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1. Introduction

Local refinable finitely generated shift-invariant spaces naturally arise in the theory
of (multi)wavelets, splines, finite-elements, and subdivision schemes. In this paper we
introduce and begin to develop a method for constructing and studying such spaces.

Let L{ . denote the space of all functions f : IR — IR which belong to L'(IR) locally;
that is, f € Li _ provided that (f is measurable and) fK |f| < oo for every compact

K C IR. This space is topologized by the family of seminorms

Fln :=/ . Nemw.
[_NvN]

We refer to a (row) vector ¢ = [¢1,...,¢,], n € IN, of functions in L]

loc

A generator ¢ = [¢1,- -, ¢y is said to be refinable if there exists a finitely supported
sequence b : ZZ — IR™*" (called a mask for ¢) for which

as a generator.

b= d(2 —j)b(j).

JEZ

We begin with a generator ¢ = [t¢q,...,1,,] supported in [0, 1] that is refinable with a
two-term mask:

(1.1) ¥ =(2)a(0) + (2 - —1)a(1);

and we intend to construct more useful (read “smoother”) refinable generators by using
the shifts of 1. That is, we consider generators of the form

$=>_ (- —j)elh),

JEZ

for some sequence ¢ : ZZ — IR™*". The motivation for this approach is that it is much
easier to study the properties of ¥ since it is supported on [0, 1] hence its shifts do not
‘interfere’” with each other. The crux is that ¢ constructed in this way will not, in general,

be refinable.
Let V be a subspace of L{, . Then we say V is shift-invariant if

feV=f(-+£1) eV,
we say V' is a finitely generated shift-invariant (FSI) space if
V=5(¢):= closp1 span{o;(-—j) |1 =1,...,n; j € 7L}

for some generator ¢; and we say an FSI space V' is local if V = S(¢) for some compactly
supported generator ¢. Lastly, we say V is refinable if

FevV = f(-/2) €V
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Evidently, S(¢) is refinable whenever ¢ is refinable.

The main objective of this paper is:

Given a refinable generator 1 supported in [0, 1] with mask (a(O), a(l)), charac-
terize all local refinable FSI subspaces V. C S(1).

We provide such a characterization in case a(0) is invertible.
We point out that every local refinable FSI space is a subspace of S() for some
refinable generator ¢ supported in [0,1]. For f € L _ and V C L _, define

loc loc»
1 ::fX[O,l] and V|::{f||f€V}.

(As usual, X, denotes the characteristic function of a set A C IR.) Suppose V is a local
refinable FSI space. Then m := dimV] is finite. We refer to m as the local dimension of
V. Let ¢ = [¢1,...,%n] be a basis for V|. Then ¢ is refinable and V' C S(¢).

This has been observed and exploited already by Jia in [7], [8], and [9], where the
author studied a given function ¢ via a basis ¥ for S(¢)|. The simpler structure due to the
small supports of ¢ and a in equation (1.1) has also been recognized by Micchelli et al. in,
for example, [11], [12], [13], and [14]. In particular, given a univariate refinable function
¢ with finite mask b, they define a(0) and a(1) by a(e) := [b(e + 25 — i)]; ; and study ¢
via the refinable function having mask a. Among other things, this was used to provide
necessary and sufficient conditions for the convergence of a given subdivision scheme and,
in [14], to provide a fairly thorough study of regularity for refinable function vectors.

Our approach is different in that the mask a and generator ¢» come first. In this paper,
we identify all local refinable FSI subspaces S(¢) of S(1). The next steps are to provide
further characterizations of the properties of S(¢) in terms of a; to determine when these
properties are preserved by a subspace S(¢); and to put these ideas together to construct
desirable refinable generators.

2. Results

Throughout this paper, we assume that (a(O), a(l)) is a mask for a refinable generator
¢ = [t1,...,¥n] supported in [0, 1] (in particular, each v; is assumed to be in L!(IR)). We
will show that when a(0) is invertible, each local refinable FSI subspace of S(¢) corresponds
to some a(0)-invariant space (for a matrix a € IRF** a space , € IRF is a-invariant if
a, C, ). Our specific statements will require a few more definitions.

We use Z, to denote the set of non-negative integers and IR* to denote the set of
column vectors of length k. For any set V C L . define

loc»
Vti={feV |suppf C[0,00)};
and, for V. C S(¢), define
S(V)i={c e R™ | o e Vi }.

