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ABSTRACT. We show that the L,-norm of the error in thin-plate spline interpolation
in the unit disc decays like O(hYpt1/2) where vp = min{2,1 4+ 2/p}, under the
assumptions that the function to be approximated 1s C°° and that the interpolation
points contain the finite grid {hj : j € Z2, |hj| < 1 — h}.

1. INTRODUCTION

Let H be the set of all continuous functions f : R? — C having square integrable
second order derivatives, and let ||| - ||| be the semi-norm defined on H by

A1l == \// ‘63;?)

Let = be any bounded set of non-collinear points in R%. Duchon [2] has shown that
to each f € H, there exists a unique s € H which minimizes |||s||| subject to the
interpolation conditions s;_ = f|_. The function s is called the thin-plate spline
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interpolant to f at = and will be denoted by T=f. When = contains only finitely
many points, Duchon further characterized Tz f as the unique function in S(¢; =)
which interpolates f at Z. Here ¢ : R? — R is the radially symmetric function given
by

$(x) = [o log|z|, = eR?,

and S(¢; =) is the space of all functions ¢ of the form

9= Xed(- =& +p,

e
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where p € IIy := {polynomials of total degree < 1} and the A¢’s satisfy

D Neq(§) =0, Vgel,.
==
An important problem relating to thin-plate spline interpolation is that of de-
termining the rate at which T= f converges to f as the points = become dense. Let
us assume that @ C R? is an open bounded domain over which the error will be
measured. We assume that = C Q, and we define the ‘density’ of = in Q to be the
number

§:=06(=;) := supmin |z — &|.
€ ge=

Thin-plate spline interpolation in () is said to provide L,-approzimation of order ~
if

1f = T=fll1, @ = O067)
for all sufficiently smooth functions f. Duchon [3] has shown that if € is connected,

satisfies a uniform cone condition, and has a Lipschitz boundary, then thin-plate
spline interpolation in €2 provides L,-approximation of order at least

Yp = min{2,1+2/p}
for p € [1..00]. More precisely, it was shown that

(1.1)
If = Tefll, o) < const8#|[|Taf —T=fll, ¥fe H.pe[l..oc), and

(1.2)
| Taf — T=f]l] = 0 as 6 — 0.

Powell [7] (see also [10]) has obtained similar results for the case p = oo with less
restrictive assumptions on the domain €2, and has even found the best const in
(1.1) for some special cases. In the limiting case when the points = are taken as
the infinite grid hZ? and § is taken as all of R?, it was shown by Buhmann [1]
that || f — TEfHLOO(RQ) = O(h*) as h — 0 for all sufficiently smooth f. His approach
employed techniques developed in the context of approximation from shift-invariant
spaces; however, this shift-invariant space approach has yet to provide any results
on the approximation order of thin-plate spline interpolation in bounded domains
(as defined above). Recently, Johnson [6] has shown that one should not in general
expect thin-plate spline interpolation to provide L,-approximation of order greater
than 2+ 1/p. Precisely, it was shown that if Q is the unit disk B := {z € R?: |z| <
1}, then there exists f € C°°(R?) such that || f — TEfHLp(B) +£ 0(§2T1/P), Note that
the difference between this upper bound on the approximation order of 2+ 1/p and
11

r 2|

The purpose of the present paper is to build on Duchon’s work to obtain L,-
approximation of order v, + 1/2 in a special case. Our point of attack is the factor
|[|Taf — T=f]|| on the right hand side of (1.1) which, according to (1.2), decays to 0
as 6 — 0. It seems plausible that if f is sufficiently smooth, then this factor might
decay to zero as some power of §. We can see immediately, that one should not in

general expect this factor to decay faster than O(\/g):

Duchon’s lower bound of +, is % +
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Theorem 1.3. If Q = B, then there exists f € C>(R?) such that

ITa f = T=fIIl # o(V3) as & — 0.

Proof. According to [6], there exists f € C°(R?) such that Hf—TEfHL2(Q) +
o(5°/?). I |[|Taf — T=f|l| = o(V/§), then it follows from (1.1) that ||f — T=f|[,,q) =

0(55/2) which is a contradiction. [

In order to investigate the decay of |||Tof — T= f]|| in the most favorable of cir-
cumstances, we make the following simplifying assumptions:
First, we assume that the function to be approximated, f, belongs to C'>°(R?). Sec-
ond, we assume that our domain €2 is the open unit disc B. And last, we assume
that our centres = satisfy

(1.4) =, C=C B, where =), := hZ*N (1 — h)B.

Note that S(¢; =) C S(¢;2) and §(=; B) < 6(=p; B) = O(h) as h — 0.
Under these assumptions, we show that the factor |||[Tpf — T= f||| decays to 0 as
O(V'h). Precisely, we show the following

Theorem 1.5. If = satisfies (1.4) and f € C®(R?), then |||[Tsf — T=f||| = O(VR)
as h — 0, and consequently

1f =T=flly, ) = OB 2) as h — 0,

where v, := min{2,1 4 2/p}, p € [1..0o0].

Note that, for p = 2, we obtain Ls-approximation of order 5/2 (modulo assump-
tion (1.4)) which matches Johnson’s upper bound on the Ly-approximation order.

