A bound on the L,.-Norm of L,-Approximation by Splines in Terms of a Global Mesh Ratio

Carl de Boor*

Abstract. Let Ly f denote the least squares approximation to f € Lj by splines of order k with knot sequence

t= (ti)rrk. In connection with their work on Galerkin’s method for solving differential equations, Douglas, Dupont
and Wahlbin have shown that the norm ||Ly||c of Li as a map on Lo can be bounded as follows,

|Lk||loo < consty Mg,
with Mg a global mesh ratio, given by
My := max At;/ min{At; : At; > 0}.
i
Using their very nice idea together with some facts about B-splines, it is shown here that even
| Lkl < comsty (M*))1/2
with the smaller global mesh ratio Mt(k) given by
M® = rrl;za}X(tHk —t;)/(tj4k — tj).

A mesh independent bound for La-approximation by continuous piecewise polynomials is also given.

1. Introduction. This note is an addendum to the clever paper by Douglas, Dupont and Wahlbin
[2] in which these authors bound the linear map of least—squares approximation by splines of order k with
knot sequence t := (¢;), as a map on Ly, in terms of the particular global mesh ratio

My := max At;/ min{At; : At; > 0}.

Their argument is very elegant. But their result is puzzling in one aspect: The ratio My is not a continuous
function of t. If, e.g., t is uniform, hence M = 1, and we now let t — t* by letting just one knot approach
its neighbor, leaving all other knots fixed, then

tlil{l* My = oo, while My = 2.
Correspondingly, their bound goes to infinity as t — t*, yet is again finite for the particular knot sequence
t*.

This puzzling aspect is removed below. It is shown that (as asserted in a footnote to [1]) their very nice
argument can be used to give a bound in terms of the smaller global mesh ratio

(1) M = mzax(ti-‘rk - ti)/rniin(tH—k —t)

which does depend continuously on t in {t € R, < tiv1,t; < tiyp, all i}.

2. Least-squares approximation by splines of order k. Let t := (ti)?Jrk be a nondecreasing

sequence, with t; < t;1x, all i. A spline of order k with knot sequence t is, by definition, any function of the

form
n
E (07 Nz
i=1

with @ € IR™ and N; the normalized B-spline of order k with knots ¢;, ..., t;1x, i.e.,

Nl(t) = Ni,k,t(t) = (tiJrk — tz)[tl, e ,tiJrkK' — t)ﬁ_fl.
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In words, for each ¢, N;(t) is (t;4x — ;) times the kth divided difference at t;, ..., t;45 of (s — t)’f[l as a
function of s.

We denote the totality of all splines of order k£ with knot sequence t by Sy ¢. More detail about Sy ¢ is
provided in [1] and its references.

Next, let Lj denote the linear projector on L; defined by the condition that Ly f € Sk ¢, and, for all
g €Skt, [(f—Lif)g =0, ie., Lif is the Lo-approximation to f in Sy¢. We are interested in estimating
the norm || Lg]|, of Ly as a map on L, Since

[Lklly = 1 Lxllg  for 1/p+1/g=1,

and ||Ly|l2 = 1, interpolation will give a bound on || Li||, in terms of | Lk|lcoc = ||Lk|/1, as is pointed out in
[2]. Tt therefore suffices to consider ||L||oo-
Let Ly f = a;Nj. Then [|Lifloo < [l@]ls since N; >0, all 4, and 3°; N; < 1, while

> NiNjaj = | Nif <[(tigr —t:)/K]l|flloo, alld,
e |

since N; > 0 and [ N; = (i1 —t;)/k. Therefore,

(2) IZklloo < 1G™ oo
with
(3) G =Gy = E'?GoE7'/2,

where F is a diagonal matrix,
(4) E = [k/(tk-‘rl - tl)? B k/(tk-‘rn - tn)Ja

2
and Gs is the Gramian matrix for the basis (N;) of Sy ¢, i.e.,

(5) Gy = (/ifzﬁfj )i
and
(6) Ni= [k/(tisk — t:)] /PN,

With this normalization, we are assured of the existence of a positive constant Dy, depending only on k and
not at all on t or n so that

p
(7) Diltlely < 11D aj Njllp < leflp, all e € R

J

(see the theorem on p.539 of [1]). This inequality implies that
(8) G5 loo < comsty,

for some consty depending only on k as we will show below; and, on combining this with (2)-(4), we obtain
the desired conclusion

