
AN IMPROVED ORDER OF APPROXIMATION FOR

THIN-PLATE SPLINE INTERPOLATION IN THE UNIT DISC

Michael J. Johnson

Kuwait University

Feb 8, 1998

Abstract. We show that the Lp-norm of the error in thin-plate spline interpolation

in the unit disc decays like O(h
p+1=2), where 
p := minf2; 1 + 2=pg, under the
assumptions that the function to be approximated is C1 and that the interpolation
points contain the �nite grid fhj : j 2Z2; jhjj < 1� hg.

1. Introduction

Let H be the set of all continuous functions f : R2 ! C having square integrable
second order derivatives, and let jjj � jjj be the semi-norm de�ned on H by

jjjf jjj :=
sZ

R2

����@2f(x)@x21

����2 + 2

���� @2f(x)@x1@x2

����2 + ����@2f(x)@x22

����2 dx:
Let � be any bounded set of non-collinear points in R2. Duchon [2] has shown that
to each f 2 H, there exists a unique s 2 H which minimizes jjjsjjj subject to the
interpolation conditions sj� = fj� . The function s is called the thin-plate spline

interpolant to f at � and will be denoted by T�f . When � contains only �nitely
many points, Duchon further characterized T�f as the unique function in S(�; �)
which interpolates f at �. Here � : R2 ! R is the radially symmetric function given
by

�(x) := jxj2 log jxj ; x 2 R2;

and S(�; �) is the space of all functions g of the form

g =
X
�2�

���(� � �) + p;
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where p 2 �1 := fpolynomials of total degree � 1g and the ��'s satisfyX
�2�

��q(�) = 0; 8q 2 �1:

An important problem relating to thin-plate spline interpolation is that of de-
termining the rate at which T�f converges to f as the points � become dense. Let
us assume that 
 � R

2 is an open bounded domain over which the error will be
measured. We assume that � � 
, and we de�ne the `density' of � in 
 to be the
number

� := �(�;
) := sup
x2


min
�2�

jx � �j :
Thin-plate spline interpolation in 
 is said to provide Lp-approximation of order 

if

kf � T�fkLp(
) = O(�
)

for all su�ciently smooth functions f . Duchon [3] has shown that if 
 is connected,
satis�es a uniform cone condition, and has a Lipschitz boundary, then thin-plate
spline interpolation in 
 provides Lp-approximation of order at least


p := minf2; 1 + 2=pg
for p 2 [1 : :1]. More precisely, it was shown that

kf � T�fkLp(
) � const �
p jjjT
f � T�f jjj; 8f 2 H; p 2 [1 : :1]; and

(1.1)

jjjT
f � T�f jjj ! 0 as � ! 0:
(1.2)

Powell [7] (see also [10]) has obtained similar results for the case p = 1 with less
restrictive assumptions on the domain 
, and has even found the best const in
(1.1) for some special cases. In the limiting case when the points � are taken as
the in�nite grid hZ2 and 
 is taken as all of R2, it was shown by Buhmann [1]
that kf � T�fkL1(R2 ) = O(h4) as h! 0 for all su�ciently smooth f . His approach

employed techniques developed in the context of approximation from shift-invariant
spaces; however, this shift-invariant space approach has yet to provide any results
on the approximation order of thin-plate spline interpolation in bounded domains
(as de�ned above). Recently, Johnson [6] has shown that one should not in general
expect thin-plate spline interpolation to provide Lp-approximation of order greater
than 2+1=p. Precisely, it was shown that if 
 is the unit disk B := fx 2 R2 : jxj <
1g, then there exists f 2 C1(R2) such that kf � T�fkLp(B) 6= o(�2+1=p). Note that

the di�erence between this upper bound on the approximation order of 2+1=p and

Duchon's lower bound of 
p is 1
2 +

���1p � 1
2

���.
The purpose of the present paper is to build on Duchon's work to obtain Lp-

approximation of order 
p+ 1=2 in a special case. Our point of attack is the factor
jjjT
f � T�f jjj on the right hand side of (1.1) which, according to (1.2), decays to 0
as � ! 0. It seems plausible that if f is su�ciently smooth, then this factor might
decay to zero as some power of �. We can see immediately, that one should not in
general expect this factor to decay faster than O(

p
�):
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Theorem 1.3. If 
 = B, then there exists f 2 C1(R2) such that

jjjT
f � T�f jjj 6= o(
p
�) as �! 0:

Proof. According to [6], there exists f 2 C1(R2) such that kf � T�fkL2(
)
6=

o(�5=2). If jjjT
f � T�f jjj = o(
p
�), then it follows from (1.1) that kf � T�fkL2(
)

=

o(�5=2) which is a contradiction. �

In order to investigate the decay of jjjT
f � T�f jjj in the most favorable of cir-
cumstances, we make the following simplifying assumptions:
First, we assume that the function to be approximated, f , belongs to C1(R2). Sec-
ond, we assume that our domain 
 is the open unit disc B. And last, we assume
that our centres � satisfy

(1.4) �h � � � B; where �h := hZ2 \ (1 � h)B:

Note that S(�; �h) � S(�; �) and �(�;B) � �(�h;B) = O(h) as h! 0.
Under these assumptions, we show that the factor jjjTBf � T�f jjj decays to 0 as

O(
p
h). Precisely, we show the following

Theorem 1.5. If � satis�es (1.4) and f 2 C1(R2), then jjjTBf � T�f jjj = O(
p
h)

as h! 0, and consequently

kf � T�fkLp(B) = O(h
p+1=2) as h! 0;

where 
p := minf2; 1 + 2=pg, p 2 [1 : :1].

Note that, for p = 2, we obtain L2-approximation of order 5=2 (modulo assump-
tion (1.4)) which matches Johnson's upper bound on the L2-approximation order.