In the sequel we use standard multi-index notation: D% := a—all%. The
q dr, " dr,

Laplacian operator is denoted A := a 507 —|— . For multi-indices o € {0,1,2,... }?%,
we define |a| := a1 + ag, while for = € Rz, we define |z] := /2?2 + 22. For multi-

indices a, we employ the notation ()* to represent the monomial  — 2%, z € R2.
The space of bivariate polynomials of total degree < k can then be expressed as
Iy := span{()* : |a| < k}. For € R% we define the complex exponential e, by
ex(t) = e”'t te R2 The Fourier transform of a function f can then be expressed
as f fRQ €—w (x) dx. The space of compactly supported C* functions is
denoted C?(Rz) If /,L is a distribution and ¢ is a test function, then the application
of u to g is denoted (g, ). Familiarity with tempered distributions is assumed
throughout the sequel. Two important facts in this regard are first that the Fourier
transform of ¢ can be identified on R2\0 with 87 |-|~* (cf. [4]), and second that

IIF1]] = (2m)~

which is an application of the Plancherel Theorem [8; page 172].
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2. A PRELIMINARY RESULT

Definition 2.1. Let F be the collection of all functions of the form ¢y + p, where
p € II1 and p i1s a distribution of order at most 1 satisfying

(1) suppu C B, and
2
|w]

(17) |fi(w)] < const w € R2

1 + |u)|3/27

We point out that since ¢ and all its first order derivatives are continuous and
exhibit only polynomial growth at oo, and since p is a compactly supported distri-
bution of order at most 1, it follows that the function ¢ * p, defined by

¢ pix) = (Sl — ), 1),

is continuous, has only polynomial growth at oo, and satisfies (¢ * ) "= q/b\ﬁ
The purpose of this section is to prove the following

Theorem 2.2. Let = satisfy (1.4). If f € F, then the following hold:

(z
(i

(iii

fed,

Ilf = T=flll = O(Vh) as h — 0,

TBf = f7

If = TEfHLp(B) = O(hypﬂ/z) as h — 0,

o~

)
)
)
(iv)
where v, := min{2,1 4 2/p}, p € [1..0o0].

The following lemma is crucial to proving (i).

Lemma 2.3. If g € C.(R?) satisfies |g(w)| < const |w|3, then

o~

(g.3) = 8 /]R |~ g(uw) duw.

Proof. Let 0 € C>°(R?) satisfy Ty = 1, and define the tempered distribution v

according to

ooy s=m [ fol™ (gt = 2 8 o | du, g€ )
jal<2

al

(Note that ‘g(w) — E|a|§2 ma(w)wa

< const(g) |w|® and hence the above
v

= qg on R?\0, it follows that ¢ =

v + p for some polynomial p. In order to show that p € IIs, we will estimate

integrand is absolutely integrable.) Since
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the growth of |v(z)| for large |z|. Assume |¢| > 1, and put ky(w) := ez(w) —
E|a|<2 Dzi“;(o)a(w)wa, w € R?. Since 7 can be identified with an integrable func-

tion on R?\ B, it follows that

v(z) = (21) Hey, D) = (277)_2877/ |w| ™ ey (w) duw.

R2

Since |e;| = 1 and max|q|<2 [[D%e,(0)|| < const |z|*, we have the crude estimate

|k (w)| < const |z|?, Vw € R2. Noting that D%k, (0) = 0, ¥ |a| < 2, it follows from
Taylor’s theorem that for w € B,

Y

|k (w)] < const w]? |maX [Dkell 5y < const INELS
al|=3 e

Employing these two estimates on R?\ |:Jc|_1/3 B and |:Jc|_1/3 B, respectively, we
obtain

lv(2)] < const / |w| ™ |k (w)| dw + const/ |w| ™ |k (w)| dw
|w|>z=1/3 |w|<z—1/3
< const |z|? lw|™* dw + const |z|* lw| ™ Jw]® dw
|w|>a=1/3 |w|<z—1/3
00 |l’|_1/3
< const |z|? r~*r dr + const |:1;|3/ r~1r dr = const |:Jc|8/3 .
|z~ 4/® 0

Since |¢(x)] is also bounded by const |:Jc|8/3 for |x| > 1, it follows that |p(z)| =

|p(x) — v(x)| < const |:Jc|8/3 for || > 1. Hence, p € II5. Therefore, there exists
constants a,, |a| < 2 such that

(2:3) (9.0) = {g.) + Y aaDg(0), V¥ge CZ(R?).
jal<2

Now if g € C®°(R?) satisfies |g(w)| < const [w|®, then D*¢(0) = 0, ¥|a| < 2 and
consequently (2.3) reduces to (g,¢) = 87 [4. |w|_4 g(w)dw. O

Proof of Theorem 2.2 (i). Let f € F, and let u and p be as in Definition 2.1. In
order to show that f € H, we must show that D*f € L, V|a| = 2. Assume |o| = 2.

Then (D*f)" = —()aq/b\ﬁ Now if ¢ € C2°(R?), then ¢1 := —()*fig € C>°(R?) and
lg1(w)] < const |w[*, and so it follows by Lemma 2.3 that

o~

(0017 = (a5 = 57 [ Jul ™ gy ()

= —877/ w| ™ wTi(w)g(w) dw.
R2
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It follows from condition (ii) of Definition 2.1 that
—8 |w| T wi(w)| < const (1 + |w]) /2.

Hence, —87 || ()°fi € Ly(R?), and it now follows from the Plancherel Theorem
[8; page 172] that D f € L(R?). O

In order to get a handle on the quantity |||f — T= f]||, we make use of the fact [2]
that

llg = T=glll = min{[llg — s[[| : s € S(¢;2)}, Vg e H.

