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Abstract. The behavior of interpolants as interpolation sites coalesce is explored in the suitably restricted context

of multivariate polynomial interpolation.

A Lagrange projector Pτ is, by definition, a linear map on some linear space X of (scalar-valued)
functions on some domain T that associates each function f ∈ X with the unique element Pτf in ranPτ

that agrees with f at a given (finite) set τ .
This note concerns the nature of limits of such Lagrange projectors, the limits taken in the (bounded)

pointwise sense, with respect to some norm on X , and with the cardinality

n := #τ

of the set τ of interpolation sites kept fixed. Thus, this note does not deal with the convergence of an
interpolation process as the interpolation sites become become dense. Rather, the interest focuses on what
might or might not happen as τ approaches some set σ with #σ < #τ .

1. Pointwise Limits of Linear Projectors of Finite Rank

In this section, some basic facts concerning linear projectors and bounded pointwise convergence are
recalled for the reader’s convenience.

Any linear projector P of finite rank on the linear space X over the commutative field F with algebraic
dual X ′ can thought of as providing a linear interpolation scheme on X : For each g ∈ X , f = Pg is the
unique element of ranP := P (X) for which

λf = λg, ∀λ ∈ ranP ′ = {λ ∈ X ′ : λP = λ},

with P ′ the dual of P , i.e., the linear map X ′ → X ′ : λ 7→ λP . In other words, given that kerP := {g ∈
X : Pg = 0} = ran(id − P ),

ranP ′ = (kerP )⊥ := {λ ∈ X ′ : kerP ⊂ kerλ}

is the set of interpolation conditions matched by P . Put into more practical terms, if the column maps

V : F
n → X : a 7→

n∑

j=1

vja(j) =: [v1, . . . , vn]a

and

Λ : F
n → X ′ : a 7→

n∑

j=1

λja(j) =: [λ1, . . . , λn]a,

into X and X ′ respectively, are such that, with

Λt : X → F
n : f 7→ (λif : i = 1:n),

their Gram matrix
ΛtV := (λivj : i, j = 1:n)
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is invertible, then, in particular, both V and Λ are 1-1, hence bases for their respective ranges and there is,
for given b ∈ F

n, exactly one element, call it V a, of ranV that satisfies the equation

Λt(V a) = b,

thus giving rise to the map
P = V (ΛtV )−1Λt

on X , evidently a linear projector, that associates g ∈ X with the unique element f = Pg in ranV = ranP
for which Λtf agrees with Λtg, hence λf = λg for all λ ∈ ranΛ = ranP ′.

Now assume, in addition, that X is a normed linear space. Then a finite-rank linear projector P on X
is bounded iff ranP ′ ⊂ X∗ := the continuous dual of X . Also, if A is the pointwise limit of a bounded
sequence (Ak) of linear maps on X (i.e., limk ‖Ax−Akx‖ = 0 for all x ∈ X and supk ‖Ak‖ < ∞), then A is
also a bounded linear map; in fact, ‖A‖ ≤ lim infk ‖Ak‖.

The following lemma is standard.

Lemma 1.1. If Q is the pointwise limit of a bounded sequence (Pk) of linear projectors on the normed
linear space Y , all of the same finite rank n, then also Q is a bounded linear projector, of rank ≤ n, and

ranQ = lim
k

ranPk, ranQ′ = lim
k

ranP ′
k.

Proof: Let f ∈ ranQ. Then, f = limk Pkg for some g, hence

Qf = lim
j

Pj lim
k

Pkg = lim
j

lim
k

(PjPjg + Pj(Pk − Pj)g),

with the last term no bigger than (supi ‖Pi‖)‖Pkg − Pjg‖, hence going to zero as j, k → ∞ (since (Pj) is
bounded), while the second last term is just Pjg. Therefore, altogether, Qf = f for all f ∈ ranQ, i.e., Q is
a linear projector, and is bounded since (Pk) is bounded by assumption.

By the very definition of Q, ranQ = limk ranPk in the sense that each f ∈ ranQ is the (norm) limit of
a sequence fk ∈ ranPk, all k. Since dim ranPk = n for all k, therefore (see the proof of Lemma 1.2(a) for
details) dim ranQ ≤ n. Already the simple example, of piecewise linear interpolation at 0, 1/k, 1 in C([0. .1]),
shows that we cannot, in general, expect equality here.

