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Consider approximation of a given function f , on [0, 1] say, by elements of Sk
π, i.e., by poly-

nomial splines of order j (or, degree < k) on some partition π = (ti)
N+1
0 of [0, 1],

0 = t0 < t1 ≤ t2 ≤ · · · ≤ tN < tN+1 = 1.

Here, t1, . . . , tN are the knots or joints of s ∈ Sk
π, and their multiplicity, i.e., equality among

two or more of these, indicates reduced smoothness at that knot location in the usual way.
Best approximation to f by elements of Sk

π is quite well understood for a variety of norms
since, after all, Sk

π is a linear space. It seems practically more important and theoretically more
interesting to investigate the approximation to f by splines of order k with N knots, i.e., by
elements of

Sk
N := ∪πSk

π

where the union is taken over all partitions π of [0, 1] with N interior knots. For, the approximation
power of spline functions seems to lie precisely in the possibility of placing the knots in a usually
quite nonuniform way to suit the peculiarities of the given f . Yet the straightforward approach,
viz. the construction of a best approximation to f in Sk

N , has turned out to be beset with diffi-
culties. It being a somewhat nasty nonlinear problem, no satisfactory characterization of a best
approximation can be found in general, see e.g., [4] for the case of Chebyshev approximation. Con-
sequently, any computational scheme has to be content to find, by some descent method, a locally

best approximation, and even that seems to be computationally quite expensive. Also, the function
f may be “given” in a way that makes the calculation of best knots impossible simply because
‖f − s‖ cannot be calculated. E.g., f may be the unique solution of some differential equation

Dmf(t) = F (t, f(t), . . . ,Dm−1f(t)), for t ∈ [0, 1]

with side conditions βif = ci, i = 1, . . . ,m

where F , the linear functionals β1, . . . , βm and the numbers c1, . . . , cm are known, but the value of
f at t is not.

For these and other reasons, it becomes important to search for methods which will produce
relatively cheaply good , if not best, knots for the approximation of a given function from a variety
of information about this function. And the literature concerning bounds on

dist∞(f, Sk
N ) := inf

s∈Sk

N

‖f − s‖∞

seems to be a good place to start such a search.
One approach, taken, e.g., by Freud and Popov [7], [8], and by Sendov and Popov [16], has been

to reduce the problem of estimating dist (f, Sk
N ) to the simpler problem of estimating dist (f, S2

N )
for given g ∈ C[0, 1], making use of a fact such as the following.
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LEMMA 1. For every f ∈ C(k−2)[0, 1], and every partition π = (ti)
N+1
0 for [0, 1],

dist∞(f, Sk
π) ≤ k!|π|k−2dist∞(f (k−2), S2

π)/2k−1 (1)

with |π| := maxi ∆ti.

A simple proof of this lemma goes as follows: On C[0, 1], define the linear map P by

P : C[0, 1] → Sk
π : f 7→

∑

j

f(τi)Ni,k

with (Ni,k) the normalized B-spline basis for Sk
π (see, e.g., [3]). Since the Ni,k are nonnegative and

add up to 1 at any particular point, in then follows that

|(f − Pf)(t)| = |
∑

i

(f(t) − f(τi))Ni,k(t)|

≤ max{|f(t) − f(τi)| : Ni,k(t) 6= 0}.

On the other hand, since Ni,k is nonzero only on (ti, ti+k), it is possible to choose τi in [0, 1] so that

for all t ∈ [0, 1], Ni,k(t) 6= 0 =⇒ |t − τi| ≤ |π|/2.

With such a choice, one then obtains

dist∞(f, Sk
π) ≤ ‖f − Pf‖∞ ≤ (k/2)ωf (|π|)

ωf being the modulus of continuity of f ; hence, for f ∈ C(1)[0, 1], and arbitrary s ∈ Sk
π,

dist∞(f, Sk
π) = dist∞(f − s, Sk

π) ≤
k

2
ωf−s(|π|)

≤
k

2
|π|‖f (1) − s(1)‖∞,

therefore
dist∞(f, Sk

π) ≤ (k/2)|π|dist ∞(f (1), Sk−1
π ),

making use of the fact that Sk−1
π = {s(1) : s ∈ Sk

π}; and repeated application of this last inequality
gives the estimate (1).

