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Abstract— A new wavelet-based methodology for representing
data on regular grids is introduced and studied. The main
attraction of this new L-CAMP methodology is in the way it scdes
with the spatial dimension, making it, thus, highly suitable for the
representation of high dimensional data. The specific higlights
of the L-CAMP methodology are three. First, it is computed
and inverted by fast algorithms with linear complexity and very
small constants; moreover, the constants in the complexitgound
decay, rather than grow, with the spatial dimension. Second
the representation is accompanied by solid mathematical #ory
that reveals its performance in terms of the maximal level of
smoothness that is accurately encoded by the representatio
Third, the localness of the representation, measured as theum
of the volumes of the supports of the underlying mother wavets,
is extreme. An illustration of this last property is done by
comparing the L-CAMP system that is marked in this paper
as V with the widely used tensor-product biorthogonal 9/7. Bth
are essentially equivalent in terms of performance. Howevethe
L-CAMP V has in 10D localness score< 29. The localness score
of the 9/7 is, in that same dimension;> 575, 000, 000, 000.

Index Terms—wavelets, multidimensional wavelets, fast
wavelet transforms, wavelet frames, Unitary Extension Pmciple,
L-CAMP, performance, fast algorithms, extremely local waelets.

. INTRODUCTION
(dyadic) wavelet systenX (¥) is a collection of linear

A

integer translations and dyadic dilations to a finite ¥ebf
mother wavelets:

X(0):={D'EF: eV, kez", jel}.
Here, (Df)(t) := 2™/2f(2t), while (E*f)(t) := f(t — k).
The mother wavelet¥ are assumed to lie in

La(R") = {f R = € 1P s= [ IfF <o}

Thewavelet representatioof f € Ly(R™) is then the discrete
set of inner products

(f, x>)w€X(\I/)7

f(t)g(t) dt.

R~

(f.9):
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The wavelet representation is one of the major representa-
tions for data defined on regular grids. There are two main
reasons for the popularity of this representation. Firstly
discrete version is computed and inverted by a fast algarith
the so-called Fast Wavelet Transform (FWT) [16]. Secondly,
it is known to provide optimally sparse representationstier
“right type” of functions/datasets (see, e.g., [7], [1¥Ne refer
in this paper to this latter issue as “performance”, and-actu
ally distinguish between two different types of performanc
Jackson-type and Bernstein-type. Let us pause momentarily
for a brief explanation of these notions.

Jackson-type performance guarantees that the wavelet co-
efficients decay, as a function of the dilation levglin a
way that corresponds to the smoothness clast &ernstein-
type performance guarantees that the decay will not be “too
fast”. Taken together, performance is essential for theecbr
detection and classification of local singularities: thereno
subtle the singularity is, the higher performance is needed
for its detection. The Jackson-type performance of a wavele
system is intimately related to vanishing moments of its
mother wavelets. Recall that the system is said to have
vanishing moment#f the Fourier transformy) of each of
the mother wavelets has a zero of orderat the origin.

A comprehensive discussion of performance is given in the

functionals defined ofR™ that are obtained by applyingsequel.

We are interested in this paper in wavelet representations
in high-dimensions. The construction of effective wavelet
representations in high spatial dimension is a challenging
problem. At a first glance, the choice falls on the so-called
tensor-product constructions, that work by “lifting” a uaii-
ate wavelet construction te-dimensions. These constructions
are readily available, their performance is well-undesd{o
they are simple, convenient, and, to a degree, computéiijona
effective. However, as the spatial dimension grows, such
constructions become immensely non-local in space. Let us
illustrate this by the following simple example. Supposatth
our construction is ifR®, and that we require Jackson-type per-
formances = 4, which essentially means that all the wavelets
have four vanishing moments. A standard choice would be
to use the tensor-product of Daubechiggap filters (=:Daub
8) [3] (or one of the related biorthogonal ones, like Bior 9/7
or Bior 10/6, [2]). The 5-D tensor-product constructionlgige
31 mother wavelets. For the case here, the sum of the support
volumes of these 31 mother wavelets is approximeiedy0°.

This means that every point in space is visited approximatel
half million times by the wavelets within a single scale! Tha
does not sound “local” at all, especially in view of the fact



TABLE |
THE PERFORMANCE AND LOCALNESS NUMBERS OF OUR-CAMP SYSTEMS |, II, V, VIl ARE COMPARED WITH THE TENSORPRODUCTS OF
BENCHMARK WAVELETS: DAUB 4, DAuUB 8, BIOR 5/3, BIOR 9/7.

| | Daub 4] Bior 5/3 | L-CAMP | | L-CAMP Il [| Daub 8| Bior 9/7 | L-CAMP V | L-CAMP VII
s; 2 2 2 2 4 4 4 4
sp 0.55 1 1.41 2 1.62 1.70 2.02 4
vol(¥) (n = 3) 189 279 46 5.6 2401 2863 14.4 31.1
vol(¥) (n = 4) 1215 2145 48 5.8 36015 | 46529 16.7 37.6
vol(¥) (n = 5) 7533 | 15783 4.9 5.9 521017 | 726607 18.8 43.8

that the dimension of the cubic polynomial spadg in 5 spline’s 56. Had we wanted the comparison to look more
variables is56. The latter fact implies the existence of a singldramatic, we could have chosen a higher dimensiorfor
piecewise-polynomial function whose volume of support is = 10, for example, the L-CAMP volumes of the above
56 and whose shifts provide approximation orderWhile, constructs are29 and 39 respectively. The volume of the
admittedly, spline approximation and wavelet decompawsiti tensor-product construct is then aba@gd, 000, 000, 000...
are not exactly comparable, one must be alarmed, and rightlyin Table I, we compare our L-CAMP systems |, I, V, VII
so, by the gap between the two numbers: in comparison witlith the tensor-products of some of the benchmark wavelet
the 56, half a million looks an awfully large number. systems: Daub 4, Daub 8, [3] and Bior 5/3, Bior 9/7, [2]. The
Our goal in this paper is to introduce an algorithm thagpatial dimensions in these comparisonsare 3,4,5. The
for a given fixed performance level(we will deal concretely performance grades; (Jackson-type) angg (Bernstein-type)
with s = 2,3, 4) and a spatial dimension, yields a wavelet that are listed in the table are defined in the sequel.