Further, any λ ∈ ranQ′ is necessarily continuous, and, for any f ∈ X , λf = λQf = λ limk Pkf =
limk λPkf , showing that λ is the bounded pointwise limit of a sequence λk ∈ ranP ′

k, all k. It is in this
sense that ranQ′ = limk ranP ′

k. Already the simplest example, of interpolation at one site by constant
polynomials to continuous functions, shows that we cannot expect any stronger convergence of the spaces of
interpolation conditions than that.

The following converse of Lemma 1.1 is also standard (or should be).

Lemma 1.2. Let F∞ be the limit (in norm) of some sequence (Fk) of linear subspaces of the normed linear
space X , all of the same dimension n, and let M∞ be the limit (under bounded pointwise convergence) of a
sequence (Mk) of linear subspaces of X∗, all of dimension n. Then:

(a) dimF∞, dim M∞ ≤ n;
(b) If dim F∞ = n and X = F∞ ⊕ kerM∞, with

kerM := ∩µ∈M kerµ,

then, from a certain k on, there is a bounded linear projector Pk (necessarily unique) for which ranPk = Fk

and ranP ′
k = Mk, and Pk converges boundedly pointwise to P∞.

Proof: Let V =: [v1, . . . , vr] be a basis for F∞. By assumption, for each j, there is a sequence of
elements vj,k ∈ ranPk, all k, so that limk ‖vj−vj,k‖ = 0. This implies that, from a certain k on, [v1,k, . . . , vr,k]
is a 1-1 linear map and, since it maps into ranPk, therefore dim F∞ = r ≤ dimFk = n.

Let Λ =: [λ1, . . . , λs] be a basis for M∞. By assumption, for each j, there is a sequence of elements
λj,k ∈ ranP ′

k, all k, converging pointwise to λj . Then, for the corresponding column maps

Λk := [λ1,k, . . . , λs,k],
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Λk
t converges pointwise to Λt. On the other hand, since Λ is 1-1 (hence Λt is onto), there exists a column

map W =: [w1, . . . , ws] into X dual to Λ in the sense that

ΛtW = id.

Since limk Λk
tW = ΛtW , it follows that, from a certain k on, Λk

tW is invertible, hence Λk is a 1-1 linear
map, and, since it maps into ranP ′

k, therefore dimM∞ = s ≤ dimMk = n. This finishes the proof of (a).
As to (b), the assumptions imply the existence of bases V = [v1, . . . , vn] and Λ = [λ1, . . . , λn] for F∞

and M∞, respectively, and dual to each other. By assumption, there exist column maps Vk and Λk, into
Fk and Mk respectively, so that Vk converges in norm to V and Λk

t converges boundedly pointwise to Λt.
This implies that, from a certain k on, Pk := Vk(Λk

tVk)−1Λk
t is well-defined, a linear projector with range

Fk and interpolation conditions Mk, and its norm bounded independently of k, and converging pointwise to
V (ΛtV )−1Λt = P∞.

Remark. In [4], I failed to stress the fact that, also there, I was concerned with bounded pointwise
convergence.

2. Only the Convergence of ranP ′
τ Is of Interest Here

Lemmas 1.1 and 1.2 make clear that pointwise convergence of a sequence (Pk) of linear projectors
involves, essentially, three parts: the convergence of ranPk, the convergence of ranP ′

k, and the correct
interplay of the two limit spaces.