The upshot is that rather than being forced to estimate |||f — Tz f||| directly, we
may instead estimate |||f — sp||| where s, € S(¢;Z,) C S(¢;Z) can be chosen at
our convenience. Given the form of f € F, namely f = ¢ * pu + p, a natural way
to construct s, would be to first convolve p with some function ¢(-/h) and then
put s, = E]EZQ (¢(-/h) * pu)(hg)o(- — hy). The only problem with this attempt is
that the coefficients (¢/(-/h) * p)(hj) will not in general vanish when hj is outside
(1 — h)B, and hence we cannot expect sj, to belong to S(¢;=). This problem can
be overcome by convolving ¢ (-/h) not with u, but rather with p((1 + roh)-). With
p and ro chosen appropriately, it will follow that (¢(-/h) * u)(hj) = 0 whenever hj
is outside (1 — h)B.

Let ¢ := o, where n € C.(R?) and ¢ € C2°(R?) are some functions satisfying

(2.4) sup |80 ; — n(w — 275)| < const [w|?, w € R?
jer
(2.5) |1 —&(w)| < const |w|?, w € R

For example, one could choose n(x) = x(—1.1)2(2)(1 — |z1])(1 — [22]) and o(x) =
¢ typ(z)exp(—1/(1—|z[*)) with ¢ = Jpexp(—1/(1— |2*)) dz. Let ro > 2 be such
that suppy C (% —1)B.

Lemma 2.6. Let f € F, and let p be as in Definition 2.1. If puy, and sj, are given
by

pn = ((1+roh)* (- /h)) * (u((1 + roh)-)),
spi= > pn(hj)e(- = hj),
JEZ?
then s, € S(¢;=h) whenever 0 < h < rg ™.

Proof. 1t is a straightforward exercise to verify that the choice of rg ensures that
supppun C (1 — h)B. Hence it remains only to show that EgeEh wn(€)g(E/h) =0

for all ¢ € IIy. For that note that EgeEh wn(&)q(E/h) = E]EZQ pn(hy)g(y). If we

put g(@) := pp(ha)g(x), then we obtain from Poisson’s summation formula (cf. [9],
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Chapter 7) that 3, .2 9(j) = ¥ ;e §(275). Now iy = h2P(h-)i(-/(1 + roh));
hence, if ¢ = E|a|<1 i~lela, ()@, then

G= Y aaD*(h?fn(-/h) = Y aaD*(H5[(-/(h + roh®))).
lal<1 lal<1

Condition (2.4) ensures that D*(a7i(-/(h + roh?))) = 0 at 275 whenever j € Z*\0
and |a| < 1. On the other hand, Definition 2.1 (ii) ensures that D*(nopu(-/(h +
roh?))) = 0 at 0 for all |a| < 1. Hence,

> unl€ql€/h) =Y G2wj) =0.

£€2y JEZ2
O

The effect of convolving ;Z(/h) with the (1 + roh)-dilate of p rather than with
o itself is that s, is best compared not to f, but rather to the (1 + rg)-dilate of f.
For this, we define

(2.7) fo = (14 roh) 2 f((L +roh)-),

and use the triangle inequality to write

11 = selll < MILf = falll + 111 fr = sulll-
We consider each of these terms separately in the following two lemmata.

Lemma 2.8. Let f € F. If fi 1s as defined in (2.7), then

If = fulll = O(Vh) as b — 0.

proof. Let p1 be as in Definition 2.1, and note that
IF = fulll = @)~ |1 (F = )
= (2m) ™ [P 87 — (14 roh) O/ (1 + roR))(-/ (1 + roh)))

— 4 H|.|—2 (7 —p-/+ Toh)))‘

L2 (R2\0)

L2(R2\0)

Lo

Now,

1172 = A/ b}, = [ ol [7G0) = At/ 2+ roh)) P

We estimate this integral by breaking R? into the three pieces B, h™!B\B, and
R?\h~!B. For the first piece, we note that since i is entire it can be written as a

power series
o~ [e3
f(w) = E Caw®,

«
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and it follows from Definition 2.1 (ii) that ¢ 0) = ¢(1,0) = ¢(0,1) = 0. Thus

)=/ (1roh)) = 3 calw®—(w/(14roh)™) = 3 cqu®(L—(Ltroh) o).

[ >2 || >2
It now follows that
- 172 = /0 o) [y = |17 32 cal) (1 = (1 + roh) 1)
a2 L2(B)
< D leal(= @t ron) T 11720 )

Ja|>2

< rovTh Z lcalla| < const h,

|| >2

where we have used the estimate 1 — (1 4 roh)~!®l < rohla| and the fact that

Il- |_2()QHL2(B) <V

For the second piece, we note that

p(w)—p(w/(1+roh)) = (1—(1 —I—Toh)_l)w (V(€)) for some & between w/(1+roh)
and w. Since p is compactly supported, it follows from Definition 2.1 (ii) that
IVii(w)| < const (1 + y/[w]). Consequently, |fi(w) — fi(w/(1 + roh))| < const k(1 +

lw|?/?). Hence,

/ el () — /(14 roh))[ dw < const / gy P Bl

h—l
= const h? / r~4 3 dr = const h2(h™! — 1) < const h.
1

For the third piece we use the bound |ji(w) — f(w/(1 4+ roh))| < const (1 + /|w])

(a consequence of Definition 2.1 (ii)) to obtain
[ el Iate) = At/ b)) du < const [l ulde
R2\h-1B R2\h-1B

o)
= const / r~3rdr = const h.
h

-1
]