system, to which we refer as an L-CAMP system, generated.l_he L-CAMP system was discovered as a variation of the

by the mother wavelet¥ := ¥(n, s) C Ly(R™) such that: . . . .
y(l) The performance of tEle r)epreszéntaztion matches t éAMP scheme of [13], which by itself was derived as a varia-

. ion of the class CAP (Compression-Alignment-Predictioh)
given grades. One can choose here to accept Jackson-type . . : AT Y
L . yramidal representations in the same paper. “M” in “CAMP
performance or to insist on Bernstein-type performance.

) stands for “modified”, while “L” in “L-CAMP” stands for
(2) The representation can be computed by the FWT, hen‘?(()ecal”. The CAP systems are close relatives of Burt-Adalso

with linear complexity. . . . L . i
(3) The representation can be inverted by an alg0rithlr‘naplamln pyramid algorithm [1], which is used in many image

N . processing applications [23], [21], [12], [8], [9]. Sinceder-
m\r;:rr;ilc?nd;ret;\een::]:/r\(/)? and is at least as fast athe standard standing the Laplacian pyramid and/or CAP/CAMP theory is

ot necessary for understanding the L-CAMP representation

(4) A complete cycle of one decomposition step and its ;
. L . . .~ We do not pursue all these connections. Instead, we cohstruc
inversion is not only of linear complexity, but the constamt

the O(N) bounds, whereV is the size of an initial data to bethe L-CAMP systems from scratch and analyse directly their

analysed, does not grow with the spatial dimension. In iact,performance.

decays slightly with the dimension! Throughout the paper, we use the following notation. For
(5) The representation isxtremely local The L-CAMP ¢ = (¢(1),...,t(n)) € R and 3 = (8(1),...,8(n)) € Ny

mother waveletsl satisfy (No :== N U {0}), we let |t| :== \/t(1)2+ - +t(n)? and

nts—1 |8] := B(1)+---4+B(n). The inner product of two vectorsz
vol(¥) := Z vol(supp v) < ( > (1) inR™is denoted by - . We use the following normalization
Yew " of the Fourier transform (for, e.gf, € L1 (R™)):

As a glimpse into column 7 of Table IV reveals, the volume it

vol(¥) grows, at worst, linearly with the spatial dimension flw) = - F(t)em™" dt.

in some of the constructions, it does not grow at all! [
Note that("**~") in (1) is the dimension of the spatg'_,

of (s—1)-degree polynomials im variables, a number that fik = DJEkf —9J% f(2.7' k), jE€Z kel

a few paragraphs above was considered to be very small in

comparison with the volume of mainstream wavelet systenfdere, as before, we used

So, the L-CAMP representation is even more local than (DF)(E) = 27/2(2t), (E*F)(t) = f(t—k). (2)

the most local spline approximation scheme. Concretely, in

column 7 of Table IV, we see that for the case= 5 and We let x be the characteristic function of the unit cube, and

Jackson-type performance grade= 4, two of our L-CAMP let1 :=(1,...,1) € Z". Furthermore, we leE := {0,1}",

systems, system V and system VI, satisiyl(¥) ~ 19 (V), the set of the vertices of the unit cube andlEt:= E\0.

andvol(¥) ~ 24 (VI). This should be considered a dramatic The outline of the paper is as follows. In Section Il, we

improvement over theol(¥) ~ 5 x 10° of the tensor-product introduce the L-CAMP systems. The extreme localness of

construct that was detailed earlier. It is even better then tthese systems, as well as their corresponding performance

Given f : R™® — R, we denote
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are discussed there. In Section lll, we present an algorithm
for computing and inverting the L-CAMP representation, and
examine its complexity. In Section IV-A, we review some of

the basics of framelet (:= wavelet frame) theory, and use tha SB

for a rigorous discussion of the Jackson-type and Bernstein \\
type performance of wavelet systems. In Section IV-B, thed du !
system of the L-CAMP system is introduced. The main results
\ l
\ P

concerning the performance of L-CAMP systems are stated 1
in Section IV-C, with their proofs placed in Appendix I. In
Section V, we finally construct concrete L-CAMP systems for
performance grades= 2, 3,4. Those constructs are valid in
any dimensiom, provided that: > 2. The lower-dimensional
L-CAMP systems are given in Appendix II.

Il. THE L-CAMP SYSTEM INTRODUCED Fig. 1. The polygon with thick boundary captures the perfamoe range
of L-CAMP systems that are based @n := x. For a pair(p, s) inside the

The L-CAMP class in this paper is based on the suppg@slygon, or on its left vertical boundary, the L-CAMP repetation encodes
function be =X of the unit cube. The functio¢c is refinable accurately the property ofs“derivatives inL,". While the upper boundary

noq —iw(l) moves upward as the Bernstein-performance gradeof the system gets
with maSch(w) _ H te | viz., higher, the lower boundary is fixed, and is due to the chaigce= x.
=1 2
Pc(2w) = Te(W)pe(w), w €R™ define the mother wavelet,, while the other one is used to

define all the remaining mother wavelets. We refer to the first
one as thenhancement filteand to the latter one as tiheain
w:=(w(1),...,w(n)) € R" filter.