9) 1Lk loo < consty (M2,
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2
3. A bound for |G5'|s. With (Qij)fjo1 = Gyl let f; = >-j@ij Nj. Then

2
/fi Nj=d;;, allj;

hence ) )
/Oém‘ N; fi +Zaz’j N; fi = ay,
J#i
i.e.,
(10) Hsz% = Q5.

Therefore, by (7),
D %af < D;° Z i I < |Ifill? = s
J

hence, as ay; = || fil|3 # 0 (G5! is invertible!), we have a;; < D?; and so, || filla < Dy and

(11) (Y lois?)'"* < Dillfilla = Dr(ei)/? < D.
J

This shows that 12
—1 1/2 2 1/2 N2
1G2 [loo = max E || < n*/ m?X( E jig|?) 7" < n'/2 D}
J J

and so bounds ||G5 ||« in terms of only & and n. From this, one obtains

_ k
1G™ oo < (nM)Y2D2,

a bound in terms of the desired global mesh ratio, except that the bound goes to infinity with the number
of mesh points. Note that we can express Mt(k) in terms of n and the local mesh ratio

k
my" = l,m?Txl(tiJrk —ti)/(tjek —15);
i—j|=

hence, we even have a bound on |G™!|| in terms of that local mesh ratio but, alas, involving also n.
In order to remove this dependence on n, we use the ideas of Douglas, Dupont and Wahlbin [2] to prove
the following lemma.

Lemma 1. There exist consty and A € (0,1) independent of n or t so that, for all i and j,

;] < consty (Ag) P

2
Proof: We observed earlier that the function f; = Zj a;; N is orthogonal to span(lV;);-,;. Hence,

for any m > 1,
2
fism = E a;j N;j
m<j

is orthogonal to f; and, therefore, also orthogonal to f; ,,—x+1 since the latter function agrees with f; on the
support of f; ,,. This proves that

(12) I fim—krall3 + | = fimld = Ifim—ri1 — fiml3
from which we conclude that
2 2
I i NIl < I D ai Ny I3
m—k<j m—k<j<m
or, with the inequality (7),
m—k<j<m m—k<j

Faced with a similar inequality, Douglas, Dupont and Wahlbin [2] make use of what amounts to the
following discrete Gronwall inequality:



Lemma 2. If the sequence ag, a1, ... satisfies

(14) |am|ZcZ\aj|, m=0,1,2...,

m<j
for some ¢ € (0,1), then A :=1—c € (0,1) and
(15) lam| < lag|A™ /e, m=0,1,2,....

Proof: Let Ay, =) la;|. Then (14) reads

m<j
Ap — Apy1 > ¢4y, allm,
or, Apmy1 < (1 —¢)A,, all m, therefore, with A :=1 — ¢,
Aprj SN A, allm,j,
and so,
lam| = Am — Amg1 < A < AT A < ag)A™ /e Q.E.D.

In order to apply this lemma to (12), we pick my > 4 and let
I ={j€Z mo+(k—-1)(m—-1)<j<mo+(k—1)m}, m=0,1,....

Then, with

U, = Z ;| allm,
Jj€Im

we obtain from (12) that
am 2D;2 Zaj, m=20,1,2,...;

m<j
hence, from the lemma,

m

max || < al/? < Dy(1 - Dk_z)m/Qaé/2
J€Im
while, by (11),

A/ < (Llay)"* < D2,
J

This proves the asserted exponential decay of |a;;| for j > i; but G5 is symmetric. Q.E.D.
It follows at once that

(16) 1G5 oo < comsts2/(1 — Ag).