Here is an interesting example, from [12]. In its discussion (and throughout this note),

δt : f 7→ f(t)

denotes the linear functional of evaluation at the site t, and

Djf

denotes the derivative of f with respect to its jth argument.
On the space Π of bivariate polynomials, consider the Lagrange projector Pτ with range the subspace

Π<3 of polynomials of degree < 3 and with τ the 6-set

(1, 1+h)
(1, 1) (1+h, 1)

(0, h)
(0, 0) (h, 0)

with h 6= 0. In that case, Pτ is well defined. However, Pτ fails to converge as h → 0 since (in the pointwise
sense)

lim
h→0

ranP ′
τ = M0 := span(δσi

, δσi
D1, δσi

D2 : i = 1, 2),

with σ1 := (0, 0), σ2 := (1, 1), and this space, though of dimension 6, fails to be of dimension 6 over Π<3.
Indeed, M0 is also the pointwise limit, as h → 0, of span(δt : t ∈ σ) with σ the 6-set

(1−h, 1) (1, 1)
(1, 1−h)

(0, h)
(0, 0) (h, 0)

and, for h > 0, this set evidently lies on an ellipse, i.e., some nontrivial element of Π<3 vanishes on σ, hence
this must be true of the limiting interpolation conditions, too.

On the other hand, the limiting space, M0, of interpolation conditions is 6-dimensional, hence it is easy
to find polynomial spaces F for which X = F ⊕ kerM0, and for each such choice, Lagrange interpolation
from F at τ (with h 6= 0) is well defined, at least for h close to zero, and converges, as h → 0, to interpolation
from F to the Hermite interpolation conditions M0.

Since such failure of convergence is so easily fixed, I will avoid further consideration of it by concentrating
entirely on the following

Question 2.1. What is the limit, if any, of span(δt : t ∈ τ) as the finite set τ approaches the set σ?
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3. Only the Limit On Π Is of Interest Here

The answer to Question 2.1 depends crucially on the space of functions on which it is considered. If
that space is, e.g., the space C([a . . b]) of continuous functions on some (nontrivial) closed interval [a . . b],
and τ = {a, a + h}, then, as h ց 0, τ approaches the 1-set {a} while the 2-dimensional space span(δt :
t ∈ τ) approaches the 1-dimensional space spanned by δa. This is due to the fact that, on C([a . . b]),
limh→0(δa+h − δa)/h does not exist. But if we restrict attention to the smaller space C(1)([a . . b]) of
continuously differentiable functions, then limh→0 span(δa, δa+h) = span(δa, δaD).

To avoid such impediments to a full limit space, we consider Question 2.1 only on the space

Π ⊂ (Fd → F)

of all polynomials in d real (F = R) or complex (F = C) variables, i.e., concentrate on the following

Question 3.1. What is the limit, if any, of span(δt : t ∈ τ) as the finite set τ approaches the set σ,
considered as linear functionals on polynomials of d (real or complex) variables?

This seems sufficient in view of the fact that polynomials are dense in many function spaces of interest.

4. The Univariate Case

Question 3.1 is completely answered when d = 1. In that case, for an arbitrary infinite sequence τ in F,
there is uniquely associated with each p ∈ Π its Newton series:

p =:
∞∑

j=1

cj(p; τ) (· − τ1) · · · (· − τj−1)︸ ︷︷ ︸
=: wj−1,τ

=

n∑

j=1

cj(p; τ)wj−1,τ +
∑

j>n

cj(p; τ)wj−1,τ

=: pn + wn,τ qn .

This identifies pn as a polynomial of degree < n, necessarily unique, that matches p at τ1, . . . , τn in the sense
that p− pn is divisible by wn,τ = (· − τ1) · · · (· − τn). Hence, pn is the unique polynomial of degree < n that
agrees with p at τ1:n := (τ1, . . . , τn) in the sense that

Djpn(z) = Djp(z), ∀ 0 ≤ j < #{i ≤ n : τi = z}, z ∈ F.

In particular, cn(p; τ) depends only on τ1:n, and depends linearly on p, and this is emphasized by writing it
∆(τ1:n)p, with the linear functional ∆(τ1:n) called the divided difference at τ1:n since, for the case that all
the τj are distinct, it is formed from δτ1

, . . . , δτn
by repeatedly forming divided differences. Further, since

the wj,τ depend continuously on τ , so must the linear functionals ∆(τ1:j). In particular, as the sequence τ1:n

approaches the n-sequence σ, span(δt : t ∈ τ1:n) approaches the n-dimensional space

span(δzD
j : 0 ≤ j < #{i ≤ n : σi = z}, z ∈ F).
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5. A Multivariate Example

Before embarking on the discussion of the general case, here is a striking multivariate example, from
[5]. In its discussion (and later), the following notational conventions are followed.