We start by selecting thenask 7. of the enhancement
filter. It can be any trigonometric polynomial (ivariables).
Initially we require that the mask satisfies the relation

Here and later, we use

to denote the generic point in the frequency domain. Aet
be the filter associated with. (i.e. h. = 7.). That is,

27" keE, o
he(—k) := {0’ otherwise. 1 —7.(2w)7.(w) = O(|lw|®), near the origin  (3)

More general L-CAMP constructions, that use refinable funie say that is of orders. While a highs is desired here, we
tions¢. other thany, are available. However, the choigg := require, at a minimum, that > 2. The enhancement filtér,
x leads to the most local systems we are able to come up with,then, the filter associated with the maski.e., 7. = ﬁe. We
makes things concrete and simple, and makes the algorithitngher would like the number of taps @f to be as small as
faster (in terms of the constants). Most importantly, and ipossible. The third, and final, condition that the enhancgme
contrast with common misperceptions (that are, perhaps, dilter should satisfy is detailed later.

to the abysmal performance of the Haar system), the use ofNext, we define the first mother wavelef;, by the relation
piecewise-constant constructs does not impede the akbdlity —~ —~ ~

obtain high-performance systems; as a matter of fact, one ca Yo = o (¢c('/2) - ?6%) : (4)
obtain systems with as high performance as one wishes to. Cn)2

The more sophisticated constructions that we alluded togbo €€ @ := 27"/~ Note that

may be important only in specific applications. A review df th _

graph in Fig. 1 may be useful here: functions in a smoothness %o = an <2n¢c(2') - Z he(k)de(- + k)) :

class outside the lined area may not be represented well by kezn

the piecewise-constant version of our L-CAMP methodology. In order to define the remaining® — 1 mother wavelets,
For example, piecewise-constant L-CAMP lacks the abilitwe choose a univariate mask denote its univariate filter by
to detect most types afegativesmoothness, a property thath, and refer to it as thenain filter. The main filter should also
might be necessary for some PDE applications. The piecewisatisfy three conditions. The first condition is that it isité
constant L-CAMP, in addition, fails to encode correctly thand) supported on thedd integers, i.e.,

Hardy spaceH;(R™) (however, it does encode correctly

smoother versions off; (R™)). h(2m) =0, meZ.

The total number of mother wavelets in our L-CAMPThe second condition is that the filter will have high order of
construction i2”. Recall that, in:-D, the minimal number of Polynomial accuracyV: we say that: hasaccuracyXN if
mother wavelets i8" —1, hence that we are slightly redundant. _ 1
We index the L-CAMP mother wavelets by the &ti.e.,,, hxP =P VP ey, ©®)
v e E. Recall that the main filter is univariate, hence the accuracy

The entire L-CAMP construction is based on two lowpadest is conducted on univariate polynomials. A third coodit
filters, and on nothing else. One of these filters is used tiwat is required of the main filter is detailed later.



TABLE Il
THREE STANDARD CHOICES FOR THE MAIN FILTER THE FIRST COLUMN
LISTS THE ACCURACY. THE FIRST ROW LISTS THE DOMAIN OF THE
FILTERS (WHICH IS A SUBSET OF THE ODD INTEGER}) ONLY NON-ZERO
VALUES OF THE FILTERS ARE LISTED

That is, the total volume o¥ is bounded byol(supp o)+ A.

We mentioned so far two conditions that we require of the
enhancement filter (high order, and small support; therlatte
obviously, is needed for localness and has nothing to do with
performance), and two conditions that we require of the main
filter (support at odd integers and high polynomial accuracy

(Nve[l s [ 3 [ a1 [ 3 [5] a . ac
> T 1 Only one additional condition is required here, but it is ast
i 2 2 simple as the ones above.
4 L 9 9 N
_ 19 1r6 1r6 19 _ . .
6 oos | c2 | 80| B0 ]2 ] B Performance conditions.Our performance analysis of the L-

CAMP system is based on the following parameters:

_ o _ _ o The orders > 2 of the enhancement mask (cf. (3)).
Standard choices for the main filter are listed in Table Il. , The accuracyV > 2 of the main filter (cf. (5)).

We note that for each filteh with accuracyN in the table, , The Holder smoothness of the n-dimensional refinable
(6+n)/2 is the Deslauriers-Dubuc interpolatory filter of order  fynction ¢ associated with the mask
N, [6], whereé is thedirac sequence

We lift the main filter ton-dimensions by aligning it along - ﬁ 1+m7 (12)
one of the coordinate axes. There arelifferent ways to do ‘ 2 '
it, i.e., fori =1,...,n,

For Jackson-type performance, we need to assume that

(W) = 1(w(l)). a> 0. (J)

, , .
The mother Wal/eletb,j, vel,is deﬁnedAby the relation The performance is then related toin{s, N}. In all our
€V, (2w) = an (1 =T (W) de(w). (6) concrete constructions, this minimumss

Bernstein-type performance is relateditiin{s, IV, o}, which,

—_9—n/2 R i .. . . .
Here, a;, = 2 as before, and again, will coincide in our constructions within{s, a}. So,

[1:E —{1,...,n} for this type of performance we desire that
is a map that determines the orientationrothat is assigned azs, (B)
to the v-mother wavelet. While the assignmeint cannot be ; at |east thaty does not lag far behine. n

done at random, there is a great deal of flexibility in chogsin ) o .
it. One way for defining | goes as follows: for each € E/, Remark. Constructing good main filters with short support
is easy. Constructing enhancement filters with high orders