Lemma 2.9. Let f € F. If f5 is as defined in (2.7) and pp, si are as defined in
Lemma 2.6, then

Il fn = sull = O(VR) as h — 0.
Proof. Assume 0 < h < 7“0_1. In order to simplify the notation, we introduce

vp i= [i(-/(1 +roh)),
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and note that }; = Q/b\l//\h on R*\0. On the other hand, for w € R*\0, we have 5, (w) =
E]EZQ q/b\(w)uh(hj)e_ihj'w. If we define g(z) := pp(hx)e” ¥ 2 € R2 then we
obtain from Poisson’s summation formula (cf. [9], Chapter 7) that E]EZQ g(j) =
E]EZQ 9(277). Hence,

JEZ? JEZ?
= 3(w) 3 W An(w + 2w /1)
jez?
H(w) Y P(hw + 2m5)Dn(w + 275 /).
jez?
Hence,
— — (27)1 — ‘
= salll = @57 [HE =],

72 Bn = D Gk +27)0n(- + 27 /)]
jez? L,
(2.10)

<4117 71 = ()

LA O(h - +27)0n(- + 275 /1)

y 2
JEZ2\O Lo

We consider first the term H |72 DR(1 — ;Z(h))‘ . Since 1 <14 roh < 2, it follows

L
from Definition 2.1 (ii) that ’
w|4
(2.11) 104 (w)]? < const w € R
1+ [w|
From (2.4) and (2.5) we obtain
2 |w|4 2
‘1 — )| < const c R-.
1+ |wl
Consequently,
) 4 huwl®
H| _27//\h 1— (h)) < const |w —1 vl 3 [ 7I
Lo R? L+ |w|” 14 |hw|

[e%¢] h4T4
= t d
COI11S /0 (1+r3)(1+h4r4)r T

1 1/h L5 o0 r
< const / h4dr—|—/ dr—l—/ 73dr
0 1 ré 1/h 1+r

1/h 0o
< const <h4 + h4/ rZdr + / r2 dr) < const A.
1 1/h

(2.12)
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Let C := [—5 %)2 Employing the partition of R%, R? = Ugez2rh ™ (k + C), we

expand the square of the second term at the bottom of (2.10) as

2

172> Dule + 2w /h)d(h - +27))

y 2
JEZ2\O Lo

(2.13)

= > D0 Dl + 2w /Ry (h - +2n5)

hez JEEEN0 La(2mh =1 (k+C))

For j € Z*\0 and k € Z*\{—j}, we have

1172 9 4 2y - 42|

Lo(27h=1(k+C))

2
:/ o™ 1P + 2 1) S (e + 22))| du
2nh=1(k+C)
2
:/ 27h = + w| "t [P + 250k 4 ) /B [ Bk + 27k + 7)) du
27h—1C
B R 2
gconst/ ‘27rh_1k—|-w‘ 4|w—|—27r(k—|—j)/h|‘¢(hw—l—27r(k +7))| dw
27h—1C

< ConSt/ [27h = e w| T o + 27 (k + 5) /B IZ1% . 2mt o 1wl deo,
2xh—1C

[eol*

< const h? ‘h (k+7) ‘ HUHL (27r(J+k—|—C))/ dw

srh-1c |27h =k + wl|*
< const h(L + [E) ™ 1k + 511517 2n(jsaser

For j € Z*\0 and k = —j, we have

|72 2 + 2w m)Gn - 2|

Lo(27h=1(k+C))

- / ool ™" oo + 2 /) [k + 2)
2nh=1(k+C)

2

dw

2

:/ 270+ ]~ Pa()|? | @) du
27h—1C

4
—1 |wl

3dw
1+ [w|

< const/ ‘27Th_1k—|—w‘ , by (2.11),
2mh—1C

< const h4/ LAL dw < const h |k|™*.
2rh=1c |27k + hw

by (2.4),
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Since o € C°(R?), it follows that > iez VTN L (an(j1c)) < oo Hence,

723" Da(+ 215 /h)yd(h - +27))

JEEEN0 La(27h=1 (k+C))

< 3 |HT A+ 2wy 42m)
JEZ?\O

< constVR(L+ k)72 +constVR(L+ k)72 Y VIRl onr o

JEZP\{0,—k}

Lo(2nh=1(k+C))

< constVh(1 + |k|) 2.

Thus,
2
ST D Bal 2w )R 42m))
kez? JEZR\O Lo(2mh=1(k+0C))
(2.14) < const h Z (14 |k])™* < const h.
keZ?

And so with (2.14), (2.13), (2.12), and (2.10) in view, the lemma is proved. O
With Lemma 2.8 and Lemma 2.9 in hand we can prove the intended result.

Proof of Theorem 2.2 (ii)-(iv). Let f € F. Assume that 0 < h < rj', and let s
be as in Lemma 2.6 and f; as defined in (2.7). Then

—T= = min — 5
17 = T=All = min_ [l ]
< |||f = s&lll, by Lemma 2.6,
<|IIf = fulll + [ILfe = sulll = O(VR)

by Lemma 2.8 and Lemma 2.9. Hence (ii). Since |||Tpf — T=f]|| also converges to 0
(by (1.2)), it follows that |||Tsf — f||| = 0. Since both f and Tgf belong to H and

f|B = (TBf)|B, it must be the case that f = T f. Hence (iii). Employing (1.1) we
obtain

I = T2l ) < const [T f — T= ]

= const K7 |||f — T=f||| = O(hvp+1/2)

which proves (iv). O

3. PrROOF OF THEOREM 1.5

With Theorem 2.2 in view, in order to prove Theorem 1.5, it suffices to prove
the following
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Theorem 3.1. For all f € C™(R?), there exists f € F such that f|B = fv|B.