For lack of a standard notation, I use

()α : F
d → F : x 7→ xα := xα1

1 · · ·xαd

d , α ∈ Z
d
+,

for the monomial with exponent α, with Z
d
+ all d-vectors with nonnegative integer entries, and use the

standard notation
|α| := α1 + · · · + αd

for the degree of such a multi-index α.
Further, I use p̂ for the coefficients in the power form of a polynomial, i.e.,

p =:
∑

α∈Z
d

+

p̂(α) ()α, ∀ p ∈ Π,

and use the standard notation
p(D) :=

∑

α

p̂(α)Dα

for the constant coefficient differential operator whose coefficients are the power coefficients of p. Here,
Dα := Dα1

1 · · ·Dαd

d , with Djp the derivative of p with respect to its jth argument. Also, with

deg p := max{|α| : p̂(α) 6= 0},

I use the nonstandard notation
p↑ :=

∑

|α|=deg p

p̂(α)()α

for the leading term of the polynomial p and use, correspondingly,

f↓ :=
∑

|α|=ord f

f̂(α)()α

for the least term of the formal power series

f =:
∑

α

f̂(α)()α,

with
ord f := min{|α| : f̂(α) 6= 0}.

To motivate these last two definitions, recall (e.g., from [6]) that the pairing

A0 × Π → F : (f, p) 7→ f∗p :=
∑

α

f̂(α)α!p̂(α) = p(D)f(0),

between the space A0 of all formal power series and Π, provides a linear 1-1 correspondence between A0 and
the (algebraic) dual, Π′, of Π. Thinking in this way of the formal power series f as a linear functional on Π,
its order is the largest natural number k for which f vanishes on Π<k.

Notice that, in this 1-1 correspondence, δt is represented by the exponential with frequency t, i.e.,
by the power series

et :=
∑

α

()αtα/α!.

Indeed, for any polynomial p,

et∗p =
∑

α

(tα/α!) α! p̂(α) =
∑

α

tα p̂(α) = p(t).

This may help to explain the appearance of the exponential space

Eτ := span(et : t ∈ τ)

in the following.
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Proposition 5.1 ([5]). Let v and T be a point, respectively a finite subset, in Z
d. Then

lim
h→0

span(δv+ht : t ∈ T) = δvΠT(D) := {δvq(D) : q ∈ ΠT}

in the pointwise sense, with
ΠT := span(f↓ : f ∈ ET).

For a detailed proof, see [4]. As that proof makes clear, the convergence is in the boundedly pointwise
sense with respect to any norm on Π with respect to which the linear functionals δvΠT(D) are continuous,
for example, in C(k)(T ), with T any bounded domain in F

d containing v in its interior, and k ≥ #τ − 1.
What is the nature of the polynomial space ΠT? It is spanned by homogeneous polynomials, and this

is equivalent to being dilation-invariant, meaning that, for any s ∈ F and any p ∈ ΠT, also p(s·) is in ΠT.
Further, since

(Djf)↓ = Dj(f↓)

for any j and any formal power series f , ΠT is D-invariant, i.e., closed under differentiation. This raises
the following question (first asked in [5]).

Question 5.2. Is every finite-dimensional dilation- and D-invariant linear subspace of Π of the form ΠT

for some finite set T?

The answer to this question is negative (see Remark 7.2 below), but may well be seen to be negative
because ΠT is not just dilation- and D-invariant but has the following property which implies such invariance
but seems, offhand, stronger than that.

Proposition 5.3 ([6]). ΠT =
⋂

p T=0
ker p↑(D).

For a direct proof, see [2].

6. Some Help From Ideal Interpolation

Lagrange interpolation was, apparently, the inspiration for Birkhoff’s [1] definition of ideal interpola-
tion as any linear interpolation scheme whose errors form a polynomial ideal. For, certainly, the Lagrange
projector Pτ on Π, whatever its range, has as its errors the set of all polynomials that vanish on τ , and this
is an ideal, even a radical one.

Here is a slight strengthening of a characterization, from [3], of ideal projectors.

