What is the inverse of a basis?
Carl de Boor

Abstract.

A formula is given for the inverse of the linear map, from coordinate space to
a linear space, induced by a basis for that linear space, which is then connected
to various Applied Linear Algebra constructs.
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1. Introduction

A paper on something as basic as the basis of a vector space is not likely to offer some
new mathematics, and this paper is no exception. Rather, it is meant to illustrate that a
certain point of view regarding bases leads to clarity and efficiency in their use.

In its extreme form (see, e.g., [B]), this point of view is the following. Since the sole
purpose of a basis of a vector space over the field IF (:= IR or C) is to provide an invertible
linear map to that vector space from some coordinate space IF", it seems most direct to
define bases that way, i.e., as invertible linear maps to the vector space from some IF" or,
more generally, from IF’ for some index set I.

However, it is very hard to effect a change in as time-honored a concept as that of
a basis. My more modest ambition therefore is to help shift attention, from the basis to
the invertible linear map specified by it. Still, it is good to have a name for such a map.
Such a map is called a frame in Differential Geometry, but ‘frame’ is also used in Harmonic
Analysis with a related but different meaning. So, wary of calling such a map a basis, |
will call it here, more modestly, a basis-map.

Any linear map V from IF" to the vector space X over IF is necessarily of the form

V:IF”—>X:a|—>Zvjaj

j=1
for a certain sequence vi,...,v, in X that comprises the images under V of the unit
vectors
ej :==(0,...,0,1,0,...), j=1,...,n
——
j—1

In view of the special case X C IF™, it is therefore natural to write such V explicitly as
V = [Vl,...,Vn],

and call this a column map into X, and call v; its jth column. This terminology is
further supported by the fact that, for any linear map A whose domain includes X,

AV = [Avy,..., Av,].
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In these terms, a basis-map is an invertible column map into X; the sequence of
its columns is the corresponding basis. More generally, for any column map, the linear
combinations of its column sequence make up the range of the map; the sequence is linearly
independent exactly when the map is 1-1; the sequence is spanning for X exactly when
the map is onto.

With this, it is natural to ask for the inverse of a basis-map V = [vy,...,v,] for X.
If X is itself a coordinate space, hence necessarily X = IF" then V is (or has a natural
representation as) a matrix, and V! is simply that, the matrix inverse to V. In any other
case, it is, offhand, not obvious how to obtain V=1, It is the purpose of this note to point
out a simple recipe which, not surprisingly, is implicit in all constructions of V=1 in the
literature and therefore, by rights, should be explicitly in every (Applied) Linear Algebra
textbook, to discuss briefly the connection of this formula to certain basic constructs in
Applied Linear Algebra, and to give some other examples for the efficacy of this point of
view.

2. Motivation: Change of basis and matrix representation

Since most textbooks on Linear Algebra define a basis as a set (not even a sequence,
but a set!) with certain properties, a change of basis is one of the more harrowing maneu-
vers for the students, involving, as it does, some transition matrix somehow connected to
the two basis sets and leaving the students with the feeling of not knowing whether they
are coming or going.

In contrast, such change of basis is immediate in terms of the corresponding basis-
maps. Assume we are to switch, from the basis-map W to the basis-map V, i.e., we know
the coordinates, b, of x € X with respect to W, i.e., we know that x = Wb. Then,
the coordinates a of x with respect to V' can be computed as a = V~!x = V-'Wb. In
particular, V"W is the transition matriz, for going from the basis W to the basis V. It
is also the matrix representation, with respect to W and V, for the identity on X.

If, more generally, T is a linear map from some vector space Z with basis-map W to
the vector space X with basis-map V, then the matrix A := V~!'TW is easily recognized
as the matrix representation for T" with respect to W and V, in the standard sense that
the coordinate vector of Tz = T'Wb with respect to the basis V is the vector Ab.

At this point into the story, some student is certain to ask for a formula for V—!, and
so provides the motivation for the present note.