[v] := the position of the last-digit in the vectorv. (7) and small support is not too hard. The true challenge in the
L-CAMP theory is to obtain high values af. The main
challenge is related to the fact that the definition of the
[(0,1)]=T[(1,1)] =2, [(1,0)]=1. enhancement filter depends on the underlying dimension, and

We extend the domain of the map| to E by defining[0] := its support size usually grows with the dimension. All that

. . . ! .. said, and as we will see later, we provide lower bounds
. Under this convention, the valuation map of (7) satisfies ' - ~
0 ap of (7) on the smoothness of the refinable functipnthat do not

[v—epi] <[v], veE. (8) degrade with the dimension. We had to develop to this end new
techniques for estimating the smoothness of refinable ifumst

in arbitrary dimensions. It is beyond the scope of this paper
provide the details of our smoothness estimation machjriery
will be detailed elsewhere. One thing must be clear here: any
smoothness analysis that relies on estimating the asyitptot
of some numerical experiment (e.g., iterating numericaity

Thus, for example, fon = 2,

Here,e; is thelth vector in the standard basis figf".

Note that, ifh is (A\-1)-tap, thensupp ¢, is the union of\
cubes that are aligned along the|-axis, each of which with
volume2~". Hence,

A
vol(suppt,) = -—, veE.

2 the transfer operator) is prohibitive here, due to the need t
Defining, as before, theolume ofU C L,(R") to be have the smoothness estimation valid in all dimensions.
vol(¥) := Z vol(supp ) Extreme LocalnessThe rule of thumb in all our constructions
yer ’ is that the numbeh in (11) is smaller, usually much smaller,

, than the support size of the single mother wavelgt This
we obtain that the volume of the L-CAMP mother wavelet sef,a4ns that the total volumel(¥) from (11) is dominated by

U= {1, :veE} (9) the termvol(supp ¢). In the constructions we present in this
_ paper this latter number grows no faster than linearly with t
1S spatial dimensiom (cf. Table IV).
A(2" —1) We might pause again to compare the above with the main-

vol(W)= vol(supp ¢o) + (10) stream tensor-product constructions. If we start, for exam
< vol(supp o) + A (11) with an orthonormal univariate wavelet whose support lengt
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is L, then the tensor-product approach yieftfs— 1 mother retaining the same assumption on the initial dateone proves
wavelets, each of which with support voluni¢. Thus, the thatforj <0, v € E, k € Z",
total volume of mother wavelets in this caseli§(2"™ — 1), oGt)ny2
which grows exponentially with the spatial dimensienThis djy1(v +2k) =2 (fs (bu)jre)-
exponential growth has nothing to do with scientific reality The reconstruction step does not resemble its FWT coun-
and is a mere artifact of the construction methodologyJ terpart. The crucial step in the reconstruction is theloop
marked by( = *) . We observe that, ifi,1 (1) # 0, thenl must
[Il. FAST ALGORITHMS FOR COMPUTING AND INVERTING  be of the form
THE REPRESENTATION l=ae,,

The L-CAMP representation can be computed and inverted @ereey,; is the unit vector in thev]-coordinate direction,
fast algorithms with linear complexity and small constants and ¢ is an odd number. This means that all the values of

L-CAMP decomposition and reconstruction algorithms, ¥j+1 that are needed for the computation(bf,) *y;+1)(k),

Let h. be the n-dimensional enhancement filter and fet * € v+2Z", lieinv—ep,+2Z". Since[v —ef,1] < [v] for
be thel-dimensional main filter. Fot = 1,....n, let h; be YV € E’ from (8), we have already recovered those values

of y;4+1 previously, hence we are able to compyte: (k) as

the lifting of h to ann-dimensional filter in thd-coordinate
above.

direction. Let[ | be the valuation map from (7). Then:

Complexity. We measure complexity by counting the number
of “operations” needed in order to fully derivg and d;;1
from y,41, and add the number of operations needed for the
inversion. Here, we define “an operation” as the need to fetch

input yo: 2" — C
(1) Decompoasition:
for j=-1,-2,...,5

:yﬂ'(k) =2 ZHGE Yir1(2k + ), ke L™ (¥) an entry from some of our arrays/vectors. Thus, for example,

if ke2z" computing one entry iny; from y;; as in(*) requires2”
djt1(k) = yj+1(k) — (he xy;)(k/2) operations.

end Obviously, the complexity here is linear, i.ex, CM, with

if kev+2Z" where veFE M the number of non-zero entriesgg, andC some constant.
djt1(k) = yj+1(k) — (hr * yj41) (k) Our goal is to estimate that constant: sinceis expected to

end grow exponentially fast with the dimension, we need, attleas

end to control very tightly that constant! So, we actually congu

the mean number of operations per one single entryyin

2) Reconstruction: - .
(2) We observe that the number of operations required to

for j=4j0,...,—1 . . o
i ? kjé’%n’ process the portion af; that lies in a cube of lengthsizeis
about
Yi+1(k) = dja (k) + (he x y;)(k/2)
end 2" +2(1 + tap-size ofh,) + 2X(2" — 1). (13)
for |—V‘|:13"'an (**) . .
if kevtozn This means that the cost per entry of performing one complete
yir1 (k) = disr (k) + (B % y541) () cycle of decomposition/inversion is bounded by
de”d 1420\ +27"(1+ tap-size ofh.)). (14)
en
end Since the tap-size of the enhancement filters grows verylglow

) (with the dimension) in comparison with the exponen®d)

We note that the resulted MRAy;);<o from the line e complexity constant is dominated by the tetm- 2.
marked by (*) is the MRA associated withy, that is, ¢ js then important to note that we are able to achieve the
assumingyo(k) = (f; xo.x), k € Z", for some functionf, required level of performance simultaneously irall spatial
it follows that dimensions, without increasing. The concrete values of

y; (k) = 2jn/2<f7 Xik), <0, kezZm in the constructions in this paper ake= 3,5,.7 (Taple I.I).