In the sequel we use standard multi-index notation: D� := @�1

@x
�1
1

@�2

@x
�2
2

. The

Laplacian operator is denoted � := @2

@x2
1

+ @2

@x2
2

. For multi-indices � 2 f0; 1; 2; : : : g2,
we de�ne j�j := �1 + �2, while for x 2 R2, we de�ne jxj :=

p
x21 + x22. For multi-

indices �, we employ the notation ()� to represent the monomial x 7! x�, x 2 R2.
The space of bivariate polynomials of total degree � k can then be expressed as
�k := spanf()� : j�j � kg. For x 2 R2, we de�ne the complex exponential ex by
ex(t) := eix�t, t 2 R2. The Fourier transform of a function f can then be expressed

as bf (w) := R
R2
e�w(x)f(x) dx. The space of compactly supported C1 functions is

denoted C1
c (R2). If � is a distribution and g is a test function, then the application

of � to g is denoted hg; �i. Familiarity with tempered distributions is assumed
throughout the sequel. Two important facts in this regard are �rst that the Fourier
transform of � can be identi�ed on R2n0 with 8� j�j�4 (cf. [4]), and second that

jjjf jjj = (2�)�1



j�j2 bf




L2(R2 )
= k�fkL2(R2 )

which is an application of the Plancherel Theorem [8; page 172].
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2. A Preliminary Result

De�nition 2.1. Let F be the collection of all functions of the form ���+p, where
p 2 �1 and � is a distribution of order at most 1 satisfying

(i) supp� � B; and

(ii) jb�(w)j � const
jwj2

1 + jwj3=2
; w 2 R2:

We point out that since � and all its �rst order derivatives are continuous and
exhibit only polynomial growth at 1, and since � is a compactly supported distri-
bution of order at most 1, it follows that the function � � �, de�ned by

� � �(x) := h�(x � �); �i;

is continuous, has only polynomial growth at 1, and satis�es (� � �)b= b�b�.
The purpose of this section is to prove the following

Theorem 2.2. Let � satisfy (1.4). If f 2 F , then the following hold:

(i) f 2 H;
(ii) jjjf � T�f jjj = O(

p
h) as h! 0;

(iii) TBf = f;

(iv) kf � T�fkLp(B) = O(h
p+1=2) as h! 0;

where 
p := minf2; 1 + 2=pg, p 2 [1 : :1].

The following lemma is crucial to proving (i).

Lemma 2.3. If g 2 Cc(R2) satis�es jg(w)j � const jwj3, then

hg; b�i = 8�

Z
R2

jwj�4
g(w) dw:

Proof. Let � 2 C1
c (R2) satisfy �jB = 1, and de�ne the tempered distribution b�

according to

hg; b�i := 8�

Z
R2

jwj�4

0@g(w) � X
j�j�2

D�g(0)

�!
�(w)w�

1A dw; g 2 C1
c (R2):

(Note that
���g(w)�Pj�j�2

D�g(0)
�! �(w)w�

��� � const(g) jwj3 and hence the above

integrand is absolutely integrable.) Since b� = b� on R2n0, it follows that � =
� + p for some polynomial p. In order to show that p 2 �2, we will estimate
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the growth of j�(x)j for large jxj. Assume jxj � 1, and put kx(w) := ex(w) �P
j�j�2

D�ex(0)
�! �(w)w�, w 2 R2. Since b� can be identi�ed with an integrable func-

tion on R2nB, it follows that

�(x) = (2�)�2hex; b�i = (2�)�28�

Z
R2

jwj�4
kx(w) dw:

Since jexj = 1 and maxj�j�2 kD�ex(0)k � const jxj2, we have the crude estimate

jkx(w)j � const jxj2, 8w 2 R2. Noting that D�kx(0) = 0, 8 j�j � 2, it follows from
Taylor's theorem that for w 2 B,

jkx(w)j � const jwj3 max
j�j=3

kD�kxkL1(B) � const jwj3 jxj3 :

Employing these two estimates on R2n jxj�1=3
B and jxj�1=3

B, respectively, we
obtain

j�(x)j � const

Z
jwj�x�1=3

jwj�4 jkx(w)j dw + const

Z
jwj<x�1=3

jwj�4 jkx(w)j dw

� const jxj2
Z
jwj�x�1=3

jwj�4
dw + const jxj3

Z
jwj<x�1=3

jwj�4 jwj3 dw

� const jxj2
Z 1

jxj�1=3
r�4r dr + const jxj3

Z jxj�1=3

0

r�1r dr = const jxj8=3 :

Since j�(x)j is also bounded by const jxj8=3 for jxj � 1, it follows that jp(x)j =
j�(x) � �(x)j � const jxj8=3 for jxj � 1. Hence, p 2 �2. Therefore, there exists
constants a�, j�j � 2 such that

(2.3) hg; b�i = hg; �i+
X
j�j�2

a�D
�g(0); 8g 2 C1

c (R2):

Now if g 2 C1
c (R2) satis�es jg(w)j � const jwj3, then D�g(0) = 0, 8 j�j � 2 and

consequently (2.3) reduces to hg; b�i = 8�
R
R2
jwj�4

g(w) dw. �

Proof of Theorem 2.2 (i). Let f 2 F , and let � and p be as in De�nition 2.1. In
order to show that f 2 H, we must show that D�f 2 L2 8 j�j = 2. Assume j�j = 2.

Then (D�f )b= �()�b�b�. Now if g 2 C1
c (R2), then g1 := �()�b�g 2 C1

c (R2) and

jg1(w)j � const jwj4, and so it follows by Lemma 2.3 that

hg; (D�f)bi = hg1; b�i = 8�

Z
R2

jwj�4
g1(w) dw

= �8�
Z
R2

jwj�4
w�b�(w)g(w) dw:
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It follows from condition (ii) of De�nition 2.1 that����8� jwj�4
w�b�(w)��� � const (1 + jwj)�3=2:

Hence, �8� j�j�4 ()�b� 2 L2(R2), and it now follows from the Plancherel Theorem
[8; page 172] that D�f 2 L2(R2). �

In order to get a handle on the quantity jjjf � T�f jjj, we make use of the fact [2]
that

jjjg� T�gjjj= minfjjjg� sjjj : s 2 S(�; �)g; 8g 2 H:
The upshot is that rather than being forced to estimate jjjf � T�f jjj directly, we
may instead estimate jjjf � shjjj where sh 2 S(�; �h) � S(�; �) can be chosen at
our convenience. Given the form of f 2 F , namely f = � � � + p, a natural way
to construct sh would be to �rst convolve � with some function  (�=h) and then
put sh =

P
j2Z2 ( (�=h) � �)(hj)�(� � hj). The only problem with this attempt is

that the coe�cients ( (�=h) � �)(hj) will not in general vanish when hj is outside
(1� h)B, and hence we cannot expect sh to belong to S(�; �h). This problem can
be overcome by convolving  (�=h) not with �, but rather with �((1 + r0h)�). With
 and r0 chosen appropriately, it will follow that ( (�=h) � �)(hj) = 0 whenever hj
is outside (1� h)B.