3. A formula for V!

While Linear Algebra books seem silent on the question of the inverse of a basis-map
V :IF" — X, Numerical Analysis has a straightforward answer: “discretize!”, i.e., replace
the abstract equation
V7?7 =x,

for the V-coordinates a := V ~'x of the vector x € X, by the numerical equation
(3.1) ANV? = N'x,
with A’ some suitable linear map from X to IF".
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To be sure, any linear map from X to IF" is necessarily of the form
X =" :x— (A1X,..., A\pX)

for some linear functionals A1,..., A, on X, and this sequence completely specifies the
map. In light of the special case X = IF" it is natural to write this map

N =D, 00N,

and call it a row map, with rows Aq,..., \,.

How to get A’? In the typical situation, and the one I will now assume here, X is
a linear subspace of some linear space Y with a ready supply of explicitly known linear
functionals. For example, Y might be an inner product space, or Y might be a space of
functions we can evaluate, differentiate, average, etc., hence it is easy to construct various
row maps A’ : Y — IF".

Which A’ is suitable? Any A’ that makes the Gram matrix

ANV =D, ] Vi v ] = (Nivy 4, = 1in)
invertible. In that case, directly from (3.1),
Voilx = (NV) TN 'x,
hence
(3.2) V= (AV)TI |

is the promised formula.
It follows that
V(ANV)TIN

is (a beautiful way to write) the identity on X. In other words,
x=V(A'V) 'A%
is the irredundant representation of x € X provided by the basis-map V.

4. A simple example

The simplest situation in which (3.2) is useful occurs when X is a proper linear
subspace of some coordinate space, i.e., Y = I[F"" (with m > n). In this case, V' is commonly
represented by a matrix, namely the matrix whose columns comprise the basis elements
(some refer to this as the basis matriz, to distinguish it from the basis). Correspondingly,
we think of the linear map A’ : Y = IF"" — IF" as a matrix, too, i.e., A’ € IF"*™,

A natural choice for A’ in this case is V*, the (conjugate) transpose of V', since V is
1-1 hence so is V*V, hence V*V is invertible (since it is square). The right-hand side in
the resulting formula

(4.1) voi=(v)Ttve
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is often referred to as the generalized inverse of V' since, strictly speaking, (4.1) only holds
on X.

More generally, V! agrees on X with (A’V)~tA’ for any A’ € IF"*™ for which A’V
is invertible. In particular, for each such A’,

(4.2) P:=VA'V) A

is the identity on its range, X, hence is a linear projector, from IF" onto X. It is the
unique such linear projector P for which

NPy =A\y, yeY =F",

and any linear projector onto X arises in this way. In these terms, the particular choice
A = V* gives the orthogonal projector onto X.

5. Gramians, projectors, interpolation, and change of basis

In full generality, X lies in some linear space Y and, correspondingly, A’ is some linear
map from Y to IF" for which the Gramian matrix, A’V is invertible, in which case (4.2)
gives the unique linear projector, from Y onto X, for which

NPy =Ay, yevy.

If Y happens to be a space of functions, and A’ associates y € Y with its restriction
Y|t = (y(7) : 7 € T) to some n-set T, then, assuming that A’V is invertible, we recognize
in Py the unique interpolant to y € Y from X at the points in T. The same language
seems therefore appropriate in the general case, except that ‘matching at the points of T’
becomes, more generally, a ‘matching of the information about y contained in A’y’.

In this way, one recognizes the available formulas for the inverse of a basis-map to be
in 1-1 correspondence with the linear projectors onto the range of the basis-map.

Yet again, we can think of this process as nothing more than a change of basis. For,
if A’V is invertible, then so is A’|x, and its inverse, W := (A’|x)~!, is necessarily an
invertible linear map from IF" to X, hence a basis-map for X. Knowing A’x for some
x € X means knowing the coordinates of x with respect to that basis-map W, from which
our formula, Px = V(A'V)~!A’x, merely constructs the coordinates (A’V)~1A’x for x
with respect to V, showing (A’V)~! to be the corresponding transition matrix.

