6= 0, and lim ‖r̂m‖ = 1 > 0. But then,
the boundedness of {qm} follows from (8).

With this, we may assume, after going to a subsequence, if necessary, that {qm} converges in norm to
some q ∈ Ŝ.

Next, we show that
for all x ∈ X, lim ‖rm − x‖ ≥ ‖x‖.

This is trivially true in case lim ‖rm‖ = ∞. Otherwise, some subsequence {‖rj(m)‖} of {‖rm‖} converges to
some scalar α. But then, by (4) (i) and (4) (iv), {rj(m)} = {‖rj(m)‖r̂j(m)} ”comes close to” α · 0 = 0, since
the bounded sequence {r̂m} ”comes close to” 0, by assumption. Hence,

for all x ∈ X, lim
m→∞ ‖rm − x‖ ≥ lim

m→∞
‖rj(m) − x‖ ≥ ‖x‖.

But this implies that q ∈ Ŝ ⊂ S is a b.a. to f in S. For, one has

dist (f, S) = lim ‖pm − f‖ ≥ lim(‖rm + q − f‖ − ‖qm − q‖)
= lim ‖rm + q − f‖
≥ ‖q − f‖ .
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Specifically, with f ∈ S, it follows that f = q for some q ∈ Ŝ, hence, as Ŝ ⊂ S, Ŝ = S follows. q.e.d.
To give a simple example, consider best approximation by exponential sums in X = C[0, 1]. Here

γ(t) = ets, t ∈ T = (−∞,∞).

Since T is not compact, Theorem 2.(3) is not directly applicable. But one verifies that IPn
γ,n is in this case

an existence set, and IPγ,n = IPn
γ,n, by verifying that the assumptions of Theorem (10) are satisfied:

Set S = IPγ,n, Ŝ = IPn
γ,n. Since γ is infinitely often strongly differentiable, Ŝ ⊂ S, by Lemma 2.(1).

Further, {γ(j)(ti)|j = 0, . . . , mi; i = 1, . . . , k} is a linearly independent set whenever t1 < t2 < · · · < tk, and
for arbitrary integers m1, . . . , mk. If now {pm} is a bounded sequence in S = IPγ,n, then after going to a
subsequence if necessary, we can write

pm = qm + rm, qm =
r∑

i=1

a
(m)
i γ(t(m)

i ), rm =
n∑

i=r+1

a
(m)
i γ(t(m)

i ), m = 1, 2 . . . ,

where

lim
m→∞ t

(m)
i =

{
ti ∈ T, i ≤ r

±∞, i > r .

By Theorem 2.(3), some subsequence of the normalization {q̂m} of {qm} converges strongly to some q ∈
Ŝ = IPn

γ,n. Further, it can be shown [8] that some subsequence of the normalization {r̂m} of {rm} converges
pointwise to zero on (0, 1). Since, for f ∈ C[0, 1], ‖f‖∞ = sups∈(0,1) |f(s)|, this implies, as in (6), that such
a subsequence ”comes close to” zero.

Remark. Theorem (10) is needed to complete the proof of Theorem 4 in [5].

4. Existence of best generalized spline approximants. Let M be the linear differential operator
defined by

(1) (Mx)(s) = x(k)(s) +
k−1∑
i=0

ai(s)x(i)(s), s ∈ [0, 1],

with ai ∈ C(i)[0, 1], i = 0, . . . , k − 1. Let G(s, t) be Green’s function for the initial value problem

(Mx)(s) = g(s), s ∈ (0, 1]

x(j)(0) = 0, j = 0, . . . , k − 1 ,

and consider the curve
γ(t) = G(·, t), t ∈ T = [0, 1),

in X = Lp[0, 1].
For p < ∞, γ is in C

(k−1)
X (T ), but not in C

(k)
X (T ), with

(3) γ(j)(t) = (∂/∂t)jG(·, t), j = 0, . . . , k − 1,

independently of p. Hence, IPk
γ,n does not change with p, and is a subset of L∞[0, 1]. To emphasize this fact,

we will denote this set of functions by Se
M,n in the sequel.