Let  := � � �, where � 2 Cc(R
2) and � 2 C1

c (R2) are some functions satisfying

sup
j2Z2

j�0;j � b�(w � 2�j)j � const jwj2; w 2 R2(2.4)

j1� b�(w)j � const jwj2; w 2 R2:(2.5)

For example, one could choose �(x) = �[�1:: 1]2(x)(1 � jx1j)(1 � jx2j) and �(x) =

c�1�B(x) exp(�1=(1� jxj2)) with c =
R
B
exp(�1=(1� jxj2)) dx. Let r0 > 2 be such

that supp � ( r02 � 1)B.

Lemma 2.6. Let f 2 F , and let � be as in De�nition 2.1. If �h and sh are given
by

�h := ((1 + r0h)
2 (�=h)) � (�((1 + r0h)�));

sh :=
X
j2Z2

�h(hj)�(� � hj);

then sh 2 S(�; �h) whenever 0 < h < r�1
0 .

Proof. It is a straightforward exercise to verify that the choice of r0 ensures that
supp�h � (1 � h)B. Hence it remains only to show that

P
�2�h

�h(�)q(�=h) = 0

for all q 2 �1. For that note that
P

�2�h
�h(�)q(�=h) =

P
j2Z2 �h(hj)q(j). If we

put g(x) := �h(hx)q(x), then we obtain from Poisson's summation formula (cf. [9],
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Chapter 7) that
P

j2Z2 g(j) =
P

j2Z2 bg(2�j). Now b�h = h2 b (h�)b�(�=(1 + r0h));

hence, if q =
P

j�j�1 i
�j�ja�()�, then

bg = X
j�j�1

a�D
�(h�2b�h(�=h)) = X

j�j�1

a�D
�(b�b�b�(�=(h+ r0h

2))):

Condition (2.4) ensures that D�(b�b�b�(�=(h+ r0h
2))) = 0 at 2�j whenever j 2Z2n0

and j�j � 1. On the other hand, De�nition 2.1 (ii) ensures that D�(b�b�b�(�=(h +
r0h

2))) = 0 at 0 for all j�j � 1. Hence,X
�2�h

�h(�)q(�=h) =
X
j2Z2

bg(2�j) = 0:

�

The e�ect of convolving b (�=h) with the (1 + r0h)-dilate of � rather than with
� itself is that sh is best compared not to f , but rather to the (1 + r0)-dilate of f .
For this, we de�ne

(2.7) fh := (1 + r0h)
�2f((1 + r0h)�);

and use the triangle inequality to write

jjjf � shjjj � jjjf � fhjjj+ jjjfh � shjjj:
We consider each of these terms separately in the following two lemmata.

Lemma 2.8. Let f 2 F . If fh is as de�ned in (2.7), then

jjjf � fhjjj = O(
p
h) as h! 0:

proof. Let � be as in De�nition 2.1, and note that

jjjf � fhjjj = (2�)�1



j�j2 ( bf �cfh)




L2(R2n0)

= (2�)�1



j�j2 [b�b�� (1 + r0h)

�4b�(�=(1 + r0h))b�(�=(1 + r0h))]




L2(R2n0)

= 4



j�j�2 (b�� b�(�=(1 + r0h)))





L2

:

Now, 

j � j�2(b�� b�(�=(1 + r0h))


2
L2

=

Z
R2

jwj�4 jb�(w) � b�(w=(1 + r0h))j2 dw:

We estimate this integral by breaking R2 into the three pieces B, h�1BnB, and
R

2nh�1B. For the �rst piece, we note that since b� is entire it can be written as a
power series b�(w) =X

�

c�w
�;
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and it follows from De�nition 2.1 (ii) that c(0;0) = c(1;0) = c(0;1) = 0. Thus

b�(w)�b�(w=(1+r0h)) = X
j�j�2

c�(w
��(w=(1+r0h))�) =

X
j�j�2

c�w
�(1�(1+r0h)�j�j):

It now follows that



j � j�2(b� � b�(�=(1 + r0h))



L2(B)

=







j � j�2
X
j�j�2

c�()
�(1 � (1 + r0h)

�j�j)








L2(B)

�
X
j�j�2

jc�j(1� (1 + r0h)
�j�j)



j � j�2()�



L2(B)

� r0
p
�h

X
j�j�2

jc�jj�j � consth;

where we have used the estimate 1 � (1 + r0h)�j�j � r0hj�j and the fact that

j � j�2()�



L2(B)

� p
�.

For the second piece, we note thatb�(w)�b�(w=(1+r0h)) = (1�(1+r0h)�1)w �(rb�(�)) for some � between w=(1+r0h)
and w. Since � is compactly supported, it follows from De�nition 2.1 (ii) that

jrb�(w)j � const (1 +
pjwj). Consequently, jb�(w) � b�(w=(1 + r0h))j � consth(1 +

jwj3=2). Hence,Z
h�1BnB

jwj�4 jb�(w)� b�(w=(1 + r0h))j2 dw � const

Z
h�1BnB

jwj�4h2jwj3 dw

= consth2
Z h�1

1

r�4r3r dr = consth2(h�1 � 1) � consth:

For the third piece we use the bound jb�(w)� b�(w=(1 + r0h))j � const (1 +
p
jwj)

(a consequence of De�nition 2.1 (ii)) to obtainZ
R2nh�1B

jwj�4 jb�(w) � b�(w=(1 + r0h))j2 dw � const

Z
R2nh�1B

jwj�4jwj dw

= const

Z 1

h�1
r�3r dr = consth:

�

Lemma 2.9. Let f 2 F . If fh is as de�ned in (2.7) and �h, sh are as de�ned in
Lemma 2.6, then

jjjfh � shjjj = O(
p
h) as h! 0:

Proof. Assume 0 < h � r�1
0 . In order to simplify the notation, we introduce

b�h := b�(�=(1 + r0h));
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and note thatcfh = b�b�h on R2n0. On the other hand, for w 2 R2n0, we have bsh(w) =P
j2Z2

b�(w)�h(hj)e�ihj�w. If we de�ne g(x) := �h(hx)e�ihx�w , x 2 R2, then we

obtain from Poisson's summation formula (cf. [9], Chapter 7) that
P

j2Z2 g(j) =P
j2Z2 bg(2�j). Hence,bsh(w) = b�(w) X

j2Z2

g(j) = b�(w) X
j2Z2

bg(2�j)
= b�(w) X

j2Z2

h�2b�h(w + 2�j=h)

= b�(w) X
j2Z2

b (hw + 2�j)b�h(w + 2�j=h):

Hence,

jjjfh � shjjj = (2�)�1



j�j2 ( bfh � bsh)




L2(R2n0)

= 4







j�j�2 [b�h � X
j2Z2

b (h �+2�j)b�h(�+ 2�j=h)]








L2

� 4



j�j�2 b�h(1� b (h�))




L2

+ 4







j�j�2
X

j2Z2n0

b (h �+2�j)b�h(� + 2�j=h))








L2

:

(2.10)

We consider �rst the term



j�j�2 b�h(1 � b (h�))




L2

. Since 1 � 1+ r0h � 2, it follows

from De�nition 2.1 (ii) that

(2.11) jb�h(w)j2 � const
jwj4

1 + jwj3 ; w 2 R2:

From (2.4) and (2.5) we obtain���1� b (w)���2 � const
jwj4

1 + jwj4 ; w 2 R2:

Consequently,


j�j�2 b�h(1� b (h�))


2
L2

� const

Z
R2

jwj�4 jwj4
1 + jwj3

jhwj4
1 + jhwj4 dw

= const

Z 1

0

h4r4

(1 + r3)(1 + h4r4)
r dr

� const

 Z 1

0

h4 dr +

Z 1=h

1

h4r5

r3
dr +

Z 1

1=h

r

1 + r3
dr

!

� const

 
h4 + h4

Z 1=h

1

r2 dr +

Z 1

1=h

r�2 dr

!
� consth:

(2.12)
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Let C := [�1
2 : :

1
2 )

2. Employing the partition of R2, R2 = [k2Z2 2�h�1(k + C), we
expand the square of the second term at the bottom of (2.10) as







j�j�2
X

j2Z2n0

b�h(� + 2�j=h)b (h �+2�j)







2

L2

=
X
k2Z2







j�j�2
X

j2Z2n0

b�h(� + 2�j=h) b (h �+2�j)







2

L2(2�h�1(k+C))

:

(2.13)

For j 2Z2n0 and k 2Z2nf�jg, we have




j�j�2 b�h(�+ 2�j=h)b (h �+2�j)


2
L2(2�h�1(k+C))

=

Z
2�h�1(k+C)

jwj�4 jb�h(w + 2�j=h)j2
��� b (hw + 2�j)

���2 dw
=

Z
2�h�1C

��2�h�1k + w
���4 jb�h(w + 2�(k + j)=h)j2

��� b (hw + 2�(k + j))
���2 dw

� const

Z
2�h�1C

��2�h�1k +w
���4 jw + 2�(k + j)=hj

��� b (hw + 2�(k + j))
���2 dw

� const

Z
2�h�1C

��2�h�1k +w
���4 jw + 2�(k + j)=hj kb�k2L1(2�(j+k+C)) jhwj4 dw; by (2.4);

� consth4
��h�1(k + j)

�� kb�k2L1(2�(j+k+C))

Z
2�h�1C

jwj4
j2�h�1k + wj4 dw

� consth(1 + jkj)�4 jk + jj kb�k2L1(2�(j+k+C)) :

For j 2Z2n0 and k = �j, we have




j�j�2 b�h(�+ 2�j=h)b (h �+2�j)


2
L2(2�h�1(k+C))

=

Z
2�h�1(k+C)

jwj�4 jb�h(w + 2�j=h)j2
��� b (hw + 2�j)

���2 dw
=

Z
2�h�1C

��2�h�1k + w
���4 jb�h(w)j2 ��� b (hw)���2 dw

� const

Z
2�h�1C

��2�h�1k +w
���4 jwj4

1 + jwj3 dw; by (2.11),

� consth4
Z
2�h�1C

jwj
j2�k + hwj4 dw � consth jkj�4

:
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Since � 2 C1
c (R2), it follows that

P
j2Z2

p
jjj kb�kL1(2�(j+C)) <1. Hence,





j�j�2

X
j2Z2n0

b�h(�+ 2�j=h)b (h �+2�j)







L2(2�h�1(k+C))

�
X

j2Z2n0




j�j�2 b�h(�+ 2�j=h)b (h �+2�j)



L2(2�h�1(k+C))

� const
p
h(1 + jkj)�2 + const

p
h(1 + jkj)�2

X
j2Z2nf0;�kg

p
jk + jj kb�kL1(2�(k+j+C))

� const
p
h(1 + jkj)�2:

Thus,

X
k2Z2







j�j�2
X

j2Z2n0

b�h(� + 2�j=h) b (h �+2�j)







2

L2(2�h�1(k+C))

� consth
X
k2Z2

(1 + jkj)�4 � consth:(2.14)

And so with (2.14), (2.13), (2.12), and (2.10) in view, the lemma is proved. �

With Lemma 2.8 and Lemma 2.9 in hand we can prove the intended result.

Proof of Theorem 2.2 (ii){(iv). Let f 2 F . Assume that 0 < h < r�1
0 , and let sh

be as in Lemma 2.6 and fh as de�ned in (2.7). Then

jjjf � T�f jjj = min
s2S(�;�)

jjjf � sjjj
� jjjf � shjjj; by Lemma 2.6,

� jjjf � fhjjj+ jjjfh � shjjj = O(
p
h)

by Lemma 2.8 and Lemma 2.9. Hence (ii). Since jjjTBf � T�f jjj also converges to 0
(by (1.2)), it follows that jjjTBf � f jjj = 0. Since both f and TBf belong to H and
fjB = (TBf)jB , it must be the case that f = TBf . Hence (iii). Employing (1.1) we

obtain

kf � T�fkLp(B) � consth
p jjjTBf � T�f jjj
= consth
p jjjf � T�f jjj = O(h
p+1=2)

which proves (iv). �

3. Proof of Theorem 1.5

With Theorem 2.2 in view, in order to prove Theorem 1.5, it su�ces to prove
the following
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Theorem 3.1. For all f 2 C1(R2), there exists ef 2 F such that fjB = efjB .