6. Examples.

6.1 Polynomial interpolation As a standard example, take for V the power basis(-
map) for the space X = Il,, of polynomials of degree < n, i.e., v;(t)=t"1 j=1,... n,
as a subspace of the space Y := IR® of all real-valued functions on the real line. Take
for A’ the map A’ : Y — R" : y + y|t that associates y € Y with the n-vector of its
values at the n-set T = {71,...,7,}. Since the functions £;(t) := [[;_; (¢t — 7) /(75 — 7i),
j=1,...,n,are in ., and A'[£y,...,£,] = id by inspection, [¢1,...,#£,] must be 1-1,
hence onto (since Il.,, = ran[vy,...,v,] is at most n-dimensional), therefore a basis-map
for II,,, and A’ must therefore be 1-1 on II.,. Consequently, also V is a basis-map for
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II,, and therefore A’V is invertible, and Py = V(A’V)~!A’y is the unique polynomial of
degree < n that matches y on T, written here in power form, i.e., in terms of the power
basis.

6.2 V! by elimination To be sure, elementary Linear Algebra does provide a recipe
for the computation of the coordinates of x € X with respect to any particular basis V'
for X in case X is some subspace of IF", but this recipe is not much stressed. To recall:
Elimination applied to some matrix A produces its reduced row echelon form and, from
this, by dropping all zero rows if any, its really reduced echelon form, R := rrref(A). In the
process, each of the columns of A is classified as ‘free’ or ‘bound’, depending on whether
or not it is in the span of the columns to the left of it. If we let free and bound denote the
corresponding increasing sequences of indices, then A(:,bound) is a basis-map for ran A,
while A = A(:,bound)R, hence, for any j, R(:,j) contains the coordinates of A(:,j) with
respect to A(:, bound). In particular, R(:,bound) = id.

This implies that, for any x € X, the last column of rrref([V,x]) contains the coor-
dinates of x with respect to any basis V' for X. Further, with r := #V, the (n,r+n)-
matrix R := rrref([V,id,]) provides in U := R(:,r + (1:n)) the invertible matrix for which
U[V,id,] = R. With V 1-1, the sequence bound in this case is sure to start with (1:r),
hence id, = R(1:r,1:r) = U(L:r,:)V, showing W := U(l:r,:) to be a left inverse for V,
hence x = VWx for any x € X = ranV. Further, since R(:,bound) = id,, it follows
with bound =: [L:r,7 + b] that W(:,b) = 0. Thus, with W(:,£) the other columns of
W, we have Wx = W(:,£)x(f), and, in particular, id, = WV = W(:,£)V({,:), hence
W(:,£) = V(£,:)~!. Therefore, finally, we obtain the following special case of (3.2):

Volx = Wx = W(, £)x(f) = (A'V) 1A'k,

with
Ny y(f).

Note that the corresponding linear projector, P := VW, is interpolation in the narrow
meaning of that word: For each y € IF"", Py is the unique vector in X = ranV for which
(Py)(j) =y(j) for all j € £.

A particularly striking consequence of these observations is the following. Suppose
we are trying to find out whether the linear map A carries the linear subspace Z in its
domain into the linear subspace X of its target. With W and V basis-maps for Z and X,
respectively, this will happen iff AW C ran V| hence, if and only if R := rrref([V, AW]) has
exactly r := #V rows, in which case, as a kind of unexpected extra, R(:,r+(1:#W)) =
V~1AW, i.e., one obtains the matrix representation of Alyz + Z — X with respect to the
basis-maps W and V for its domain and target.

For the very special case A = idx, one obtains in this way the transition matrix
VW for two basis-maps of a linear subspace X of IF".

6.3 The Jordan canonical form This example brings the essential part of Ptak’s [P]
concise argument for the existence of the Jordan canonical form.