Consequently, the constants in the complexity estimatien a

After that line, the rest of the decomposition step computgarying from7 up to 15, depending on the requisite perfor-
the detail coefficientsd; ;. Note that we use™ different mance, and independently of the dimension. Cf. Table IV for
rules to extract the detail coefficient ;. In the signal details.
analysis literature, such decomposition methods are krasvn We would like to point out that the switch from con-
Polyphase decompositid4], [25], [9]. The novelty of our structing L-CAMP systems with a specified Jackson-level
decomposition algorithm lies in the simple way we define thgerformance to systems that deliver a similar Bernsteietle
2™ rules using a singlei-dimensional filterh,. and a single performance barely changes the above complexity constants
1-dimensional filterh, as well as in the ability to pin down thethe enhancement filters in the Bernstein case can be factored
precise performance of the representation. The intejwata into h. = he * hgy,, Whereh,,, is a simple smoothing filter
of the detail coefficients is standard up to normalizatiom, i (cf. (22) and (23) in Section V). The tap size of the factor



in this decomposition is on par with the total size of th&he primary condition of the MRA setup is that ti&;);
enhancement filter in the Jackson case (the latter does setuence is nested:

require smoothing). Since the smoothing step has a nelgigib
effect on the complexity constants, we see that “Bernstein

performance is free”, at least as far as the computation Whenever this condition holds, one refersdas arefinable
the representation is concerned. The modified numbers, th@ction In addition, one requires that the unionV; is dense
account for the smoothing factorization, are listed in aul6  j, 1,,(R"™). However, if ¢ is compactly supported ang(0) #

of Table IV. _ _ 10, the density condition always holds.
When comparing the above details to the details of com-

puting and inverting a tensor-product-based wavelet repre Next, we illustrate the way the “performance” of a wavelet
sentation, we must account to the fact that the latter c§@meX (¥) may be graded, and use the-setup to this end.
be computed quite effectively by algorithms that bypadzor > 0, let W*(R") be the usual Sobolev space. That is,
completely the immense non-localness of the presentatidhs (R") is the set of functiong’ € Lo(R™) such that

A simple efficient implementation of such systems requires, o aF\V

for anporthonormal ugivariate wavelet with ta};)s, abou'nqL Flwe ey = 1012 ) sy < oo
operations per entry for decomposition only. We are not awaWe would like first the wavelet systed¥ (¥) to be a frame
of an implementation of the decomposition step of the FWand to satisfy

whose constant is similar to ours, i.e., independent of the

e CcVayocWwaeW e

dimension. Z ”T;((wafz(a) < Aalflwg @y, VI € W3 R").
hew
(16)
IV. PERFORMANCE ANALYSIS Here
The L-CAMP scheme was discovered as a variation of 1/2
the CAMP scheme of [13], which by itself was derived as . 2jex )
a variation of the class CAP of pyramidal representations, 1T ) Flleaay = Z 27, bjn)l - ()
studied in the same paper. Rather than tracing back that JEL ke

evolution, we will provide here an intrinsic analysis of therhe supremum

L-CAMP performance. o .
sy :=sup{a > 0: X (V) satisfies (16) for the given},

A. The performance of wavelet frames is one way to quantify the “performance-grade” of a frame
Let U be a finite subset of.,(R"). The wavelet system X (¥). Since the inequality (16) is the counterpart of the
generated by thenother waveletd is the family Jackson-type inequalities in Approximation Theory, weeref
to the aboves; as theJackson-type performanad X (). It
X(0):={¢jr: vV, jEL, ke Z"}. is known that the essential conditioh needs to satisfy for

The analysis operatois defined as having “performance-graded; is that eachy) € ¥ hass;
vanishing moments

T)*((xp) s f e I>)mex(\p);

the entries oﬂ“)*((q, f are thewavelet coefficientsf f (with . o
respect to the syster (¥)). The systemX (¥) is a frame Another way to measure the performanceXofl) is to insist

if the analysis operator is bounded above and below, viz.,fat in addition to (16), the inverse inequality holds adlwe

¥ =0(-]*), near the origin

there exist two positive constants B such that Z ||T;((¢)f||z2(a) > Ba|f|W;(Rn), Vf € Lo(R™). (18)
Alflf,en < D, AP <Blfl3,@n, (15)  veY
zeX () For a frameX (¥), we definesp to be

for all f € Ly(R"). X(V) is aBessel systenf T% ) IS gypfa > 0: X(¥) satisfies (16) and (18) for the giver.
bounded, i.e., the right-hand side of (15) is valid.

We pay attention here only to wavelet frames that aféhe inequality (18) is the counterpart of the Bernsteiretyp
derived from amultiresolution analysigMRA) ([16], [17], inequalities in Approximation Theory, and therefore weeref
[20], [4]). One begins with the selection of a functigne to the abovesp as theBernstein-type performanas X (V).