For p = ∞, γ is merely in C
(k−2)
X (T ), since (∂/∂t)k−1G(·, t) has a jump discontinuity at t, hence can

not be the uniform limit of the continuous function γ(k−2)(t, t + h) as h → 0, except for t = 0. This fact
produces complications in an existence proof, which will be dealt with elsewhere. Here, we will be satisfied
with showing that Se

M,n is an existence set in L∞.
We note that γ(j)(t) vanishes identically on [0, 1), and is k times continuously differentiable on [t, 1].

Hence
{γ(j)(ti) | j = 0, . . . , mi; i = 1, . . . , r}
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is a linearly independent set whenever 0 ≤ t1 < · · · < tr < 1 and mi + 1 ≤ k, i = 1, . . . , r. Each element∑
i

∑
j αijγ

(j)(ti) of Se
M,n reduces to a function in the k–dimensional null space, kerM , of M on each of

the intervals (0, t1), (t1, t2), . . ., (tr, 1). Hence, the elements of Se
M,n are generalized splines [4], and are

(deficient) L–splines [9] only if M = L∗L for some differential operator L of order k/2.
The following observations will be of use later on. Since kerM is finite–dimensional, all norms on ker M

are equivalent, and bounded sets in kerM are compact in ker M . Also, no element of kerM other than zero
vanishes identically on any subinterval of [0, 1] of positive length. This implies

(4) Lemma. Let 0 ≤ a < b ≤ 1, and let {um} be a sequence in kerM which is bounded in L1[a.b].
Then {um} is uniformly bounded in [0, 1], hence some subsequence of {um} converges to some u ∈ ker M
uniformly on [0, 1].

(5) Definition. With 0 ≤ t1 < t2 < · · · < tr ≤ 1, and 1 ≤ p ≤ ∞, let Φp(t1, . . . , tr) denote the
collection {ϕ∂ |∂ > 0} of seminorms on Lp(0, 1), with ϕ∂ defined by

ϕ∂f = ‖f · χ
∂
‖p all f ∈ Lp,

where

χ
∂
(s) =

{
1, for all i, |s − ti| ≥ ∂

0, otherwise.

(6) One observes that

sup{ϕf |ϕ ∈ Φp(t1, . . . , tr)} = lim
∂→0

‖f · χ
∂
‖p = ‖f‖p,

for all f ∈ Lp[0, 1]. Hence, if {fm} ⊂ Lp[0, 1] converges Φp(t1, . . . , tr) to some f ∈ Lp[0, 1], (cf. 3.(5), 3.(6)),
then {fm} ”comes close to” f in Lq[0, 1], all q ≤ p.

For p < ∞, and f ∈ Lp[0, 1], one has

(7) lim
∂→∞

‖f · (1 − χ
∂
)‖p = 0.

This implies
(8) Lemma. Let p < ∞, {fm} ⊂ Lp[0, 1] converging Φp(t1, . . . tr) to some f ∈ Lp[0, 1].

If limm→∞ ‖fm‖p = ‖f‖p, then {fm} converges Lp to f .
Proof. One has

‖fm‖p
p = ‖fmχ

∂
‖p

p + ‖fm(1 − χ
∂
)‖p

p

≥ |‖fχ
∂
‖p − ‖(fm − f)χ

∂
‖p|p + |‖(fm − f)(1 − χ

∂
)‖p − ‖f(1 − χ

∂
)‖p|p.

Let µ > 0 be given. Then, by (7), there exists ∂ > 0 such that

‖f · (1 − χ
∂
)‖p < η,

hence
‖fχ

∂
‖p ≥ ‖f‖p − η.

For this ∂, there exists m such that m ≥ m implies

‖(fm − f)χ
∂
‖p ≤ η,

hence
‖(fm − f)(1 − χ

∂
)‖p ≥ ‖fm − f‖p − η.

But then, for all m ≥ m,
‖fm‖p

p ≥ |‖f‖p − 2η|p + |‖f − fm‖p − 2η|p,
therefore,

‖f‖p
p = lim

m→∞ ‖fm‖p
p ≥ |‖f‖p − 2η|p + | lim

m→∞ ‖f − fm‖p − 2η|p.
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Since η is arbitrary, limm→∞ ‖f − fm‖p = 0 follows; q.e.d.