Lemma 6.1. The linear map P on Π is an ideal projector if and only if

P (pq) = P (pPq), ∀ p, q ∈ Π. (6.2)

Indeed, for the choice p : t 7→ 1, (6.2) states that P is a linear projector, hence kerP = ran(id−P ) and,
with that, (6.2) states that ΠkerP ⊂ kerP .

Since this characterization of ideal projectors is pointwise, it is preserved under bounded pointwise
convergence. In view of the general discussion in Section 1, we therefore have the following answer to
Question 2.1.

Proposition 6.3. Any bounded pointwise limit of span(δt : t ∈ τ) of dimension #τ is necessarily of the
form ranP ′ for some ideal projector of rank #τ .

Recall from Section 1 that, for any linear projector of finite rank,

ranP ′ = (kerP )⊥.

On the other hand, from results in Algebra that can be traced back via Groebner [7] to Macaulay’s inverse
systems [10] and well recalled and summarized in [11], any polynomial ideal I of finite codimension is
necessarily of the form

I =
⋂

v∈V

ker(δvQv(D)),
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with V the (necessarily finite) variety of the ideal, i.e., the set of common zeros of p ∈ I, and each Qv

a finite-dimensional D-invariant polynomial space, the multiplicity space at v. As an aside, such a
characterization is also available for ideals of infinite codimension, with the only difference being that the
multiplicity spaces need not be finite-dimensional in that case; see [9].

This gives the following

Corollary 6.4. If span{δt : t ∈ τ} converges pointwise to some space M of dimension n as the set τ of
cardinality n approaches the set σ, then M is necessarily of the form

M =
∑

s∈σ

δsQs(D),

with each Qs a finite-dimensional D-invariant polynomial space.

Now notice that, in contrast to the result in Proposition 5.1, there is no claim here that the Qs are also
dilation-invariant. And that is as it should be, as the following simple example, also from [5], makes clear.

Choose d = 2, F = R, and τ = {−ξ, 0, ξ}, with ξ := (h, h2), and consider

lim
h→0

span(δt : t ∈ τ).

It certainly contains δ0 as well as δ0D1 = limh→0(δξ − δ−ξ)/(2h). But, with ζ := (0, h2), it also contains

δ0q(D) := δ0(D
2
1 + 2D2) = lim

h→0
((δξ − 2δζ + δ−ξ)/h2 + (2δζ − 2δ0)/h2).

Since [()0, ()1,0, q] is 1-1, the space Q := span(()0, ()1,0, q) is 3-dimensional, hence limh→0 span(δt : t ∈ τ) =
δ0Q(D). However, while Q is D-invariant (as it must be), it is not dilation-invariant since it does not have
a basis consisting of homogeneous polynomials.

We are left with the question whether Corollary 6.4 is the complete answer, i.e., whether any finite sum∑
s δsQs(D), with each Qs a finite-dimensional D-invariant polynomial space, is the pointwise limit of spans

of point evaluations. In view of the discussion in Section 1, this is equivalent to the following question.

Question 6.5. Is every ideal projector of finite rank the pointwise limit of Lagrange projectors?

I conjectured as much in 2003 (see [4]), but this conjecture was recently shown to be false for d > 2 by
Boris Shekhtman [13], using a result of A. Iarrobino [8] pointed out to me by Geir Ellingsrud as the reason
he thought that conjecture was false.

7. Shekhtman’s Counterexample

The idea of the counterexample is to exhibit a polynomial subspace F for which ‘most’ ideal projectors
having it as their range cannot be the pointwise limit of Lagrange projectors.

For this, pick the natural number m, and a nontrivial partition

V ∪ W = {()α : |α| = m}

of the set of monomials of degree m, and choose

F := span(W ) + Π<m.

Now, as Iarrobino [8] observes, for this F and for an arbitrary matrix C ∈ F
V ×W ,

Π = F ⊕ IC ,

with
IC := span(v −

∑

w∈W

C(v, w)w : v ∈ V ) + span(()α : |α| > m)
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evidently an ideal since the first summand in its definition consists of polynomials homogeneous of degree
m, hence multiplication by any nonconstant monomial produces an element of the second summand. This
implies that each C ∈ F

V ×W gives rise to an ideal projector with range F , namely the linear projector PC

with range F and kernel IC .