(By convention, V|+ = (V).



Proposition 2.1. For any refinable subspace V' of S(v), ¥(V) is a(0)-invariant.

If ¢ = [¢1,..., ¢k is a generator supported in [0, 00), then the sum
¢+ =" ¢(- — j)e(j)
7=0

is locally finite for any sequence ¢ : Z4 — IR*. In particular, the set
R() = {6+ c| e: Ty — R,

spanned by the right shifts of ¢, is a subset of S(&)*.

We say a subspace A of R™ is preserved by a(0) if a(0)A = A, and a matrix A € R™*"
is preserved by a(0) if its columns form a basis for a space that is preserved by a(0). Note
that a matrix A € R™*" is preserved by «a(0) if and only «(0)\ = A3y for a unique
invertible 3y € IR"*". Suppose that A € IR"™*" is preserved by a(0). Set

(2.1) 00):= X\ and ((2j +¢):=a(e)l(j)By" fore € {0,1}, 25 +¢ > 0.
We define the generalized truncated power ey by
ex 1=+ L.

Proposition 2.2. Suppose that A € R™*" is preserved by a(0). Then

(i) ex = ex(2-)Bx;

(ii) if N € R™*™ has the same column space as \, then S(ey) = S(ex); and
(iii) S(ex) is a local refinable FSI subspace of S(1).

The property (2.2.ii) above allows us to unambiguously define, for any A preserved by
a(0), the space Sy := S(ex) where the columns of A form a basis for A.

Theorem 2.3. Suppose V is a local refinable FSI subspace of S(¢). If X(V') is preserved
by a(0) then V = Sy(vy.

If a(0) is invertible then every a(0)-invariant subspace is, in fact, preserved by a(0). So we
have the following corollary — one of the main results of this paper.

Corollary 2.4. Suppose a(0) is invertible. Then V is a local refinable FSI subspace of
S(+) if and only if V. = Sy for some a(0)-invariant A.

So, in the case a(0) is invertible, every local refinable FSI subspace of S(¢) is of the
form Sy for some a(0)-invariant space A. The a(0)-invariant spaces are easily identified
from the Jordan-Canonical form of a(0). By Theorem 2.3, Sy = Sy(s,). So, if a(0) is
invertible and ¢ 4s linearly independent (meaning the entries of ¢ are linearly independent),
the local refinable FSI subspaces of S(1)) are in one-to-one correspondence with those a(0)-
invariant spaces A satisfying A = ¥(S4). Our next result provides a characterization of

such A.



First, define

Ao ‘:[a(ol) a<00>}’ A= {8 E?H

Then H, is defined to be the minimal subspace of IR*™ that contains

2] [g e

and is {Ag, A }-invariant, i.e., A.-invariant for ¢ = 0, 1.

Theorem 2.5. Suppose A is an a(0)-invariant subspace of IR™. Let the columns of
A€ R™*™ form a basis for A. If a(0) is invertible and 1 is linearly independent, then the
following are equivalent.

(i) A =3X(Sy).

(ii) A = X(V) for some local refinable FSI subpace V. C S(¢).
(iii) ST = R(ey)

(iv) The set H) :={v € R™ | [2] € Ha} is equal to A.

It is clear that Sy is always a subset of span{¢y,...,¥n }. We now give a character-
ization of when these sets are actually equal.

Theorem 2.6. Suppose ) is linearly independent. Suppose A C IR™ is preserved by a(0).

Define L to be the minimal {a(0), a(1)}-invariant subspace of R™ containing A. Then
Sa| = span{y1, ...,y } if and only if Ly = R™.

Among the premises of Theorems 2.5 and 2.6 is the statement that ¢ is linearly
independent. A characterization of this property is provided for completeness.
Define
T :=a(0) + a(l).

Then a necessary condition for the generator ¢ to be linearly independent is that 2 be a
simple eigenvalue of the matrix T with left eigenvector ;/;(0) and that all other eigenvalues
have modulus strictly less than 2 (cf., e.g., [2], [3], [10]). In this case, ¢ is the unique
(up to constant multiple) generator satisfying Eq. (1.1). With this in mind, we offer the
following theorem ([4] provides a generalization of this result).

Theorem 2.7. Let W be the smallest subspace of IR satistying

~

P(0) e W, Wa(0) CW, Wa(l) CW.