Recall that the form of ef 2 F is ef = � ��+ p where p 2 �1 and the distribution
� satis�es the conditions of De�nition 2.1, the most restrictive of which is jb�(w)j =
O(
p
jwj) for large jwj. The following two lemmas display a class of distributions

which satisfy this condition.
Let y(�) denote the point (cos �; sin �) 2 @B, and note that y(�) is the outward

unit normal to @B at y(�).

Lemma 3.2. If � is the distribution given by

hg; �i :=
Z �

��

Dy(�)g(y(�)) d�;

then jb�(w)j � const (1 +
p
jwj), w 2 R2.

Proof. Since � is compactly supported, its Fourier transform is entire, and so it
su�ces to show that jb�(w)j � const

pjwj, jwj > 2�. Since � is radially symmetric,
so is its Fourier transform, and hence it su�ces to consider only w = (0; t), t > 2�,
wherein

b�(w) = he�w; �i =
Z �

��

Dy(�)e�w(y(�)) d�

=

Z �

��

�it sin � e�it sin � d�

=

Z �

��

�t sin � sin(t sin �) d�; since � it sin � cos(t sin �) is odd in �;

= �4
Z �=2

0

t sin � sin(t sin �) d�:

Employing the change of variables x = t sin �, we arrive at b�(w) = �4
Z t

0

sinx
xp

t2 � x2
dx.

Let N be the largest integer for whichN� � t, and de�neAn :=

Z (n+1)�

n�

sinx
xp

t2 � x2
dx,

for n = 0; 1; : : : ;N � 1. Then

b�(w) = �4
N�1X
n=0

An � 4

Z t

N�

sinx
xp

t2 � x2
dx:

Since x 7! x=
p
t2 � x2 is increasing on [0 : : t), it follows that jAnj < jAn+1j for

n = 0; 1; : : : ;N � 2, and since the An's are alternating in sign, it follows that�����
N�1X
n=0

An

����� < jAN�1j. Therefore,

jb�(w)j � 4 jAN�1j+ 4

Z t

N�

jsinxj xp
t2 � x2

dx

� 4

Z t

t�2�

xp
t2 � x2

dx = 4
p
4t� � 4�2 � 8

p
�t:
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�

Lemma 3.3. Let g1 2 L1(B), let g2 2 L1([�� : : �]), and let g3 2 C1(R) be 2�-
periodic. If � is the distribution given by

hg; �i :=
Z
B

g(�)g1(�) d� +

Z �

��

g(y(�))g2(�) +Dy(�)g(y(�))g3(�) d�;

then jb�(w)j � const (1 +
pjwj), w 2 R2.

Proof. Let � be as de�ned in Lemma 3.2, and let q 2 C1
c (R2) be such that q = 0 on

1
4B and q = 1 on 5

4Bn34B. De�ne q3 2 C1
c (R2) by q3(x) := q(x)g3(arg(x1 + ix2)).

Note that

hg; q3�i = hgq3; �i =
Z �

��

Dy(�)(gq3)(y(�)) d�

=

Z �

��

Dy(�)g(y(�))q3(y(�)) d�; since Dy(�)q3(y(�)) = 0;

=

Z �

��

Dy(�)g(y(�))g3(�) d�:

Hence, � can be written as � = �1 + q3�, where �1 is given by

hg; �1i :=
Z
B

g(�)g1(�) d� +

Z �

��

g(y(�))g2(�) d�:

Of course, jb�1(w)j � kg1kL1(B)+ kg2kL1([��:: �])
. On the other hand, since jb�(w)j �

const (1 +
p
jwj) (by Lemma 3.2) and since q3 2 C1

c (R2), it follows that

jdq3�(w)j = (2�)�2 jbq3 � b�(w)j � const (1 +
p
jwj)

which completes the proof. �

The following statement of Green's second identity may be found in [5; page 17].

Lemma 3.4. Let 
 � R2 be a bounded domain with a C1 boundary, and let u; v 2
C2(
). Then Z




�u v dm =

Z



u�v dm+

Z
@


[vD�!n u� uD�!n v] ds;

where �!n denotes the outward unit normal to @
.

Our goal at present is to identify a distribution � of the form described in Lemma
3.3 such that

(3.5) f(x) = � � �(x); 8x 2 B:
The following proposition displays (implicitly) a distribution whose convolution
with � agrees with f on B. This distribution, however, is not of the desired form
because its third term involves the Laplacian of the test function.
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Proposition 3.6. If f 2 C1(R2), then for all x 2 B,

8�f(x) =

Z
B

�(� � x)�2f(�) d� +

Z
@B

D�!n �(s � x)�f(s) � �(s� x)D�!n�f(s) ds

+

Z
@B

D�!n��(s� x) f(s) ���(s� x)D�!n f(s) ds;

where �!n is the outward unit normal to @B at �.

Proof. WLOG we may assume that f is compactly supported since otherwise we
could replace f with a compactly supported C1 function which agrees with f on
B. Let a > 1 be so large that suppf � aB.

Claim. �2f � � = 8�f .

proof. Since �2f 2 C1
c (R2) it follows that

�
�2f � ��b= j�j4 bf b�. Hence ��2f � ��b=

8� bf on R2n0. Therefore �2f � � = 8�f + p for some polynomial p. In order to
show that p = 0, it su�ces to show that �2f � �(x) = 0 for su�ciently large jxj.
For that let jxj > a. Then

�2f � �(x) =
Z
aB

�2f(�)�(x � �) d�

=

Z
aB

f(�)�2�(x� �) d�; by Lemma 3.4,

= 0; as �2�(x � �) = 0 for � 2 aB:

Hence the claim.