Recall that the form of fvE F is f: ¢ * pt 4+ p where p € II; and the distribution
(o satisfies the conditions of Definition 2.1, the most restrictive of which is |f(w)| =
O(+/]w]) for large |w|. The following two lemmas display a class of distributions
which satisfy this condition.

Let y(8) denote the point (cos 6,sinf) € 0B, and note that y(8) is the outward
unit normal to 0B at y(0).

Lemma 3.2. If v is the distribution given by

Y

<g71/> = Dy(&)g(y(e))dev

— T
then [U(w)| < const (1 + /|w]), w € R2.
Proof. Since v is compactly supported, its Fourier transform is entire, and so it

suffices to show that |V(w)| < const \/|w]|, |w| > 27. Since v is radially symmetric,
so is its Fourier transform, and hence it suffices to consider only w = (0,¢), t > 2,

wherein
v(w) = (e_w,v) = Dygye—w(y())do
= / —itsinf e 1509 g
= / —tsinf sin(tsinf)df,  since —itsinf cos(tsinf) is odd in 6,
/2
= —4/ tsin 6 sin(¢sin 6) d6.
0
! T
Employing the change of variables = ¢sin 6, we arrive at (w) = —4/0 sin xﬁ dz.
(n+1)m

Let N be the largest integer for which N7 < ¢, and define A,, := /mT Sinw\/ﬁ%ig;? dz,
forn=20,1,... ,N — 1. Then

Since © — a/Vt? — 2? is increasing on [0..t), it follows that |A,| < |Ap41]| for

n = 0,1,... ,N — 2, and since the A,’s are alternating in sign, it follows that
N-—-1
Z A, | < |An—1]. Therefore,
n=0
! x
|1//\(w)|§4|AN_1|—|—4/ |sin @| ——= dx
Nm 12 — 2?2

<4 dr = 4\/4tw — 472 < &8/«
/ NE—a?
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4

Lemma 3.3. Let g1 € L1(B), let g2 € Li([—7..7]), and let g3 € C®(R) be 2x-
pertodic. If p us the distribution given by

Y

@w%zéﬂ@mﬁﬂﬂﬁ/9@@Mﬂ®+9ww@@Md®M,

— T

then |fi(w)] < const (1 4+ /|w]), w € R%

Proof. Let v be as defined in Lemma 3.2, and let ¢ € C2°(R?) be such that ¢ = 0 on
iB and ¢ = 1 on %B\%B. Define gz € C°(R?) by ¢s3(x) := q(z)gs(arg(z1 +122)).
Note that

Y

(9:q3v) = (9g3,v) = | Dye)(993)(y(0)) db

-7
s

= | Dyeg(y(0)as(y(0))dd,  since Dy q3(y(8)) = 0,

-7
s

= | Dywsg(y(8))gs(0)do.

— T

Hence, i can be written as p = py + gsv, where pq 1s given by

Y

%M%ZLﬂ&MO%+/g@@mwM&

— T

Of course, |z (w)| < |lg1llz, gy + l92llz, ((=~.. x)- On the other hand, since [v(w)| <
const (1 + 4/|w|) (by Lemma 3.2) and since g3 € C°(R?), it follows that

|G 7(w)| = (27) 7% |G + D(w)| < const (14 y/[uw])
which completes the proof. O
The following statement of Green’s second identity may be found in [5; page 17].

Lemma 3.4. Let 2 C R? be a bounded domain with a C' boundary, and let u,v €
C?*(Q). Then

/ Auvdm = / uAvdm + / [vDmu — uDwvl]ds,
Q Q o
where T denotes the outward unit normal to OS).

Our goal at present is to identify a distribution p of the form described in Lemma

3.3 such that

(3.5) flz) =¢*p(x), Y€ B.

The following proposition displays (implicitly) a distribution whose convolution
with ¢ agrees with f on B. This distribution, however, is not of the desired form
because its third term involves the Laplacian of the test function.
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Proposition 3.6. If f € C*=(R?), then for all x € B,

smf(e) = [ 66— D) AFOAE + [ Darols = 1) AF(s) — ol — ) D AF(s) ds

oB

+ [ DwAd(s—a) fls) = Ad(s — ) Dt f(s) ds

where T is the outward unit normal to OB at €.

Proof. WLOG we may assume that f is compactly supported since otherwise we
could replace f with a compactly supported C'* function which agrees with f on
B. Let a > 1 be so large that supp f C aB.

Claim. A?f ¢ =8nf.

proof. Since A%f € C2°(R?) it follows that (Azf * gb) T= |-|4 ]?q/b\ Hence (Azf * qb) -
877]? on R?\0. Therefore A%f x ¢ = 87 f + p for some polynomial p. In order to
show that p = 0, it suffices to show that A?f x ¢(x) = 0 for sufficiently large |z|.
For that let |x| > a. Then

0= [ afeota - )t

/ FOA?G(x — €)dE, Dby Lemma 3.4,
=0, asA%¢p(x—¢)=0for £ € ab.

Hence the claim.