Then the generator i is linearly independent if and only if
(i) 2 is a simple eigenvalue of T’
(ii) all other eigenvalues have modulus strictly less than 2; and

(i) W = R™.



3. Proofs

Throughout this section, we write ¢ C V to mean that the entries of the generator ¢
are elements of V.
We recall some results from [1].

Lemma 3.1. For any closed shift-invariant space V of finite local dimension, there exists
r > 0 such that if f € V vanishes on [—r,0] then f| € V|+.

Lemma 3.2. For any closed shift-invariant space V of finite local dimension, there is a
compactly supported generator ¢ = [¢1,...,¢x] C V such that ¢| is basis for V|+ and

V't = R(¢).

Actually, the topology used in [1] is that of uniform convergence on compact sets.
However the arguments used there also apply to the topology of Li

loc*

Proof of Proposition 2.1: Suppose o € %(V). Then there exists f € VT such
that fj = ¢o. Since V is refinable, f(-/2) € V*. But, f(-/2) = (-/2)0 = a(0)o on [0,1].
So a(0)o € X(V). O

Proof of Proposition 2.2:

(i) ex <§> => v (‘TQJ> () =Y (- = 2j = €)a(e)(j)
_Z;/; —(25 +2))0(2] +)Bx = exPa.

(ii) There exists v € IR™™" such that A\ = \'~. Set 3 := 3 and 3’ := Bx. Then
NaB =23 = a(0)X = a(0)N v = \N'j3'y.
Since the columns of A form a basis, v = 3’437 1. Define ¢ by Eq. (2.1) and ' similarly,
but with A" in place of A. Then, ((0) = A = X'y = /(0)y. Now, suppose 2j + ¢ > 0 and
((j) = /(7). Then
02) +e) = a(@)l(j)B~" = a(e)' ()87 = (2] +e)B'B71 = 1'(2] +2).

It follows that ey = ex~.
(iii) Set V := S(eyx) and let ¢ be as guaranteed by Lemma 3.2. Since ¢ C V, we have
S(¢) C S(en). Conversely, since ey € VT = R(¢) C S(¢), we have S(ey) C S(o). O

The proof of Theorem 2.3 will require the following lemma.

Lemma 3.3. Let V be a local FSI space. Suppose ¢ = [p1,...,¢,] C VT is such that
span{ |, ..., on|} = V|+. Then V1 = S(¢)T = R(¢).

Proof: Let f € V. We recursively construct a sequence c : Z, — IR" so that
N
f=fx:=>_¢(—je(j)on[0,N].
=0
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This is the so-called “peeling-off argument” from [1]. Since f € V* and ¢| spans V|+,
f = ¢¢(0) on [0, 1] for some ¢(0) € R". Now suppose we have ¢(0),...,¢(N) such that
f = fv on [0,N]. Then (f — fn)(- + N) € V*t. So there exists ¢(N + 1) such that
(f—fN)(-+ N) =¢e(N+1)on [0,1]. For this value for ¢(N +1), f = fn41 on [0, N 4+ 1).
So V7T is contained in R(¢) which is a subset of S(¢)7.

Since ¢ C V and S(¢) is the smallest closed shift-invariant space containing ¢, S(¢)
is a subspace of V. This, in turn, implies that S(¢)t C V7. O

Proof of Theorem 2.3: Let the columns of A form a basis for (V). We first
show that V*t = S(ey)t. By Lemma 3.3, it is sufficient to show that ey C V7 since

ey = ¥ A, which spans V|+.
Let ¢ = [¢1,...,0,] C VT be such that ¢y is a basis for V|+. Then ey = ¢y for some

v € R™™. Since ey = ex(2)3, ex = ex(27%)87F = ¢(27%)y37% on [0,2%]. Since V is
refinable, ¢(27%)y37* C V*. And since ¢ is a basis for V|+, it follows that V1T = R(¢).

So, for each n € IN, there exists a sequence ¢y such that

eA=Z¢<-—j>ck<j> on [0,2"].

Since ¢| is a basis, the set {o(-— j)|[

follows that the sequence

: |7 =0,1,...,2F — 1} is linearly independent. It

0,2k

e(j) = calj) for j € Zy, 25 > j

is well-defined and satisfies ¢y = ¢ *' c.