Assume that the linear map A on Y to Y is nilpotent of degree ¢, and that A9~z #
0. Then there is some linear functional y on Y for which pA9~1'z # 0, hence, with
N = [pAT™t o pA p) and Vo= [z, Az, ..., A971z], the matrix A’V is triangular with
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nonzero diagonal entries, hence invertible. Consequently, V' is 1-1, hence is a basis-map
for its range, X := ranV, and X is A-invariant, and, since AV = [Az,..., A9 1z, 0],
the matrix representation with respect to V' for A restricted to X is [ea,..., €4, 0], ie.,
the Jordan block of order ¢ for the eigenvalue 0. Moreover, with P = V(A’V)~1A’ the
corresponding linear projector, Z := ker P = ker A’ is also A-invariant, hence provides the
A-invariant direct sum decomposition ¥ = X @ Z for Y. Therefore, if Y is minimally
A-invariant, in the sense that there is no A-invariant direct sum decomposition of Y with
two nontrivial summands, then V' provides a basis for Y with respect to which the matrix
representation for A is that Jordan block.

6.4 The basis of the trivial subspace Extreme situations nicely test one’s under-
standing of subject matter. For bases and dimensions, this extreme situation occurs when
the space in question is trivial. Almost all textbooks maintain that the trivial space has
no basis, and then proceed to define its dimension to be zero. In fact, if by basis of a space
we mean an invertible column map to that space, then the trivial space has exactly one
basis (the only linear space with that property), namely the one and only map from IF°
to that space, the one that maps the sole element of IFY, namely the empty sequence, (),
to the sole element of the trivial space, namely 0. This is a column map with no columns,
reasonably denoted by [], and, correspondingly, the dimension of {0} is 0. Note that [] is
the only linear map whose condition number is 0, thus ‘proving’ the rule that the condition
number of any linear map is > 1.

6.5 Discrete least-squares cubic spline approzimation in MATLAB The view of a basis
as an invertible linear map has also quite practical benefits, as the following example is
intended to illustrate.

Let X be the linear space of all C? cubic splines with break sequence £ = (§; < --- <
&o+1), and consider the construction of f € X that minimizes

for given sequences y and t, the latter assumed to be strictly increasing, for simplicity.
Given any basis-map V for X, and with

Ao fe flo=(ft5) : 9),
the minimizing spline f is well-known to be
f=V(GE'G)'qdy,

provided the Gram matrix
G:=ANV

is 1-1. Assuming this to be the case, we could therefore construct f in MATLAB as V(G\y),
provided we had some basis-map V for the spline space X in hand.
Now, the only spline construction tool provided by plain MATLAB is the command

(6.1) spline(xi, z)
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which returns the unique cubic spline f with break sequence xi that matches these data
in the sense that f(xi) = z(2:end—1) and D f(minxi) = z(1), D f(maxxi) = z(end). But
that is almost all we need since, with xi = £, hence z of length n := ¢ 4 3, this identifies
z +— spline(xi,z) as a 1-1 linear map from IR" onto X, i.e., a basis-map. Call this map
V.

The spline command has two additional features. If z is an array of size [d,n], then
(6.1) is the unique d-vector-valued C? cubic spline f with break sequence xi that satisfies

f(xi) =z(:,2m—1) and Df(minxi) = z(:,1), Df(maxxi) = z(:, n).