Let x 2 B. By the claim, we have

8�f(x) =

Z
R2

�2f(�)�(x � �) d� =

Z
aB

�2f(�)�(� � x) d�; since �(��) = �;

=

Z
B

�2f(�)�(� � x) d� +

Z
aBnB

�2f(�)�(� � x) d�:

(3.7)

Since �(� � x) 2 C1(R2nB), we may apply Lemma 3.4 twice to the latter integral
above to obtainZ

aBnB

�2f(�)�(� � x) d�

=

Z
aBnB

�f(�)��(� � x) d� �
Z
@B

[D�!n�f(s)�(s � x) ��f(s)D�!n �(s� x)] ds

= �
Z
@B

[D�!n�f(s)�(s � x)��f(s)D�!n �(s� x)] ds

�
Z
@B

[D�!n f(s)��(s � x) � f(s)D�!n��(s� x)] ds;
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as
R
aBnB

f(�)�2�(� � x) d� = 0 since �2�(� � x) = 0 for � 2 aBnB. With (3.7) in

view, this completes the proof. �

In order to obtain a distribution of the desired form and satisfying (3.5), it su�ces
to �nd C1 functions g1 and g2 such thatZ

@B

D�!n��(s� x) f(s) ���(s� x)D�!n f(s) ds

=

Z
@B

D�!n �(s � x) g1(s) + �(s� x) g2(s) ds; 8x 2 B:(3.8)

To do this we employ the Fourier series representations of fj@B and D�!n f j@B , say
f(y(�)) =

P
n ane

in� and Dy(�)f(y(�)) =
P

n bne
in�. The purpose of the following

proposition and two corollaries is to identify sequences fcng and fdng such thatZ �

��

Dy(�)��(y(�) � x) ane
in� ���(y(�) � x) bne

in� d�

=

Z �

��

Dy(�)�(y(�) � x) cne
in� + �(y(�) � x) dne

in� d�; 8x 2 B:

That (3.8) holds will then follow with g1(y(�)) =
P

n cne
in� and g2(y(�)) =

P
n dne

in�.

De�nition. For u 2 C(R2) and n 2Z, we de�ne

Rn[u](t) :=
1

2�

Z �

��

ein�u(ty(�)) d�;

where y(�) := (cos �; sin �).

Proposition 3.9. For t > 0, x 2 tB, and n 2Z, jnj � 2, the following hold:

(i) R0[�(� � x)](t) = t2 log t+ jxj2 (1 + log t);

(ii) R�1[�(� � x)](t) = �(x1 � ix2)(t log t+ t=2 + t�1 jxj2 =4);

(iii) Rn[�(� � x)](t) =
1

2 jnj (x1 + sign(n)ix2)
jnj

 
t2�jnj

jnj � 1
� t�jnj jxj2

jnj+ 1

!
:

Proof. (i) was proved in [6]. Since R�n[�(��x)](t) is simply the complex conjugate
of Rn[�(� � x)](t), it su�ces to prove (ii) and (iii) only for n positive. Since, for

t > 0 and x 2 R2, �(tx) = t2 jxj2 log t+ t2�(x), it follows that

Rn[�(� � x)](t) =
1

2�

Z �

��

ein��(ty(�) � x) d� =
1

2�

Z �

��

ein��(t(y(�) � x=t)) d�

=
1

2�

Z �

��

ein�[t2 jy(�) � x=tj2 log t+ t2�(y(�) � x=t)] d�

= t2(log t)Rn[j� � x=tj2](1) + t2Rn[�(� � x=t)](1):

(3.10)
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It is a simple matter to show that

(3.11) Rn[j� � �j2](1) =
� �(�1 + i�2) if n = 1;

0 if n > 1:

De�ne G 2 C(R2) by

G(�) := Rn[�(� � �)](1) =
1

2�

Z �

��

ein��(y(�) � �) d�:

It is a straightforward matter to verify that GjB 2 C1(B), �2G = 0 on B, and

G(�) = ein arg(�1+i�2)G(j�j y(0)) for 0 < j�j < 1. In polar coordinates, if eG(r; �) :=
G(ry(�)), then this last condition can be expressed as eG(r; �) = ein�g(r), where

g(r) := eG(r; 0). The equation �2G = 0, written in polar coordinates, reduces to
the homogeneous di�erential equation

L2g = 0; where

Lg := g00 +
1

r
g0 � n2

r2
g:

It is easy to verify that on the interval (0 : : 1), this equation has the four linearly
independent solutions fr; r3; r�1; r log rg (if n = 1) and frn; r2+n; r�n; r2�ng (if
n > 1). It then follows from the classical theory of di�erential equations that there
exist an, bn, cn, and dn such that

g(r) =

�
anr

n + bnr
2+n + cnr

�n + dnr log r if n = 1;

anr
n + bnr

2+n + cnr
�n + dnr

2�n if n > 1:

It must be the case that cn = dn = 0 since otherwise G would not be C1 near the
origin. Therefore, g(r) = anr

n + bnr
2+n and hence,

G(�) = einarg(�1+i�2)(an j�jn + bn j�jn+2)

= (�1 + i�2)
n(an + bn j�j2); � 2 B:(3.12)

In order to �nd an note that if � = �y(0), then G(�y(0)) = an�
n + bn�

n+2 and
hence

an =
1

n!

dn

d�n
G(�y(0))j�=0

:

Put k(�; �) := jy(�) � �y(0)j2 = 1� 2� cos �+ �2, K(�; �) := log(k(�; �)), F (�; �) :=
k(�; �)K(�; �), and let 0 denote di�erentiation with respect to � so that k0(�; �) =
�2 cos �+2� and k00(�; �) = 2. Since �(y(�)� �y(0)) = (1=2)F (�; �), it follows that

G(�y(0)) =
1

4�

Z �

��

ein�F (�; �) d�; and

an =
1

4�n!

Z �

��

ein�F (n)(0; �) d�:

Let Tl denote the space of univariate trigonometric polynomials of degree � l; that

is, the space of functions f which can be written as f(�) =
Pl

j=�l aje
ij�, � 2 R,

and let us agree that T�1 = f0g.
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Claim. There exists qn 2 Tn�2 such that

K(n)(0; �) = �(n� 1)!2n cosn � + qn(�):

proof. Note thatK(0; �) = 0. SinceK 0(�; �) =
k0(�; �)

k(�; �)
, we haveK 0(0; �) = �2 cos �.