Let = € B. By the claim, we have

Srf(z) = [ A*f(E)o(r —&)dE = /B A?f(E)o(€ —x)dE,  since (—) = ¢,

RQ

- /B AZF(€)(€ — o) dE + / o T ) de

Since ¢(- — x) € C*°(R?\B), we may apply Lemma 3.4 twice to the latter integral
above to obtain

[, Aol = o
= /B\B Af(g)AQb(f - l’) d¢ — aB[D%’Af(S)qb(S — x) — Af(S)Dﬁqb(s _ l‘)] ds

= — /BB[DﬁAf(S)qb(s —a)— Af(s)Do(s — x)]ds
~ [ D61 80(s — 1) — F)D A — a)) s,
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as |, p\n FIOA2H(E — 2)dE = 0 since A?¢(E — ) = 0 for £ € aB\B. With (3.7) in

view, this completes the proof. O

In order to obtain a distribution of the desired form and satisfying (3.5), it suffices
to find C'*° functions ¢g; and gy such that

| Dd(s ) f(s) ~ Abls — ) D f(5) ds

(3.8) = - Dwo(s—x)gi(s) + o(s — ) g2(s)ds, VYa € B.

To do this we employ the Fourier series representations of f|aB and D7f|aB’ say

f(y(8)) =, ane™? and Dy f(y(0) =5, b,e™?. The purpose of the following

proposition and two corollaries is to identify sequences {c¢,,} and {d,} such that

Doy Ab(y(6) — 7) ane'™ — Ad(y(8) — x) bne™? db

— Dygyo(y(0) — ) cne™ + p(y(0) — x)dpe™?dh, Va € B.
That (3.8) holds will then follow with g1 (y(8)) = 3, cne™? and g2(y(0)) = 3, d, e,
Definition. For v € C(R?) and n € Z, we define
1 T
Ralul(t) =5 [ ™ u(tu(8)) ds

— % -
where y(0) := (cos8,sin ).
Proposition 3.9. Fort >0, x € tB, and n € Z, |n| > 2, the following hold:
(i) Ro[o(- —2))(t) = logt + [a|* (1 + log?),
(it)  Raa[o(- — 2)](t) = —(1 £iza)(tlogt + /2 + 7" |2|* /4),

2—|n| =[nl |4 |?
(i) znw«—@w>=5ﬁwm+ﬂ@WMwW”Qg_l—ﬂmif)-

Proof. (1) was proved in [6]. Since R_,,[¢(- — )](¢) is simply the complex conjugate
of Rp[o(- — x)](t), it suffices to prove (ii) and (iii) only for n positive. Since, for
t>0and z € R? ¢(ta) =t |:Jc|2 logt + t?¢(x), it follows that

Rafot = it) = 5= [ e ooty(@) — ey do = o [ mota(y(6) — a0

“ o ) o ).
L
-5/
(3.10)
= t*(logt) Ru[l- — 2/t[*](1) + #* Rule(- — 2/1)](1).

Ol y(6) — x/t|" logt + t2¢(y(6) — x/t)] db
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It is a simple matter to show that
—(& +1&) Hn=1,
(3.11) Rl €10) = {

0 ifn>1.
Define G € C(R?) by

G(E) = Rulo(- — O)(1) 1(/”aW¢@w>—od&

— % -
It is a straightforward matter to verify that G|B € C*(B), A’G = 0 on B, and

G(&) = emasl&ti&) G(1¢] y(0)) for 0 < [¢] < 1. In polar coordinates, if é(r, 6) :=
G(ry(8)), then this last condition can be expressed as é(r, 0) = e"?g(r), where
g(r) = é(r,()). The equation A2G = 0, written in polar coordinates, reduces to
the homogeneous differential equation

L?g =0, where

n2

Lg:=g" + lg’ - =9
r r
It is easy to verify that on the interval (0..1), this equation has the four linearly
independent solutions {r,r®,r=! rlogr} (if n = 1) and {r™, r2*t" r=7 r2=7} (if
n > 1). It then follows from the classical theory of differential equations that there
exist ay,, by, ¢n, and d, such that

() { anr™ +byr? ™™ L cr™ ddyrlogr  ifn =1,
A Anr™ + b2t Fepr™ ™ + dpr? T iHn>1.
It must be the case that ¢, = d,, = 0 since otherwise G would not be " near the
origin. Therefore, g(r) = apr™ + b,r*T" and hence,
G(¢) = einarg(£1+i£2)(an " + by, |£|n+2)
(3'12) = (51 + ifZ)n(an + bn |€|2)7 5 € B.

In order to find a, note that if ¢ = 7y(0), then G(ry(0)) = a,7" + b, 7" 1% and
hence

1 d"

n!drm

ap = G(Ty(o))|

7=0
Put k(7,0) := |y(0) — Ty(0)|2 =1-27cosb+ 12, K(r,0) :=log(k(7,0)), F(7,0) :=
E(r,0)K(7,0), and let ' denote differentiation with respect to 7 so that k'(7,0) =
—2cos+ 27 and k"(7,6) = 2. Since ¢(y(0) —Ty(0)) = (1/2)F(7,0), it follows that

1 [T
G(Ty(0)) = E/ ¢ F(r,6)df, and
Gy = —— e F (0, 6) db.

~ dmn!

— T

-
Let T; denote the space of univariate trigonometric polynomials of degree </[; that
is, the space of functions f which can be written as f(0) = Eﬁz_lajeije, 6 € R,
and let us agree that T_; = {0}.
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Claim. There exists ¢, € T,,_s such that

E(0,8) = —(n — 1)!12" cos™ 6 + ¢a(6).