Ls(R™). With ¢ in hand, one defines Obviously,sp < sy, and usually strict inequality holds. The
value of sg is not connected directly to any easy-to-check
Vo :=Vo(9) property of the systenk (V). As a matter of fact, the value
to be the closed linear span of the shiftsdofi.e., Vy is the Of sp is related to the smoothness of theal frame X ('),
smallest closed subspace bf(R") that containsE(¢) := Which we now describe.
{¢(- — k) : k € Z™}. Then, with D the operator of dyadic

LA 10ur entire performance analysis in this paper is doneW¥gft, a > 0,
dilation (cf. (2)), solely for simplicity. The conditions required fer-performance in thévg
) sense would imply the same performance in the Besov spg, [22],

Vi :=V(¢) := D'Vy(¢), jeELZ. sense. We refer to Fig. 1, and, for more details, to [13],.[14]
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First, one defines a mag > ¢ — % € Ly(R"), and B. The dual system

extends i:ti naturally toX'(¥) (i.e., (Vj0)? = (d@ﬂ)jyk)- Assume  oyr next goal is to complement the L-CAMP system by a
that X (V) is also a frame. The fram& (V) is then said to gyjitaple dual system. In fact, the next lemma exhibits aelarg
bedualto X () if one has theperfect reconstruction property ¢jass of dual systems. At this point, we will merely introduc

all these dual systems, and prove their core connection with

f :Tx(xyd)T;((q;)f = Z (f,x)z?, f € La(R™). the L-CAMP system. We are not (yet) claiming that these
zeX(T) systems are dual to our L-CAMP systems; that further claim
H T is th thesi ¢ will be established in Lemma 2.
I, L x (ay 1S theSyninesis operator We first define the following partial ordering da:
TX(\I,GL) . CX(\Pd) > ab— Z a(:c)a? V/ Z v — I/(l) = V(l)a l = 11 DR I—V~|a

zeX(¥9) where [ ] is defined as in (7). In particular/ > 0 for all

) . v/ € E. Given a vector € C", we define
Thus, one strives to build wavelet frames that have a high

number of vanishing moments, and have smooth dual frames. o = ﬁa(l)u(z)_
This brings us to the question of how wavelet systems are P

constructed. The most general recipe in this regard is knownLemma 1:For v c E. let ¢. be the wavelet mask that
the Obli Extension Principle (OEP, [4]). H is t . v ) v _ ;
o 'que Extension Principle ( [4]). Howeverpi rresponds to the mother wavetgt defined in (4) and (6).

paper, we will need its special and simpler case, the Unit t ) _ : B
Extension Principle (UEP). Both lead to the simultaneo 2t_€ be any tr|g(_)n0metr|c polynomial such ttD) = 1 and
fine a new refinement mask

construction of a frame and its dual frame. We describe no

the UEP, . To(29) )
The refinability assumption on the functignis equivalent 7= Te(2)7 (1 +¢ <1 - on X;fﬂ )) , (20
to the condition that Ve

where . = [, (1 + n)/2, 7 = (71,72,...,7), and
(5(2.) =70, ey(w) = e« for w € T". We also define dual wavelet
masks
for some2n-periodic functionr, called therefinement mask d_ Vb
Let us assume for simplicity that is a trigonometric by = ane—y Z T (1= &re(2)men), veE, (21)
polynomial. We assume that the mother wavelet $et=
{¢n,...,¢p} is a subset ofV;(¢). This amounts to the with a;, = 27/2 as before. Then the masks., (t,),cx) and
existence oRr-periodic functions (swavelet masRs(m;)~ , (74, (t¢),cg) satisfy the MUEP condition (19), i.e.
such that 1, ify=0,

- ~ R T
$i(2) =7, i=1,---,L. Te(- )7 +§Et"(+7)tv—{o, if 7 € {0,7}™\0.

v'>v

Again, we assume for simplicity that;)~_, are trigonometric ~ Proof: We first note that, for any, b € C*, andv € E,
polynomials. The dual system is constructed similarlyngsi ,» _ ,»

a dual MRA that is derived from a dual refinable function n m—1 n
#?. Let us assume that the dual refinable functishhas a = Z(b(m)”(m> — a(m)*(™) H b(1)*® H a(l)*®.
trigonometric polynomial refinement mask. The assumption m=1 1=1 l=m—+1

that w¢ = {1_/4, e ,7/)%} CdV1(¢d) amounts to the existencerps impojies that

of 2r-periodic functions(r4)L ; such that o
A ; b=’ = 3 (V) — V) @b
w;i(2):7-zd¢da 1=1,---, L. v'<v

i 4 _ . wherer//_is obtained from/’ by replacing the last 1-digit of

Again, we assume that the masks) are trigonometric , (whose position is af¢]) by 0. We now fix» € E’ and

polynomials. v € {0,7}", and choose := 7(w) andb = (=), . In

Suppose now that the two systetA§¥) and X (¥?) are hat notation
known to be, each, a Bessel system, and they satisfy the Mixed

Unitary Extension Principle (MUEP) : tu(w+7) = ane—, (W) (b([v]) —a([v])),
L and thus
T+ T ()l = L 7=0, (19) T2 (Ao (o= =
v — ¢ T =0, v € {0,7}™\0, Z tw (-, = oy Z (1 —&7e(2)mren) (e -7Y).
= v'eE’ veE’

and $(0) = ¢%(0) = 1. Then X (¥) and X (¥%) form a pair From this, we obtain
of a wavelet fr_ame and a dual wavelet frame [19]. We refep,, 1d + Z t,(-+y)td = a? Z eTV(1 — €7 (2)Tren).
then to the paif X (¥), X (%)) as a (UEP) bi-framelet. =y VeE



Sincety = ay, (1 — 76(2-)7-c) from (4), then, once we observeThe set of all the compactly supported functions witiif is

thatr, =27"> g e, and denoted byR" := R"(R") (and is trivially independent of).
Finally, for positive integersN = 1,2,---, we let RY =
tg =ay, | 2" — 57—6(2')TT Z e, |, r]0<77<N RY. O
ek We note that under the above definitionfifs a compactly
we get supported function with Holder smoothnessthen f € R.
— — We approach the performance analysis as follows. We first
) d ) d ) : )
Te(- + )74+ Z tu (- )t fix an integers > 2. We then require the enhancement mask
. vel to be of orders (i.e. to satisfy (3)), and require the main filter
=0} Y e V(1 - {r(2)mey) h to have accuracy as well (i.e., to satisfy (5) foV := s).
vEE Now suppose that we construct the L-CAMP wavelet system
+ 7o (- +7)(ﬁ_ antdr.(2)) using 7. and h as explained in Section II. Le¥ be the L-