In particular, the command spline(xi,eye(n)) returns the vector-valued spline whose
jth component is the jth column of the basis-map V. Also, the command

spline(xi,z,t)

returns, not the interpolating spline itself, but its values at the entries of t. Hence, with
t the row-vector containing the entries of ¢, the command

spline(xi, eye(n),t)

returns the transpose of the matrix G = A} V. Therefore, with y the column-vector corre-
sponding to the data y, the one-line command

spline(xi, spline(xi,eye(n),t)"\y)

provides the sought-for least-squares approximation. In fact, if y is the row-vector corre-
sponding to y, then the following transposition-free statement will already do the job:

spline(xi,y/spline(xi,eye(n),t))

7. Analysis and synthesis; row maps and column maps

The maps A’ and V play dual roles in the above discussion. With X some n-
dimensional linear subspace of some vector space Y over the scalar field IF, we recognize in
A Y — IF" a data map or analysis operator, i.e., an operator that extracts numerical
information from the elements of Y. Further, V : [F"" — X is a synthesis operator, i.e.,
an operator that constructs an element of X from numerical information.

In this way, one also recognizes

VA =[vi,. . vallAs A sy = D (Gy)yy
J

as the general linear map on Y with range in X =ranV.

The situation is particularly nice in case V and A’ are dual to each other, i.e.,
A’V =1id, in which case (cf. (4.2)) VA’ is a linear projector onto the range of V. There is
no dearth of important examples, since all standard expansions (Fourier, Taylor, Newton,
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wavelets, etc, etc) follow this pattern of analysis and synthesis (albeit some of these involve
infinite sums).
As a standard example, the truncated Taylor expansion at 0,

y(t) ~ > t/ Diy(0)/4!,

i<n

takes advantage of the fact that the data map A’ : y — (D7y(0)/j!:j =0,...,n—1) is
dual to the power basis-map for II.,. It provides the unique polynomial of degree < n
that matches the value at 0 of y and its first n — 1 derivatives.

If the Gramian A’V is merely invertible, then any factorization A’V = LU of the
Gramian into square, hence invertible, matrices L and U leads to the modified maps

Vi=vUul, N:=LN
which describe the same projector,
VA =P =V(AV) A,

but more simply since they also are dual to each other.

7.1  Gram-Schmidt A basic example is, of course, Gram-Schmidt orthogonalization
which, applied to the basis (v1,...,Vv,), proceeds in exactly this way, with \; : y — (y, vy),
all 7, using Gauss elimination without pivoting to obtain an orthogonal basis V=vUu-l
via factorization of the Gram matrix A’V = LU into a lower and an upper triangular
factor, though its standard implementation does make use of the considerable latitude
available in Gauss elimination in the order in which one carries out the computations, and
purists would insist on the normalization L = U*.

7.2 Newton form and Gauss elimination Take again for V the power basis-map for
polynomials of degree < n, and for A’ the map of restriction to some n-set T = {71, ..., 7,}
of points, and use Gauss elimination without pivoting to factor the Gramian (named in
this case, by Lebesgue, the Vandermonde matrix) into a lower triangular matrix L and
a unit upper triangular matrix U, and thereby obtain, in VA , the Newton form of the
interpolating polynomial.

Indeed, since U is unit upper triangular, v;, as the jth column of VU —! has the
leading term #/=1. Further, A’V = LA’V = L is lower triangular, hence V; must vanish at
T1,...,Tj—1. So, altogether, v, = Hk<j(~ —7%), j =1,...,n, and these are the polynomials
appearing in the Newton form for the interpolating polynomial. At the same time, since
L is lower triangular, A;, as the jth row of L™'A’, is a linear combination of evaluations
at 71,...,7;, and, since AV = AVU = U is unit upper triangular, Xj vanishes on the
monomials t°,...,t=2 and is 1 on the monomial t/~!. In other words,

//{j = A(Tl,...,Tj>,

the divided difference at the points 71,...,7; (as is to be expected from the jth coefficient
in the Newton form, and using the very apt notation for it introduced by W. Kahan).
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7.8  Divided differences Here is a final example for the efficacy of basis-maps. It
concerns the smooth dependence of the divided difference A(7) on the point 7 € IR",
as a linear functional on the linear space II of (univariate) polynomials, say. Here is the
quickest way to this important result.