Conversely, for an arbitrary linear projector P with ranP = F , there is a unique matrix CP ∈ F
V ×W

so that

Pv ∈
∑

w∈W

CP (v, w)w + Π<m, ∀ v ∈ V,

and, evidently,

CPC
= C.

Further, the resulting map P 7→ CP is continuous. Hence, if every ideal projector were the limit of Lagrange
projectors, then the image of the set of Lagrange projectors P = Pτ onto F under the map P 7→ CP would
have to be dense in F

V ×W and this, as Shekhtman shows, is not always the case.

Indeed, if P = Pτ , hence #τ = n := dimF and, without loss, τ =: {τ1, . . . , τn}, then, by the definition
of CP , for each v ∈ V ,

v(τi) =
∑

w∈W

CP (v, w)w(τi) +
∑

|α|<m

c(v, α)τα
i , i = 1:n. (7.1)

View this as a linear system, for the unknowns CP (v, w), w ∈ W , and c(v, α), |α| < m. Then we know, from
the fact that Pτ is well defined, that the coefficient matrix, Aτ , of this linear system is invertible. Hence,
Cramer’s rule provides the formula

CP (v, w) = detAτ,v,w/ detAτ , ∀ w ∈ W,

with Aτ,v,w the matrix obtained from Aτ by replacing there w by v. Since Aτ is a matrix whose general
entry is some monomial evaluated at one of the sites τi, therefore detAτ , hence also each detAτ,w,v, is a
polynomial in the variables τi, i = 1:n, hence a polynomial in nd scalar variables. It follows that, for P = Pτ ,
the corresponding matrix CP lies in the range of the polynomial map

S : F
nd+1 → F

V ×W : (τ1, . . . , τn, z) 7→ (detAτ,v,w : v ∈ V, w ∈ W )z.

In fact, CP = S(τ1, . . . , τn, 1/ detAτ ).

Now, by a standard theorem from Algebraic Geometry (see [13] for the reference and, in particular,
Remark 2.2 there that fills in certain details) and under the assumption that F = C, the range of the
polynomial map S lies in a proper hypersurface of its target, C

V ×W , in case dimdomS < dim tarS, i.e., in
case

nd + 1 < #V · #W,

hence fails to be dense in C
V ×W in that case. But, as [8] already observed, this inequality holds, e.g., for

d = 3, m = 7, and #V = #W .

Remark 7.2. Notice that IC is a homogeneous ideal, i.e., is generated by homogeneous polynomials.
Since it is also of finite codimension, this implies that its variety consists of the origin only, and that the
corresponding multiplicity space, Q0, is also spanned by homogeneous polynomials, hence is not only D-
invariant but also dilation-invariant. Shekhtman’s counterexample therefore also provides a negative answer
to Question 5.2.
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8. Hermite Interpolation vs. Ideal Interpolation

The fact that not every ideal projector is the limit of Lagrange projectors raises the question of just
how to characterize those ideal projectors that are. So far, I have only a name for them, namely Hermite
projectors, thus giving up on my agreement in [4] to follow Möller who, already in [11], i.e., well before [1],
investigated what Birkhoff later called ideal interpolation, calling it ‘Hermite interpolation’. For, I consider
the fact that, in the univariate case, Hermite interpolation is the limit of Lagrange interpolation so important
a property that I would like Hermite interpolation in the multivariate case to have that property also, even
if that means that, at this point, I don’t exactly know what I am talking about when I am discussing such
Hermite interpolation.

Notice that Shekhtman’s counterexample requires d > 2. In the same paper, [13], Shekhtman also
gives a proof that, for d = 2, ideal interpolation is Hermite interpolation (in the newly minted sense).
But, contrary to the claims I made in [4] (in particular, the proof outline I gave there for the Corollary to
Proposition 7.4 does not seem to be realizable), his proof is not all that simple; it requires nontrivial facts
from Algebraic Geometry. (Added 31oct11: A proof using only linear algebra can be found in [C. de Boor
and B. Shekhtman, On the pointwise limits of bivariate Lagrange projectors; LAA; 429(1); 2008; 311–325;].)
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