CAMP mother wavelet set as in (9). Then we see that each of

— 2 -V _ AV . .
= Z € (1= &re(2)mrer) + 7 +7)Eme(2)7 the mother wavelets hasvanishing moments: for), this is

ver 1L ifv—0 due to the order of., and for all the other mother wavelets
=a? Z e Y = {07 it v ; {(’) 21\ . this is due to the accuracy of the main filteer
veE ’ K ’ ' The other important information needed for the performance

analysis ofX () is the smoothness of the dual system. To this
Discussion.We examine the functiog that was used in (20) end, we will show that it suffices to know the smoothness of
and (21) more closely in order to understand the L-CAMihe refinable functiom, the refinable function associated with
representation in several different complementary ways. Lthe maskr.7,, (cf. (12) and (20)). We note that the standard

#? be the refinable function associated with performance analysis will hinge on the smoothness of themor
The simplest choice fof is to let¢ := 0. That yields complicatedy? associated with-? (see, e.qg., [17], [15]); thus
n the reduction of the performance analysis to the smoothness
74— e (27, t‘,f = ane_, H (14+7), veE. of ¢ is an important step here.
I=[v]+1 Jackson-type performance follows once we make a minimal

. . . . smoothness assumption on the functin
This interpretation shows that we view the synthesis step P o

as forming linear combination with the dilated shifts of the Theorem 1l:Let s > 2 be an integer. Assume that we have
refinable functiony® whose mask is(2:)7.. However, our an L-CAMP system that satisfies (3) for the givenand (5)
proposed reconstruction algorithm seems to be more effr N := s. Suppose thap € R" for somen > 0. Then
cient than the one offered here. Also, as far as performan&é¥) providess; > s.
analysis goes, the synthesis “wavelets” in this interpi@a  The proof of the above theorem invokes the following
lack vanishing moments; the lack of this property makes thgnma, which might be of independent interest. It guarantee
performance analysis awkward at best. for the given L-CAMP wavelet systed¥ ('), that there exists
For performance analysis, we need to chogsuch that 5 qual wavelet systenk (¥7) associated withp?, so that
£(0) = 1. For suchg, all the masks? vanish at the origin, the pair (X (), X(¥%) is a bi-framelet, and so that the

which means that each of the dual wavelg{s has at least smqothness of the dual mother wavel@t is as close as
one vanishing moment. However, the refinement mask one wishes to the smoothness of the ab&ve

becomes more involved, and as a result the refinable function _
#¢ becomes less smooth. Lemma 2:Let s > 2 be an integer. Assume that we have

an L-CAMP system that satisfies (3) for the givenand (5)
for N := s. Suppose thatp € R" for somen > 0. Then
C. The performance of L-CAMP systems for every0 < a < 7, there exists a wavelet fram& (¥?)
We are finally ready to present our performance analysis @$sociated with a refinable functigrt that corresponds to the
L-CAMP systems. We start with the definition of a smoothnessask? in (20), so that the paitX (¥), X (¥4)) is a (UEP)
class : bi-framelet and¥?¢ c R.

Definition 1: Let n > 0 be a non-integer, ang > 0. We From Theorem 1, we see that for Jackson-type performance
defineR? := R?(R") to be the set of all functiong such grades all we nee(_JI is that the vanishing moments of _the L-
that, with some constant _CAMP wavelets will be of ordes, and that¢ will be min-

imally smooth. For the stronger, full-fledged, Bernstsipet
FOW <e@+t)™7, BeNrand|s] < |n) performance, the smoothness @fplays a more substantial

role:
and

Theorem 2:Let s > 2 be an integer. Assume that we have
D) = fO) <elz=t7" sup (1+|u—t)"", an L-CAMP system that satisfies (3) for the givenand (5)
ful<l==l for N := s. Suppose that) € R” for somen > 0. Then
for 6 e Ng, |8] = |n] and|z —¢| < 3. X () providess; > s andsp > min{s, n}.
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TABLE Il
THE EIGHTL-CAMP SYSTEMS THAT ARE CONSTRUCTED IN THIS PAPERCOLUMN 1 ENUMERATES THOSE SYSTEMSTHE ACCURACY OF THE MAIN
FILTER IS LISTED IN COLUMN 2. (SEETABLE Il FOR THE ACTUAL FILTER THAT CORRESPONDS TO THIS ACCURACY THE DETAILS OF THE
ENHANCEMENT FILTER OCCUPY THE OTHER COLUMNSWE EXPLAIN IN THE TEXT HOW TO READ THESE DETAILS

L-CAMP accuracy order hqa = diagonal part ofre ha, ha, hag
SYSTEMS || of h=_N |ofhem | 81 [-20] 1 ] 0 [ 1 [ 21 [ e [pi[l| e [p2]la]|cs][ps]ls
| 2 0 3 i
] 2 1 3 2
1 4 0 > > -2 = 0|1
vV 4 1 -3 i 2 = E
\% 4 0 e | 22 & = | = 13| &£ 0|1
VI 4 0 -2 52 = -& & 0 |-1] & 0| 1| & | 1|1
Vil 6 2 - 213%74 %32 293706;1 2432)54 23%4 313 % 0 -1
Vil 6 2 A = 2 -2 Z 0 | -1 -4 01| & |11