(9) Lemma. Let 0 ≤ t1 < t2 < · · · < tr < 1, let ε > 0 be small enough so that tr − 1 < tr − ε,
tr + ε ≤ 1, and let {pm} be a sequence in Se

M,n which is bounded in Lp[0, tr + ε] for some 1 ≤ p ≤ ∞, and
whose corresponding sequence {τ (m)} of τ–vectors converges to some vector

τ = (t1, . . . , t1, t2, . . . , t2, t3, . . . , tr).

Then some subsequence of {pm} converges Φ∞(t1, . . . , tr) to an element of Se
M,n.

Proof by induction on r, it being vacuously true for r = 0. Assume r > 0 and assume the correctness
of the statement for r − 1. Let h be the number of components of τ which equal tr. Then, after going to a
subsequence if necessary, we may assume that

|τ (m)
i − tr| ≤ ε/2, i = n − h + 1, . . . , n; m = 1, 2, . . . .

For m = 1, 2, . . . , write
pm = qm + um,

where um involves only the last h terms of pm. Then

pm(s) = qm(s), all s ∈ [0, tr − ε], m = 1, 2, . . . ,

since γ(j)(t) vanishes on [0, t). It follows that {qm} is bounded in Lp[0, tr − ε], and is in Se
M,n−h, hence,

by induction hypothesis, we may assume (after going to a subsequence if necessary) that {qm} converges
Φ∞(t1, . . . , tr−1) to some element q of Se

M,n−h. This implies that for some constant c, and all large enough
m,

|qm(s)| ≤ c, all s ∈ [tr − ε, 1],

hence, {um} is bounded in Lp[0, tr + ε].
For m = 1, 2, . . ., let u+

m be the element of kerM for which

u+
m(s) = um(s), all s ∈ [tr + ε/2, 1].

By Lemma (4) and the boundedness of {um} in Lp[0, tr + ε], we may assume, after going to a subsequence
if necessary, that {u+

m} converges uniformly on [0, 1] to an element u+ ∈ kerM . Set

u(s) =
{ 0, s < tr

u+(s), s ≥ tr .

Then u ∈ Se
M,k, and {um} converges Φ∞(tr) to u. Hence, {pm} converges Φ∞(t1, . . . , tr) to q + u, and

q + u ∈ Se
M,n−h+k. If h ≥ k, we are done. Otherwise, use Theorem 2.(3) together with the fact that γ is

(k − 1)–times continuously differentiable in Lp and {γ(j)(tr)}k−1
j=0 is linearly independent to conclude from

the boundedness of {um} in Lp[0, tr + ε] that some subsequence of {um} converges Lp to an element û of
IPh

γ,h. Since {um} converges Φ∞(tr) to u, it follows then by 3.(4)(v), Lemma 3.(6), and by (6) above, that
u = û, hence p = q + u ∈ Se

M,n; q.e.d.
(10) Theorem. Let Se

M,n = IPk
γ,n be the set of k–extended γ–polynomials of order n in L1[0, 1], with γ

given by (2). Then Se
M,n is an existence set in L − p[0, 1], 1 ≤ p ≤ ∞. For p < ∞, Se

M,n is approximatively
compact, and is the strong closure of IPγ,n.

Proof. Let f ∈ Lp[0, 1], and let {pm} be a minimizing sequence for f in Se
M,n. If {τ (m)} is the

corresponding sequence of τ–vectors, then, after going to a subsequence if necessary, we may assume that
{τ (m)} converges to some τ ∈ [0, 1]n. Let t1 < t2 < · · · < tr be the distinct ones among the components
of τ . Then 0 ≤ t1 < t2 · · · < tr ≤ 1. Since {pm} is bounded in Lp[0, 1], we may assume (after going to a
subsequence if necessary) that {pm} converges Φ∞(t1, . . . , tr) to some element p̂ ∈ Se

M,n: For, if tr < 1, this

follows directly from Lemma (9). If tr = 1, then those terms of pm which involve τ
(m)
i with limm→∞ τ

(m)
i = tr

converge trivially Φ∞(tr) to zero, hence using Lemma (9) for the sequence of remaining terms, one reaches
the same conclusion in this case.
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By (6), it then follows that {p(m)} ”comes close to” p̂ in Lp[0, 1], hence

dist (f, Se
M,n) = lim ‖pm − f‖p = lim ‖pm − f‖p ≥ ‖p̂ − f‖p.