Choosing, in particular π so that

dist∞(f (k−2), S2
π) = dist∞(f (k−2), S2

N )

and then augmenting π by at most N − 1 points to insure that

|π| ≤ 1/N,

one obtains from (1) the estimate, valid for f ∈ C(k−2)[0, 1]:

dist∞(f, Sk
2N−1) ≤ k!N−k+2 dist∞(f (k−2), S2

N )/2k−1. (2)

The simpler problem of best approximation by broken lines, i.e., in S2
n, is taken care of by a

result such as the following
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LEMMA 2. For every g ∈ AC with g′ ∈ BV

dist ∞(g, S2
N−1) ≤ N−2Var(g′)/4.

This can be found, e.g., in [17] as a special case of a much more general result, but can also
be proved directly as follows: If the straight line s interpolates f at the points a < b, then

(f − s)(t) = f [a, b, t](t − a)(t − b) =
f [b, t] − f [a, t]

b − a
(t − a)(t − b)

with f [r0, . . . , rk] denoting the k-th divided difference of f at r0, . . . , rk. It follow that

sup
a<t<b

|(f − s)(t)| ≤ (b − a)/4 Osc[a,b]f
′ ≤ (b − a)/4

∫ b

a

|df ′|

if f ∈ AC and f ′ ∈ BV, where

Osc[a,b]g := ess. sup
[a,b]

g − ess. inf
[a,b]

g.

Hence, if such f is approximated by the broken line s ∈ S2
N−1 which interpolates f at 0 = t0 <

t1 < · · · < tN−1 < tN = 1, and the ti’s are chosen so that

(ti+1 − ti)

∫ ti+1

ti

|df ′| = α, all i,

for some α, then
dist ∞(f, S2

N−1) ≤ ‖f − s‖∞ ≤ α/4

while
(1 − 0)

N2
Var(f ′) = (

1

N

∑

i

∆ti)(
1

N

∑

i

∫ ti+1

ti

|df ′|)

= (
1

N

∑

i

∆ti)(
1

N

∑

i

α

∆ti
)

≥ (
1

N

∑

i

∆ti)(
α

1
N

∑

i ∆ti
)

by Jensen’s Inequality, since 1/x is convex for x > 0. This proves the lemma.
The two lemmata have the desired

COROLLARY. If f ∈ C(k−2)[0, 1], with f (k−2) ∈ AC and f (k−1) ∈ BV, then

dist∞(f, Sk
N) ≤ constkN−kVar(f (k−1)). (3)

This is to be compared with the customary statement that

dist∞(f, Sk
π) ≤ constk|π|

k‖f (k)‖∞ (4)

in case f ∈ C(k−1)[0, 1] with f (k−1) ∈ AC and f (k) ∈ L∞.
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But, although this improvement of (3) over (4) was achieved by a particular choice of knots,
the argument has to be suspect since it relies on choosing the knots so as to produce a good
approximation to f (k−2) rather than to f . Even the more sophisticated argument of Subbotin and
Chernykh [17] (who obtain (3) by constructing an approximation to f in the spirit of Birkhoff’s
local spline approximation by moments [1], [2], followed by an appropriate choice of knots so as to
make the error small) excludes consideration of such practically interesting functions as

f(t) = tα, some α ∈ (0, 1)

and therefore does not give, e.g., Rice’s startling result [10] that

for f(t) = tα with 0 < α, dist∞(f, Sk
N ) ≤ constα,kN−k

Rice’s argument is a direct verification that for a certain set of knots selected according to a
rule depending on α everything works out. In an attempt to generalize Rice’s result, H. Burchard
[5] proved the following intriguing

THEOREM 1. For f ∈ C(k)[0, 1], and N ≥ Nf , and for 1 ≤ p ≤ ∞,

dist p(f, Sk
N) ≤ constkN−k‖f (k)‖σ

where

σ = σp,k := 1/(k + 1/p).