Consider the linear map

Ve TN =T :a— E ;v r,
J

with
Vj’71t|—>(t—Tl)"'(t—Tj_l), j:1,2,...,

and ]ng the collection of all infinite sequences with only finitely many nonzero entries.
The map V; is well-defined, linear, 1-1, and onto, hence a basis-map for II, the so-called
Newton basis. It follows that

VT_l:H—>IFg\I:p»—>[/\j:j€]1\T]'p:: (A(11,...,75)p:j € IN)

exists, and, since V; is a smooth function of 7, so is V1.

Of course, for this argument to be of any value, I need to connect this definition of
the divided difference A(7y,...,7;) with the more customary algorithmic definition. But
that is easy.

First, for any p € II,

J
p=V:V'p=) vi:dp + gVisir
=1

with the first term in II.; and the factor g in the second term some polynomial, hence
A;jp is the leading coefficient of the unique polynomial of degree < j that agrees with p at

T1,...,T; in the sense that their difference is divisible by v;11 -, therefore A; is indeed only
a function of 7,...,7;, thus justifying the notation A(ry,...,7;) for it, and is symmetric
in the 7;.

Second, evaluation by Horner’s scheme shows that, for any z € IR,
Solle-m-Y ol
J<k i<y J<k i<y
with
Eij = CLj —i—Ein(z — Tj), (?1, .. ,;k) = (Z,Tl,. . .,Tk_l),

hence
A(Z,’Tl, .. -,Tj—l> — ZB(’Tl: .. '7Tj> + ZB(’Zv’Tl? .. '7Tj>(z - Tj)v

which is the identity underlying the algorithmic definition of the divided difference.



8. Notation

The notations [vy,...,v,] and [A1,..., \,,]" for column maps and row maps, respec-
tively, were chosen in strict adherence to MATLAB notation. (I abandoned an earlier way of
writing the general row map as [A1;...; A,], using MATLAB’s notation for a matrix with rows
Al,...,Apn, because it is hard to tell commata from semicolons, particularly when there
are none, as is the case when there is only one row or column.) The notation [vy,...,Vv,]
is also, usually without commata, the column notation for matrices employed in popular
texts, like [La] or [Le]. Possibly because of the standard way, »_, a;v;, of writing the linear
combination of the vectors vy, ..., v, with weights aq,...,a,, some areas (e.g., wavelets
and CAGD) have adopted the short-hand aV = a[vy;...;v,] for that weighted sum, and
this is fine in isolation, but becomes awkward when the map a +— aV is to be composed
with other linear maps, as maps are customarily written on the left of their argument.

To be sure, [Le| uses the notation [vy,...,v,] for what is called there an ordered
basis and just begs to be called what it is, an (invertible) column map. The notation
{v1;...;v,}, used in some other standard text for an ‘ordered basis’, seems less helpful
today, given MATLAB’s convention to use semicolons for vertical listings, and given that
braces are usually reserved for sets. For this last reason, the notation {vq,...,v,} for a
basis used in many texts (and even referred to there as a set) is likely to lead to confusion.
In contrast, already [SB] denotes bases by (v, ...,v,) (stressing the fact that a basis is a
sequence, not a set) and, well before MATLAB, uses [v1, ..., v,] for the matrix with columns
Vi,...,Vpn, and even writes (vy,...,Vv,)a for the linear combination, with weight vector
a, of the vectors v; in an arbitrary vector space. From there, it is only a small step to
employing the unifying notation [vq,...,v,] for the corresponding column map, and only
one further small, but very helpful, step to thinking of bases as (invertible column) maps.

To be sure, it is at times much more convenient to index a basis by some index set [
other than the set {1,2,...,n}. In that case, the notation [v; : i € I] for the corresponding
column map is perfectly handy. In fact, if the columns are pairwise distinct, one can even
let the columns index themselves, i.e., consider, for a finite subset S of X, the corresponding
column map [S] : F* — X : a — Y veg @vV. It is in this way that those who prefer to
think of a basis as a set would define the corresponding basis-map.
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