This shows Se
M,n to be an existence set. But, it also follows that

lim ‖pm − f‖p = ‖p̂ − f‖p.

Hence, if p < ∞, then, by Lemma (8), {pm − f} converges in norm to p̂ − f , therefore, {pm} converges in
norm to p̂, showing Se

M,n to be approximatively compact; q.e.d.
(11) Corollary. If 1 < p < ∞, then some f ∈ Lp[0, 1] has more than one b.a. in Se

M,n.
Proof. By [2: Theorem 3], an approximatively compact subset S of Lp[0, 1], 1 < p < ∞, is a uniqueness

set iff S is convex. Since Se
M,n is closed under scalar multiplication, convexity of Se

M,n would imply that
Se

M,n is a linear subspace of Lp[0, 1], contradicting the fact that {γ(j)(ti) | j = 0, . . . , mi; i = 1, . . . , r} is
linearly independent for 0 ≤ t1 < t2 < tr < 1 and mi + 1 ≤ k, i = 1, . . . , r, with arbitrary r.

Remark, If {ui | i = 1, . . . , k} is a basis for kerM , then

G(s, t) =




h(s, t), s ≥ t

,
0, s < t

where

h(s, t) =
k∑

i=1

ui(s)vi(t),

{vi | i = 1, . . . , k} being the set of adjunct functions for {ui | i = 1, . . . , k}. This means [6:p. 669] that

for all t ∈ [0, 1], for j = 0, . . . , k − 1,

k∑
i=1

u
(j)
i (t)vi(t) = δj,k−1.

The argument for Theorem (10) uses that vi ∈ C(k−1)[0, 1], i = 1, . . . , k, and that, for each t ∈ [0, 1], the set
of functions {ûj | j = 1, . . . , k}, given by

ûj+1(s) =
k∑

i=1

ui(s)v(j)(t), j = 0, . . . , k − 1,

is a basis for kerM . This is ensured by the assumption that the coefficients of M (cf. (1)) satisfy ai ∈ C(i)[0, 1],
i = 0, . . . , k − 1.

In particular, best approximation by the set of generalized spline functions with respect to kerM with
m joints (in the sense of Greville [4]) is best approximation by {p(α, τ) ∈ Se

M,m+k | τ1 = · · · = τk = 0}, and
is covered by Theorem (10) with minor and obvious modifications.

5. Strict monotonicity of the error. In almost all of the examples given in the introduction, the
linear span of {γ(t) | t ∈ T} is dense in X. If X is smooth, this has the perhaps surprising consequence that,
for all f ∈ X, dist (f, IPγ,n) is strictly desceasing as a function of n. Precisely, one has,

(1) Theorem. If X is smooth, and the linear span of {γ(t) | t ∈ T} is dense in X, then, for all f ∈ X,
dist (f, IPγ,1) < ‖f‖ unless f = 0.

Proof. If dist (f, IPγ,1) = ‖f‖ then, for all t ∈ T , 0 is a b.a. to f in the linear span of γ(t), hence there
exists λ+ ∈ X∗ such that

(2) λtf = ‖f‖, ‖λt‖ = 1

and

(3) λtγ(t) = 0.
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If f 6= 0, then, by the smoothness of X, λt is uniquely determined by (2), i.e., λt does not depend on t. It
then follows from (3), that some nonzero continuous linear functional on X vanishes on the linear span of
{γ(t) | t ∈ T}, contradicting the denseness of the linear span of {γ(t) | t ∈ T} in X. q.e.d.

(4) Corollary. If X is smooth, the linear span of {γ(t) | t ∈ T} is dense in X, and IPk
γ,n is an existence

set, then for all f ∈ X,
dist (f, IPγ,n+1) < dist (f, IPγ,n) or f ∈ IPk

γ,n.

Thus, for 1 < p < ∞, the distance of f ∈ Lp[0, 1] from Se
M,n is strictly decreasing with n unless and

until f ∈ Se
M,n for some n.