A second di�erentiation shows that K 00(0; �) = �4 cos2 �+2. Thus the claim is true
for n = 1; 2. Proceeding by induction, assume the claim for n0 � n and consider
n + 1 � 3. Using Leibniz formula to di�erentiate the equality K 0(�; �)k(�; �) =
k0(�; �) n times yields

Pn
l=0

�
n
l

�
K(n+1�l)k(l) = k(1+n) = 0; hence

K(n+1)(0; �) = �
nX
l=1

�n
l

�
K(n+1�l)(0; �)k(l)(0; �)

= �nK(n)(0; �)k0(0; �) � 2
�n
2

�
K(n�2)(0; �)

= �n!2n+1 cosn+1 � + 2nqn(�) cos � � 2
�n
2

�
K(n�2)(0; �); by induction hyp.

Thus the claim is true for n+ 1 with qn+1(�) := 2nqn(�) cos � � 2
�
n
2

�
K(n�2)(0; �).

Since F 0(0; �) = k0(0; �)K(0; �) + k(0; �)K 0(0; �) = �2 cos � we have

a1 =
1

4�

Z �

��

ei�(�2 cos �) d� = �1

2
:

If n > 1, then

F (n)(0; �) =
nX
l=0

�n
l

�
k(l)(0; �)K(n�l)(0; �)

= K(n)(0; �) + nk0(0; �)K(n�1)(0; �) + 2
�n
2

�
K(n�2)(0; �)

= �(n � 1)!2n cosn � + qn(�) + n(n � 2)!2n cosn � � 2n cos �qn�1(�) + 2
�n
2

�
K(n�2)(0; �)

= (n � 2)!2n cosn � + eqn(�); where

eqn(�) := qn(�) � 2n cos �qn�1(�) + 2
�n
2

�
K(n�2)(0; �):

Note that eqn 2 Tn�2. Since
R �
�� e

in�q(�) d� = 0 for all q 2 Tn�2, it follows that

an =
1

4�n!

Z �

��

ein�(n � 2)!2n cosn � d�

=
2n

2n(n� 1)

1

2�

Z �

��

ein� cosn � d� =
1

2n(n� 1)
; n > 1:
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In order to determine the bn's, it is simpler if we �rst apply the Laplacian to (3.12)
to obtain

�G(�) = bn4(n+ 1)(�1 + i�2)
n; � 2 B:

If � = �y(0), then G(�y(0)) = bn4(n+ 1)�n and hence

bn =
1

4(n+ 1)!

dn

d�n
�G(�y(0))j�=0

=
1

4(n + 1)!

dn

d�n
Rn[��(� � �y(0))](1)j�=0

Since �� = 4 + 4 log j�j, it follows that ��(y(�) � �y(0)) = 4 + 2K(�; �) and hence

bn =
1

4(n + 1)!

1

2�

Z �

��

ein�(4 + 2K(n)(0; �)) d�

=
1

4(n+ 1)!

1

2�

Z �

��

ein�(4� (n� 1)!2n+1 cosn � + 2qn(�)) d�

= � 2n

2n(n+ 1)

1

2�

Z �

��

ein� cosn � d�; since 4 + 2qn 2 Tn�2;

= � 1

2n(n+ 1)
:

Considering �rst the case n = 1, we have by (3.12) that G(�) = (�1 + i�2)(�1
2 �

1
4 j�j2), and hence by (3.10) and (3.11) it follows that

R1[�(� � x)](t) = �t2(log t)(x1=t+ ix2=t) + t2G(x=t)

= �(x1 + ix2)t log t+ t2(x1=t+ ix2=t)(�1=2 � jx=tj2 =4)
= �(x1 + ix2)(t log t+ t=2 + t�1 jxj2 =4):

which proves (ii). Assume now that n > 1. Then by (3.12), G(�) = (�1 +

i�2)n(
1

2n(n�1) � 1
2n(n+1) j�j2), and by (3.10) and (3.11) we obtain

Rn[�(� � x)](t) = t2G(x=t) = t2(x1=t+ ix2=t)
n

�
1

2n(n� 1)
� 1

2n(n+ 1)
jx=tj2

�
=

1

2n
(x1 + ix2)

n

 
t2�n

n� 1
� t�n jxj2

n+ 1

!
which proves (iii). �

Corollary 3.13. For all x 2 B and n 2Z, jnj � 2, the following hold:

(1) R0[D�!n��(� � x)](1) = R0[��(� � x)](1) = 4

= 4(R0[D�!n �(� � x)](1) �R0[�(� � x)](1));

(2) R�1[D�!n��(� � x)](1) = �R�1[��(� � x)](1) = 2(x1 � ix2)

= �(R�1[D�!n �(� � x)](1) +R�1[�(� � x)](1));

(3) Rn[D�!n��(� � x)](1) = � jnjRn[��(� � x)](1) = 2(x1 + sign(n)ix2)
jnj

= 2 jnj (jnj � 1)(Rn[D�!n �(� � x)](1) + jnjRn[�(� � x)](1)):
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where for brevity we have written Rn[D�!n u](1) in place of 1
2�

R �
��

ein�D�!n u(y(�)) d�,�!n being the outward unit normal to @B at y(�).

Proof. Let �x denote the Laplacian with respect to x, ie. �x :=
@2

@x2
1

+ @2

@x2
2

. It is a

straightforward matter to verify that

Rn[�u(� � x)](t) = �xRn[u(� � x)](t); and(3.14)

Rn[D�!n u(� � x)](1) =
@

@t
Rn[u(� � x)](t)jt=1

:(3.15)

Evaluating (i) at t = 1 yields R0[�(� � x)](1) = jxj2; while it follows from (i) and

(3.15) that R0[D�!n �(� � x)](1) = 1 + jxj2. Hence, 4R0[D�!n �(� � x)](1) � 4R0[�(� �
x)](1) = 4. It follows from (i) and (3.14) that

(3.16) R0[��(� � x)](t) = 4(1 + log t):