Similar results have been obtained, for the special case p = 2, by Sacks and Ylvisaker [12-
15], and more or less by McClure [9], again dealing only with f ∈ C(k) or even f ∈ C(k+1), and
therefore not giving Rice’s result (5). Nevertheless, these considerations bring out the importance
of the σ-norm of f (k) for α < 1 in the discussion of dist p(f, Sk

N) and suggest that, e.g., (5) holds
because, for f(t) = tα,

‖f (k)‖1/k ∼ (

∫ 1

0

t(α−k)/k dt)k

is finite. This is confirmed by the following

THEOREM 2. If f ∈ C[0, 1] ∩ C(k)(0, 1], and |f (k)(t)| is monotone decreasing, then

dist∞(f, Sk
N ) ≤ constkN−k ‖f (k)‖1/k.

This can be proved as follows: Consider approximation to f in Sk
π, where π has N − 1 distinct

points in (0, 1),
t1 < t2 < · · · < tN−1

say, but each repeated k times. Then

dist∞(f, Sk
k(N−1)) ≤ dist∞(f, Sk

π) ≤ ‖f − Tf‖∞

with Tf the piecewise polynomial function of order k which, on (ti, ti+1), agrees with the Taylor
series for f around ti+1 up to terms of order < k, hence, for t ∈ [ti, ti+1],

|f(t) − Tf(t)| =
1

(k − 1)!

∣

∣

∣

∣

∣

∫ t

ti+1

f (k)(r)(t − r)k−1 dr

∣

∣

∣

∣

∣

≤
1

(k − 1)!

∫ ti+1

ti

|f (k)(r)|(t − r)k−1 dr

≤
1

k!

(
∫ ti+1

ti

|f (k)(r)|1/k dr

)k

=:
1

k!
βi.
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The last inequality is easy to prove if, as we assume, |f (k)| decreases monotonely – consider both
sides as a function of ti+1 and differentiate – but impossible to find in the literature. In any event,
choose now the ti’s so that the βi’s defined above are all constant, βi = β for all i. Then

Nβ1/k =

∫ 1

0

|f (k)(r)|1/k dr,

hence

‖f − Tf‖∞ ≤
1

k!
N−k‖f (k)‖1/k

which proves the theorem in view of the fact that dist∞(f, Sk
N) decreases with increasing N .

A similar result holds for dist p(f, Sk
N ) with p < ∞, as proved by D.S. Dodson in [6], where

one can also find the following

THEOREM 3. If, for some converging net π of partitions of [0, 1], the corresponding lower

Riemann sums for

‖f (k)‖σ
σ =

∫ 1

0

|f (k)(r)|σ dr with σ := 1/(k + 1/p)

converge to A, then

lim infN dist p(f, Sk
N)Nk ≥ constkA1/σ

for some positive constant constk independent of (π) and f .

These facts and arguments suggest that in approximating f by elements of Sk
N , one should

choose the N knots t1, . . . , tN so as to make

∫ ti+1

ti

|f (k)(r)|1/k dr

approximately constant as a function of i. This has been tried by Dodson [6] in a scheme for
the adaptive solution of an ordinary differential equation. From a current piecewise polynomial
approximation of order k to the solution f , he guesses a piecewise constant approximation g to
f (k), and then selects a new knot set so as to equalize

∫

|g(r)|1/k dr over subintervals. To give an
example, Russell and Shampine [11] solve the problem

εf ′′(t) − (2 − t2)f(t) = −1 on [−1, 1] with f(−1) = f(1) = 0

with ε = 10−8 by collocation, using splines of order 6 with 47 distinct knots, each of multiplicity 3.
The knots are placed in an ad hoc basis so as to pile up near ±1. They obtain an approximation
error of 5 · 10−4 near the boundary. Dodson obtains the same accuracy with 19 distinct knots, and
obtains, with 47 knots, an accuracy of 2 · 10−6 even near the boundary (and an 10−8 error in the
middle of the interval).
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