E'(7,0)
k(r,6)’
A second differentiation shows that K"(0,60) = —4 cos? 8+ 2. Thus the claim is true
for n = 1,2. Proceeding by induction, assume the claim for n’ < n and consider
n+ 1 > 3. Using Leibniz formula to differentiate the equality K'(7,0)k(7,0) =
E'(7,6) n times yields Y, (7) Kn+1=0p0) = (1+7) — 0. hence

proof. Note that I{(0,0) = 0. Since K'(7,0) = we have '(0,6) = —2cos 6.

K(n+1)(079) - _ Z <7> Ix’("ﬂ_l)(o,@)k(l)((),e)
I=1

= —nK™(0,0)k'(0,8) — 2 <g> K20, )

= —n!2" cos" T 0 4+ 2ng, (0) cos H — 2 <g> K("_z)(O, 8), by induction hyp.

Thus the claim is true for n + 1 with g,41(6) := 2ng, () cos § — 2 (g) K(™=2)(0,8).
Since F’'(0,0) = k'(0,0)K(0,0) + k(0,0)K'(0,0) = —2 cos 6 we have

1 T 1
a; = — 6“9(—2 cosf)df = ——.
4 2

— T

If n > 1, then

F(™(0,8) = zn: (’Z) kD0, 0) K0, )

= K™(0,8) + nk'(0,0)K"=1(0,8) + 2 (;‘) K("=2(0,8)

=—(n—1)12" cos" 0 + ¢, (8) + n(n — 2)12" cos" 0 — 2n cos 0¢,,—1(0) + 2 <g> K("_z)(O, 6)
=(n—2)12"cos" 0 4+ q,(0), where
Ga(8) = qu(8) — 21 cos Bgu_1(6) +2 (;‘) K=2(0, ).

Note that ¢, € T,_2. Since ffﬁ ¢%q() df = 0 for all ¢ € T,,_o, it follows that

1 T
ap = —— eme(n —2)12" cos™ 0 d6
drn! J_
AL 1 T 1
= 7—/ ¢ cos"Hd) = ———, n>1.
2n(n—1)27 J__ 2n(n —1)
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In order to determine the b,’s, it is simpler if we first apply the Laplacian to (3.12)
to obtain

AG(E) =bud(n +1)(& + )", (€ B
If € = 7y(0), then G(ry(0)) = by4(n + 1)7™ and hence

1 d"
b= L a2
= e Ral G — y(0)))()
d(n + )t drm " | 7=0
Since A¢p =4+ 4log |-, it follows that A¢(y(0) — 7y(0)) = 44 2K (7,0) and hence

by = m% /_ﬁ ¢4+ 2K(0,6)) d6
= m% /_ ei"9(4 —(n— 1)!2"+1 cos™ 0 + 2¢,(6)) df

2n 1 T oind )
= _mﬁ /_ﬁe cos"6df, since 4+ 2q, € T\ _o,
B 1

_Qn(n +1)

Considering first the case n = 1, we have by (3.12) that G(§) = (& + 152)(—% —
: |§|2), and hence by (3.10) and (3.11) it follows that

Ri[o(- —2))(t) = —t*(logt)(x1 [/t + iz /t) + t* Gz /1)
—(z1 + izg)tlogt + t2(zxq Jt + iz 1)(—1/2 — |z /t|* /4)
—(z1 + izy)(tlogt +1/2 + 17" |z|? /4).

which proves (ii). Assume now that n > 1. Then by (3.12), G(§) = (& +
2), and by (3.10) and (3.11) we obtain

Zfz)n(Zn(i—l) - 2n(3¢+1) €]
9 9 . n 1 1 9
Rl = 2l = PGl ) = P ft 4 i) (5t = o ool

1( )" 2o g
2n T i n—1 n-+1

which proves (iii). O

Corollary 3.13. For all x € B and n € Z, |n| > 2, the following hold:

(1) RolDmAd(— )](1) = Ro[Ad(- — 2)](1) = 4
= 4(Ro[D7¢(- —)](1) — Ro[o(- — 2)](1)),
(2) Ril[Dﬁﬁqb(' 2)[(1) = —Rua[A¢(- — 2)](1) =
—(Ri1[D7 (- — 2)|(1) + Raa[o(- — 2)](1)
(3)  Ra[DmAd(-—2)(1) = = |n| Ru[A¢(- — 2)](1) = 2(21 + sign(n)izs)!"!
= 2[n[(In] = D(Ba[D7 &(- — 2)|(1) + n| Ra[p(- — 2)](1)).

(1'1 :|: Zl’z)
)7
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where for brevity we have written R,[Dwu](1) in place of % ffﬂ e D u(y(6)) db,
T being the outward unit normal to OB at y(0).

Proof. Let A, denote the Laplacian with respect to x, ie. A, := ;—; + aa It is a
1

-
Ty

straightforward matter to verify that

(3.14) Ry[Au(- — 2)](t) = AgRpfu(- — 2)](t), and
(3.15) RalDpul- = 0)(1) = 2 Baful- — )l(1),_,

Evaluating (i) at ¢ = 1 yields Ro[¢(- — 2)](1) = |z|*; while it follows from (i) and
(3.15) that Ro[Dwé(- — 2)](1) = 1 + |2|°. Hence, 4Ro[Dw¢(- — x)](1) — 4Ro[o(- —
z)](1) = 4. It follows from (i) and (3.14) that

(3.16) Ro[AS(- — 2)](t) = 4(1 + log ).