Since V is a local FSI space, it follows that V = S(v) for some compactly supported
generator v. Without loss of generality, suppr C [0,00). Since VT = S(ex)t, we have
v € S(ex) and ey € V. Thus, V = S(en). O

Proof of Theorem 2.5: First note that, since a(0) is invertible, A is preserved
by a(0). We show that property (i) is equivalent to each of the others.

(i) = (ii) is obvious. To see that (ii) = (i), let V' be a local refinable FSI subspace
of S(¢) such that A = (V). By Theorem 2.3, V = Sx. So A = X(S,y).

(iii) = (i) is obvious. To see that (i) = (iii), by Lemma 3.3, it is enough to point
out that ey = ¢\ is a basis for S;ﬂ = A.

To deal with property (iv), we define
h(0) := [?\} and h(25 +¢):= A.h(y) for e € {0,1}, 27 +¢ > 0.
Then Hj is the column space of [A(0), (1), h(2),...]. Also, with ¢(—1) := 0 for consistency,
L[ -1 .
h(y) = [ 06) ] for all j € 724
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by Eq. (2.1). It follows that [Z} € Hy if and only there exists an f € Sy which agrees

with ue(- + 1) + v on [—1,1].

We show that (iv) implies (i) by contraposition. Suppose A # 3(S,). Then there
exists f € S such that fi € YA. That is, f agrees with ut)(- + 1) 4+ vtp on [—1, 1] where
u=0and v ¢ A. It follows from the above remarks that v € H\A.

Finally, suppose there is some v € H{\A. Then there exists f € Sy such that f
vanishes on [—1,0] and f| = o for some 0 ¢ A. By Lemma 3.1, there is an n € IN such
that if ¢ € Sy vanishes on [—2%,0], then g) € 5;\"'. We show a(0)ko € Z(Sx)\A for this n.
First, note that

278 = (2R )0 = va(0)to.

Since f(27*.) vanishes on [—2F,0], it follows that a(0)*c € B(S,). But, a(0)¥o is not in
A since o0 ¢ A, A is a(0)-invariant, and «(0) is invertible. O

Proof of Theorem 2.6: Let the columns of A form a basis for A and recall that
ex = ¢ *' { where ( is given by Eq. (2.1). Then ex(- + j); = ¥{(j). Let L be the column
space of [((0),((1),£(2),...]. Then S(ex)| = span{¢1,...,¢n} if and only if L = R"™. We
show that L = L.

Clearly A C L, since A = ((0). Also, by Eq. (2.1) and since 3 is invertible, a(e)L C L
fore =0,1. So L, C L.

Now, the columns of ¢(0) = X are obviously in £4. And if £, contains the columns
of £(m) then it must contain the columns of ¢(2m + ¢) for ¢ = 0,1. Hence L C Lx. O

Proof of Theorem 2.7: Let the columns of w € RF*™ form a basis for W.
Then there exists © € R'"™* and ale) € R¥** such that v = dw and wa(e) = a(e)w for
e =0,1. With T := a(0) + a(1), it follows that T = 20 # 0, since the columns of w are
linearly independent and

oTw = owT = oT = v = dw.

So there exists a unique ¥ C D'(IR) supported in [0, 1] satisfying

o~

H0)= 5 and = 0(2)a(0) + ¥(2 - —1)a(1).

Multiplying each of these equations on the right by w, we see that ;/;w(O) = v and Yw
satisfies Eq. (1.1). Hence Yw = . It follows that o € WL = o = 0.

Now, let the entries of ¢» = [¢1,...,¢] form a basis for span{i,...,1¥m}. Then
there exists w € IR¥*™ such that ¢ = w. Let row w denote the row space of w, that is,
roww = {uw | u € R"*}. Evidently, v € roww. We will show that (row w)a(e) C row w
for ¢ = 0,1. Consequently, W C roww. So 1o =0 = o € W+,

For any o € IR™,

Ywo = o = ¥(2)a(0)o + (2 —1)a(l)o = ;E(Z-)wa(())a + ;/;(2 - —Lwa(l)o.

And, since the entries of ¢ are linearly independent, wo = 0 = wa(e)o =0 for e =0, 1.
Since o € IR™ was arbitrary, it follows that (row w)a(e) C roww for ¢ = 0, 1. O



4. Examples

Example 4.1. In this example, we present all local refinable FSI spaces of piecewise
polynomials with integer breakpoints and show that the list is complete.