In view of the discussion at the end of Section 2, we have therefore proved the following theorem.

Theorem 1. There exists a constant ¢ depending only on k so that the norm ||L|loo of La-approximation
by splines of order k with knot sequence t, as a map on L, satisfies

| Lilloe < e(bg™)'
with the global mesh ratio Mt(k) given by

MY = max(tir — i)/ (tjr = 1).



There seems to be little hope that this argument would even support a bound in terms of mgk), let alone

a bound independent of the mesh t.

4. A mesh independent bound for Ls-approximation by C°-piecewise polynomials. Pick
k>1 Let £ = (&) in (a,b) with a =: o < -+ < &.41 := b, and let Pf be the Ly-approximation to f by
elements of Py ¢ N C° := {f € Cla,b] : fl(e, e1+1) € Pr}. Todd Dupont [3] has shown some time ago that P
can be bounded as a map on L., independently of £ by constructing a basis for ran P for which a certain
matrix related to the Gramian is strictly diagonally dominant. We take the occasion to give a proof in terms
of B-splines.

Ift = (ti)gH'k is the nondecreasing sequence which contains a and b exactly k times and each of &1, ...,&,.,
exactly k — 1 times (and nothing else), then

P;%g NCY = S;%t,

hence then P = L, introduced in Section 2, therefore, ||P| < ||G~!|| with G given by (3)-(6) in terms of t
as determined from &.

Theorem 2. Let G := (k fol ]\AfiZ\A]j)ﬁjzl be the matrix G in the special case r = 0, [a,b] = [0,1]. Then, for

all €, |G oo = |G ||oe. In particular, |P|| < |G| for all £&. Hence (T.Dupont) supg || P|| < oo.

Proof: Let {1 = a, &42 = b. Then, for m = 0,...,r +1, Ny, (x—1)41 has its support on the two
intervals (&,-1,&m+1) of €. All other N; have their support in just one interval. Correspondingly, the matrix
G is almost block diagonal, with 7+ 1 k x k blocks overlapping in just one row and column. For k = 4 (the
cubic case) and r = 2 this looks like

r Tr T T
r Tr T T
r Tr T T
r r r *r T T X
r Tr T X
r Tr T X
r r TXr T T T X
r Tr T X
r Tr T X
r Tr T X

Since the linear change of the independent variable taking [£,,, &m+1] to [0, 1] carries
Ni(k=1)+i 00 [Em, Emy1] to N; on [0,1], ¢=1,...,k,

we have

(A& /(Ems1 — fm—l))él,p i=1
(17) (b1 time—1)1i = & Gijy i=2,...,k—1 . i=1,...,k
(A& /(Emrz — &m))Grjs  i=k

for m =0,...,r. This says that each of the r + 1 blocks of G is essentially equal to G.
G is totally positive by [1]. Its inverse is therefore a checkerboard matrix, hence (see [1, p. 541])

(18) if y is such that Y Gi;(—)""y; =1, alli, then |G = [|¥]|oo-
J
But such a y is easily constructed. Take x = (z1,...,x)) so that
(19) > Giy(—) =1, alli,
J
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and extend x to a (k — 1)-periodic function y = (y;)} on all of (1,...,n). This is possible since z; = x1 by
symmetry. Then, for i = m(k — 1) + I, we have from (17) and (19) that

r

» 0

k
D G-y, = Zélj(—)ijj =1, I=2..k—-1 m=0,...
j j=1

and also

D Gi(=) My =D/ (Emer = &m1)) D Gri ()
+ (Afm/(ngrl - fmfl)) Zélj(—)prjxj =1

forI=1, m=0,...,7r+ 1.
This proves with (18) that

||G_1||oo = ¥lloo = Xlloc = ||G_1||oo' Q.E.D.
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