6. Characterization. A first step toward the characterization of a b.a. to f ∈ X in IPk
γ,n is the

following
(1) Theorem. Assume that γ ∈ C

(k)
X (T ) and that T is an interval with endpoints a, b. Let

p =
r∑

i=1

mi∑
j=0

aijγ
(j)(ti), with a < ti < b, aimi

6= 0, i = 1, . . . , r,

be an element of IPk
γ,n, and let S be the linear span of

(2) {γ(j)(ti) | j = 0, . . . , mi + 1; i = 1, . . . , r} ∪ {γ(tr+i) | i = 1, . . . , h},

where h = n − ∑r
i=1(mi + 1), and the additional points tr+1, . . . , tr+h (if any) are arbitrary in T .

If p is a b.a. to f ∈ X in IPk
γ,n, then p is a b.a. to f in S.

Proof. Assume by way of contradiction that, for some q ∈ S,

(3) ‖f − q‖ < ‖f − p‖.

Then q is of the form

q =
r∑

i=1

mi+1∑
j=0

bijγ
(j)(ti) +

h∑
i=r+1

biγ(tr+i).

Assume without loss of generality that bi,mi+1 6= 0, i = 1, . . . , m, while bi,mi+1 = 0 for i > m. Then we can
write q as

q =
m∑

i=1

bi,mi+1γ
(mi+1)(ti) + q̂,

where q̂ has the property that
p + αq̂ ∈ IPk

γ,n, for all scalars α.

Since mi +1 ≤ k, all i, and γ is k times continuously differentiable, it follows from (3) and from Lemma
2.(1), that for some ε > 0 and all εi with |εi| ≤ ε, i = 1, . . . , m,

‖f − q̂ −
m∑

i=1

bi,mi+1(mi + 1)! γ(ti, . . . , ti, ti + εi)‖ < ‖f − p‖.

Therefore, for all εi with |εi| ≤ ε, and all θ ∈ (0, 1],

‖f − u(θ, ε1, . . . , εm)‖ < ‖f − p‖,

where

u(θ, ε1, . . . , εm) = (1 − θ)p + θq̂ + θ

m∑
i=1

bi,mi+1(mi + 1)! γ(ti, . . . , ti + εi).

12



In order to reach a contradiction, it is sufficient to show that θ, ε1, . . . , εm can be so chosen that u(θ, ε1, . . . , εm) ∈
IPk

γ,n. One observes that for εi 6= 0, the (mi + 1)st divided difference of γ at ti, . . . , ti, ti + εi can be written
as

γ(ti, . . . , ti, ti + εi) = ε−mi−1
i [γ(ti + εi) −

mi∑
j=0

εj
i

1
j!

γ(j)(ti)].

Hence,

u(θ, ε1, . . . , εm) =
m∑

i=1

ciγ
(mi)(ti) + v,

where v ∈ IPk
γ,n, and

ci = (1 − θ)ai,mi
+ θ[bi,mi

− ε−1
i (mi + 1)bi,mi+1], i = 1, . . . , m.

Hence, to get ci = 0, all i, one needs that

(4) εi = θ(mi + 1)bi,mi+1/(θbi,mi
+ (1 − θ)ai,mi

), i = 1, . . . , m.

Since bi,mi+1, ai,mi
are not zero, i = 1, . . . , m, it is clearly possible to find θ ∈ (0, 1], and ε1, . . . , εm with

0 < |εi| ≤ ε, all i, such that (4) is satisfied; q.e.d.
Remark. The linear span of (2) is, at best, of dimension n+r even though the general element of IPk

γ,n

depends on 2n parameters. This apparent loss of degrees of freedom (when r < n) is, in part, due to the fact
that the vanishing of a linear parameter eliminates also the corresponding (non-linear) t–parameter. The
phenomenon of varisolvence of exponential sums and other γ–polynomials originates this way. But, this loss
also occurs when two or more of the τi’s coalesce without the vanishing of any of the linear parameters. The
implications of this fact for the geometry of the set IPk

γ,n are quite striking and should make IPk
γ,n worthy of

the attention of accomplished topologists.
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