Evaluating (3.16) at t = 1 yields R0[��(� � x)](1) = 4; while it follows from (3.16)
and (3.15) that R0[D�!n��(� � x)](1) = 4. Hence (1). In order to prove (2) and (3),
it su�ces to consider only n � 1 as the remaining cases follow simply by complex
conjugation. In a similar manner to the above, it can be deduced from (ii), (3.14),

and (3.15) that R1[�(� � x)](1) = �(x1 + ix2)(
1
2 + 1

4 jxj2), R1[D�!n �(� � x)](1) =

�(x1+ix2)(32� 1
4 jxj2), R1[��(��x)](1) = �2(x1+ix2), and R1[D�!n��(��x)](1) =

2(x1 + ix2) from which (2) readily follows. Similarly, it follows from (iii), (3.14),

and (3.15) that Rn[�(� � x)](1) = 1
2n(x1 + ix2)n(

1
n�1 � jxj2

n+1), Rn[D�!n �(� � x)](1) =
1
2n(x1 + ix2)n(

2�n
n�1 +

njxj2

n+1 ), Rn[��(�� x)](1) = � 2
n (x1+ ix2)n, and Rn[D�!n��(� �

x)](1) = 2(x1 + ix2)
n from which (3) readily follows. �

Corollary 3.17. Let f 2 C1(R2), and de�ne sequences fcngn2Z , fdngn2Z by

cn :=

8><>:
4(a0 � b0) if n = 0;

�(an + bn) if jnj = 1;

2(jnj � 1)(jnj an + bn) if jnj > 1;

dn :=

� �c0 if n = 0;

jnj cn if n 6= 0;

where

an :=
1

2�

Z �

��

e�in�f(y(�)) d� and bn :=
1

2�

Z �

��

e�in�Dy(�)f(y(�)) d�:

Then for all x 2 B,

8�f(x) =

Z
B

�(� � x)�2f(�) d� +

Z �

��

Dy(�)�(y(�) � x)[�f(y(�)) +
X
n2Z

cne
in�] d�

+

Z �

��

�(y(�) � x)[�Dy(�)�f(y(�)) +
X
n2Z

dne
in�] d�:
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Proof. In light of Proposition 3.6, it su�ces to show that for all x 2 B,Z �

��

Dy(�)��(y(�) � x)f(y(�)) ���(y(�) � x)Dy(�)f(y(�)) d�

=

Z �

��

Dy(�)�(y(�) � x)
X
n2Z

cne
in� + �(y(�) � x)

X
n2Z

dne
in� d�:

Since f 2 C1(R2), the following hold:

lim
jnj!1

(janj+ jbnj) jnjm = 0; 8m> 0;

lim
jnj!1

(jcnj+ jdnj) jnjm = 0 8m> 0;

f(y(�)) =
X
n2Z

ane
in�; 8� 2 [�� : : �];

Dy(�)f(y(�)) =
X
n2Z

bne
in�; 8� 2 [�� : : �]:

It follows from Corollary 3.13 that

anRn[D�!n��(� � x)](1) � bnRn[��(� � x)](1)

= cnRn[D�!n �(� � x)](1) + dnRn[�(� � x)](1) 8n 2Z; x 2 B:

Hence, for x 2 B,

1

2�

Z �

��

Dy(�)��(y(�) � x)f(y(�)) ���(y(�) � x)Dy(�)f(y(�)) d�

=
X
n2Z

(anRn[D�!n��(� � x)](1) � bnRn[��(� � x)](1))

=
X
n2Z

(cnRn[D�!n �(� � x)](1) + dnRn[�(� � x)](1))

=
1

2�

Z �

��

Dy(�)�(y(�) � x)
X
n2Z

cne
in� + �(y(�) � x)

X
n2Z

dne
in� d�:

�

Proof of Theorem 3.1. Let f 2 C1(R2), and let fcngn2Z and fdngn2Z be as de�ned
in Corollary 3.17. De�ne the distribution � by

hg; �i := 1

8�

Z
B

g(�)�2f(�) d� +
1

8�

Z �

��

Dy(�)g(y(�))(�f(y(�)) +
X
n2Z

cne
in�) d�

+
1

8�

Z �

��

g(y(�))(�Dy(�)�f(y(�)) +
X
n2Z

dne
in�) d�:
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It follows fromCorollary 3.17 (and from the fact that � = �(��)) that ���(x) = f(x)
for all x 2 B. De�ne distributions �(0;0), �(1;0), and �(0;1) by

hg; �(0;0)i := 1

2�

Z �

��

Dy(�)g(y(�)) � g(y(�)) d�;

hg; �(1;0)i := � 1

4�

Z �

��

�
Dy(�)g(y(�)) + g(y(�))

�
cos � d�;

hg; �(0;1)i := � 1

4�

Z �

��

�
Dy(�)g(y(�)) + g(y(�))

�
sin � d�:

It follows from Corollary 3.13 that for all x 2 B, ���(0;0)(x) = 1, ���(1;0)(x) = x1,
and � � �(0;1)(x) = x2. And it can be shown with a simple integration that

h1; �(0;0)i = �1, h()(1;0); �(1;0)i = h()(0;1); �(0;1)i = �1=2, and h()�; ��i = 0 when-
ever �; � 2 f(0; 0); (1; 0); (0; 1)g and � 6= �. De�ne the distribution e� and the
polynomial ep 2 �1 by

e� := � + h1; �i�(0;0) + 2h()(1;0); �i�(1;0) + 2h()(0;1); �i�(0;1);ep := �h1; �i � 2h()(1;0); �i()(1;0) � 2h()(0;1); �i()(0;1);

and note that supp e� � B. Put ef := � � e� + ep. Then, for x 2 B,
ef (x) =� � �(x) + h1; �i(� � �(0;0)(x) � 1) + 2h()(1;0); �i(� � �(1;0)(x) � x1)

+ 2h()(0;1); �i(� � �(0;1) � x2) = f(x):

Since f 2 C1(R2), it follows by Lemma 3.3 that
���be�(w)��� � const(1 +

pjwj), w 2
R2. In the de�nition of e�, the coe�cients of �(0;0), �(1;0), and �(0;1) were chosen

to ensure that h1; e�i = h()(1;0); e�i = h()(0;1); e�i = 0. It follows from this thatbe�(0) = D(1;0)be�(0) = D(0;1)be�(0) = 0 from which we conclude
���be�(w)��� � const jwj2.

Hence,
���be�(w)��� � const

jwj2
1 + jwj3=2

, w 2 R2. Therefore ef 2 F . �
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