Evaluating (3.16) at ¢t = 1 yields Ro[A¢(- — «)](1) = 4; while it follows from (3.16)
and (3.15) that Ro[DwA¢(- — 2)](1) = 4. Hence (1). In order to prove (2) and (3),
it suffices to consider only n > 1 as the remaining cases follow simply by complex
conjugation. In a similar manner to the above, it can be deduced from (ii), (3.14),
and (3.15) that R1[¢( —2)J(1) = —(21 +iw2)(5 + §|2[*), RilDwo(- — 2))(1) =
(i) (3~ ), BAG(— (1) = ~2(e1 +irs), and Ry (D AG( —2))(1) =
2(x1 4 ix2) from which (2) readily follows. Similarly, it follows from (iii), (3.14),
and (3.15) that Ra[6(-— 2))(1) = g (a1 +i22)" (77 = 357), RalDwo(- = 2))(1)
(-—

2n 1 n+1

(e )" (222 4 ) RL[AG( — 2)](1) = —2(xy +iz2)", and R, [DA¢

n—1

2)](1) = 2(xq + ix2)" from which (3) readily follows. O
Corollary 3.17. Let f € C*°(R?), and define sequences {cntnez, {dntnez by

4(ao — bo) if n =0, .
=) et by if Il =1, dai= { olen ifn 0
2(|n] = 1)(|n|an +ba)  if |n| > 1; nle, ifn#0,
where
1 " —ind 1 ™ Cing

Then for all x € B,

Y

S f(x /¢ (€= DA+ [ Dy olu(®) = n)AT(WE) + 3 cue™ ] db

neZ
T

+ [ d(y(8) — 2)[=Dyo) Af(y(6)) + Y dne'™?] d6

-7 neZ
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Proof. In light of Proposition 3.6, it suffices to show that for all x € B,
[ Do 3(u(6) = 2)5(416)) = Ao(u(8) — 2)Dy0) £(4(6)) 49
:/ Dyoyd(y(8) — 1) Y ene™ + 6(y(8) — ) 3 duei? db.

n€eZ n€eZ
Since f € C°°(R?), the following hold:
| 1|im (lan] + [ba]) 2| =0, ¥Ym >0,

|1|11r1r1 (len] + |dn]) In]™ =0 ¥m >0,

Fy(6) =3 ane™. Vo€ [-n..7,

neZ

y(g)f Zb eme, Vo E ]

neZ

It follows from Corollary 3.13 that

anRBn[D Ag(- — 2)][(1) — bp Rn[Ag(- — x)](1)
= coRu[Dw (- — 2))(1) + duRu[d(- — 2)](1) ¥n € Z,z € B.

Hence, for = € B,

o | Dy S0(0(8) ~ ) F(4(6)) ~ Ad(y(8) ~ 2Dy F(0(6) 8
= Y (@ RalD A~ )](1) = b R[S0 — 2))(1)

nez
=Y (cnRa[Do(- — 2))(1) + duRu[6(- — 2)](1))
nez
_ % " Dyndu(8) — 1) Y ene™ - o(y(8) — 1) S due™ de.
- neZ n€Z

4

Proof of Theorem 8.1. Let f € C*°(R?), and let {c,, }nez and {d,, } nez be as defined
in Corollary 3.17. Define the distribution y by

(0.0 =g [ A+ - [ Dy @A (O + 3 ene™)db

neZ
_I__/ y(O)Af ‘|‘Zd€ln9

neZ
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It follows from Corollary 3.17 (and from the fact that ¢ = ¢(—-)) that ¢p+u(z) = f(x)
for all * € B. Define distributions f(g 0y, f4(1,0y, and g 1) by

1 s

(911000 = 5 [ Dyg(y(8)) = g(y(6)) dF,
(9, 1(1,0)) = —i _ﬂ (Dyay9(y(8)) + g(y(8))) cos B db,
(9: 10,1)) == —i _ﬂ (Dyeyg(y(8)) + g(y(8))) sin 6 d6.

It follows from Corollary 3.13 that for all © € B, ¢* pg,0y(2) = 1, ¢* i1 0y(2) = 21,
and ¢ * f10,1)(x) = 22. And it can be shown with a simple integration that

(10,0 = =1, (0", pa0y) = (0, po1)) = —1/2, and ()%, pg) = 0 when-
ever o, 3 € {(0,0),(1,0),(0,1)} and o # . Define the distribution g and the
polynomial p € II; by

fi =g+ (L 0,0y + 2000 a0y + 20000, 1o,
pi=—(1, ) — 2000, ) ()0 — 2¢O, 1) ()0,

and note that supp/i C B. Put f:: ¢ * (i + p. Then, for x € B,

fla) = plx) + (L) (& * pooy(@) = 1) + 200", 1)(6 * pa () — 21)
+ 200, 1)( % po,p) — w2) = f(x).

Since f € C*(R?), it follows by Lemma 3.3 that ‘ﬁ(w) < const(1l + /|w]), w €
R2. In the definition of /i, the coefficients of 1(0,0)> H(1,0), and fig 1y were chosen
to ensure that (1,7) = (OO, 1) = ()Y, ) = 0. Tt follows from this that

ﬁ(()) = D(l’o)ﬁ(()) = D(O’l)ﬁ(O) = 0 from which we conclude
ool

ﬁ(w)‘ < const |wl|®.

o~

ﬁ(w)‘ < const w € R2. Therefore f € F. O

Hence,

1 + |U)|3/27
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