For any r,m € ZZ satisfying —1 < r < m, the space S of all r times continuously
differentiable piecewise polynomials of degree at most m with integer breakpoints is defined

by
STi={feC"(IR) | flg,j+1) is polynomial of degree at most m for all j € ZZ }.

Note that S = E;n:r_i_l Sj_l. In fact, we will show that every local refinable shift-

invariant subspace of §™ is of the form

ZS;_I for some J C {0,...,m}.
J€J

In particular, every local refinable shift-invariant subspace of S™ is a sum of refinable PSI
spaces. This is not true of shift-invariant spaces in general. For example, the only refinable
0.1) [0.1/2) is (the proper subspace) SY;.

Define ¢ := [mq|,..., Ty ], Where 7;(x) 1= 27, Then the elements of ¢ are linearly

independent, 8™, = S(v), and ¢ is refinable with mask a(0) = d, a(1) = ed, where

i—1\]" . o—iym
¢ = {<1_1>} and d:= diag(277)7L,.

t,7=0

PSI subspace of the space generated by y and y

Since a(0) is diagonal with distinct eigenvalues, the eigenvectors are
Ao :=[1,0,...,0]", \y =[0,1,0,....0]%, ..., A\, =10,...,0,1]F

and the a(0)-invariant spaces are Ay := span{A; | € J}, J C {0,...,m}. It is easy to
verify that, for each j, the function ¢y; is the well-known truncated power function

ex; LT :1;‘_71_ = (max((),:z;))j

and S(ey;) = Sj_l. It follows that for any J C {0,...,m},
Sa, =3 Slex) =Y S/,
jeT jET

Example 4.2. We consider the case of local dimension m = 2 with a(0) invertible in
order to illustrate the main results of this paper.
Let ¢ = [11,13] be a linearly independent generator supported in [0, 1] which is

refinable with mask (a(O), a(l)). Then S(¢) must contain all constant functions and we
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can assume, without loss of generality, that ¥y = X[o.1) (cf. [3], [5], [6]). It is also assumed

that a(0) is invertible.
First, suppose a(0) is diagonalizable, in which case we may assume (by a change of

basis for ¢) that a(0) and a(1) are of the form

2 u
0 s+t
Since 1 is linearly independent, Theorem 2.7 implies s + ¢ < 2. Then the left 2-
eigenspace of T is spanned by [2— s —t,u]. If u = 0 then the invariant space W is spanned
by [1,0]; and if s = 1, then W is spanned by [1 — ¢, 1]. In either case, Theorem 2.7 implies
that ¢ is linearly dependent. So S(t) = S(1) which has no proper local refinable FSI
subspaces. So we assume s # 0, s # 1, and u # 0. By rescaling 5, we may assume u = 1.
There are three possible choices for an «a(0)-invariant space A:

1. A:=span{\:=[1,0]"}. Then ey = X[0.00) and Sy = S(¢1) is the space of piecewise
constant polynomials with integer breal&points.

2. A:=1IR?. Then Sy = S().

3. (The interesting case) A := span{\ := [0,1]7}. Calculating h(0) = [0,0,0,1]T, h(1) =
A1h(0), h(2) = Agh(1), and h(3) = A1h(1), we find that the span of h(0),...,h(3) is
{Ap, Ay }-invariant and so equals Hy. By a simple reduction, we find that H, is also
spanned by the four vectors

where s # 0, since a(0) is invertible. Then T = a(0) 4+ a(1) =

0

_ o O o

0 1
S 0
Tls+t—=11]7 | 1] |1
0 0 0

Hence H$ is span{[0,1]%,[s + ¢ — 1,0]7}. By Theorem 2.5, A is a proper subset of
Y(Sa) whenever s+t # 1. It follows that S(¢) and S(¢1) are the only local refinable
FSI subspaces of S(1) when s + ¢ # 1; but, when s +¢ = 1, there is a third local
refinable FSI subspace, S(ey). Lastly, since a(1)A = [1,#]7, we see that £, = IR* and
so, by Theorem 2.6, Sy| = span{i, v} for any values of s and .

When a(0) is not diagonalizable, we may assume (by a change of basis for ¢)2) that

a(0) = Ll) ﬂ

The only choices for A, in this case, are A = span{[1,0]”7}, and A = IR*. So the only local
refinable FSI spaces are S(t1) (which is the space of all piecewise constant polynomials
with integer breakpoints) and S(¢)).
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