The proofs of the above results (Lemma 2 and Theétere,h,,, is a smoothing filter, i.e., a filter with Fourier series
rems 1,2) are placed in Appendix I. R 1 1 . r

From Theorem 1 and Theorem 2 (for:= s), and from hsm(w) = ( _llvw)
the fact thaty is compactly supported, we see that the L- o g
CAMP systems satisfying the assumptionsRarformance The orderr of the smoothing is I|_sted in the 3_rd column of
conditions (in Section 11) have performance grade at least 12Ple Ill. Next, the summandc is a filter defined on the

in the Jackson sense if we assume (J), and in the BernsfdijgonalZ1 of Z". The values ofi; can be found in columns
sense if we assume (B). 4-9 of Table Ill. One can see that; has small support: it is

2-tap at best, and 4-tap filter at worst.
The other summands, i.e., those that are denotéd asare
V. EXAMPLES OF L-CAMP SYSTEMS obtained by translating, dilating and multiplying by a ctam

, .a fixed (n + 1)-tap filter that we denote as4:
We present eight examples of L-CAMP systems, spanning k=0
n’ — 1

the range of performance from = 2 to s = 4, with
performance either in the Jackson sense or in the Bernstein ha(k) := { —1, k= €. l<i<n,
sense. Note that each “system” is actually infinitely mangon 0, otherwise.
as we cover any possible spatial dimension, and, at leasrasHere, as beforee; is the unit vector in thel-coordinate
as the enhancement filter is concerned, the constructiaisietdirection. Columnsl0-18 of Table Ill explain how to obtain
do depend on the underlying dimension. ha, from ha: ¢, is a multiplicative constantp,, is the
We divide the discussion into two. We first present a feffanslation vector, antj, is the (unnormalized) dilation param-
tables that contain pertinent information about our eight L€ter. For example, the filtér, in system V has parameters
CAMP systems, and explain how to read and interpret tife = 1/576, p1 =1, andl; = —3, hence it is defined as

(23)

information from those tables. We then sketch the methods 1 n, k=1,

we used in order to assess the order of the enhancement filter, h 4, (k) := E76 X { -1, k=1-3¢, 1<I<n,

and, most importantly, in order to estimate the smoothnéss o 0, otherwise.

the refinable functiorp. Note that the translation vector lies always on the diagonal

In Table 111, we collect the details that are needed in order hence that all the enhancement filters we construct here are
construct the main filters and the enhancement filters of auariant under any permutation of the coordinates. Nose al
systems. The system itself is identified in the first columihat the number of taps i, is primarily determined by
The accuracy of the main filter is listed in the second columthe number of summands of the forin, that appear in its
Using the listed accuracy, one can recover the details @finition, which ranges betweénand3 in our constructions.
the main filter from Table II. The rest of Table Il refersone may also wish to pay attention to the dilation parameters
to the enhancement filter, and can be viewed as a setTefe L-CAMP system V uses an enhancement filter with fewer
directions for assembling that filter. Let us explain howsino taps as compared to system VI. However, one of the dilations
“directions” should be read. Those details are correct \elien in system V definition is—3, making the support of that
the dimension is “large enough”, which meams> 2 for the enhancement filter less local than one might desire. The filte

systems -1V, andn > 3 for the systems V-VIII. in system VI uses more taps, but its support is more local.
The constructed enhancement filtérs in the table are of Which one may be better for applications we do not know,
the form and it might depend on the details of that application. Hence

we listed both options. Similarly, the filter in system Vlises

M
he = g * (hc + Z hAm> - (22) Irnorle taps as compared to system VII, but its support is more
oo ocal.
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TABLE IV
SOME OF THE BASIC PROPERTIES OF THE EIGHT SYSTEMS FROMBLE |11. T HE TABLE HERE HIGHLIGHTS THE SMALL CONSTANTS IN THE COMPLEXTY
BOUNDS, AND THE EXTREME LOCALNESS THE PERFORMANCE IS LISTED AS WELL TOGETHER WITH THE BEST ESTIMATE WE GOT FOR THE
SMOOTHNESS OFRp.

L-CAMP A= tap-size of | tap-size of | tap-size ofh. tap-size ofhe vol(¥) | Holder smoothnesg| s sB
SYSTEMS || N +1 hsm e = vol(supp ¥o) | + tap-size ofhsm < of ¢ >
I 3 1 2 2 3 5 1.4150 2 | > 1.4150
Il 3 2 2 3 4 6 2.4150 2 2
i 5 1 n+3 n+3 nt+4 n+8 2.3561 3 | >2.3561
v 5 2 n+3 2n+4 n+b 2n+9 3.1926 3 3
\Y, 5 1 2n+4 2n+4 2n+5 2n+9 2.0227 4 | >2.0227
\ 5 1 3n+4 3n+4 3n+5 3n+9 2.0342 4 | > 2.0342
\ll 7 3 2n+4 6n+7 2n+7 6n+14 4.3353 4 4
Vil 7 3 3n+4 n+6 3n+7 n+13 3.7604 4 | > 3.7604

In Table IV, we list the properties of each L-CAMP systenthat is needed for performaneg = 4. In theory, we could
(n > 2 for the systems Ill-IV,n > 3 for the systems V- have taken in all of our constructions very large values\Vof
VIII). Here, we let¢ be the refinable function associated wittand obtained in this way very smooth We avoided doing
the refinement mask.7, (cf. (12) and (20)). In column 8 that since such approach creates mother wavelet with small
of the table, we list the smoothness of which plays an volume of support (since the volume grows only linearly with
important role in the performance analysis (cf. Theorer2}. 1, the accuracy (cf. (11)), regardless of the dimension), hbtht w
As said, the smoothness estimation techniques are toovetiollarge diameter for their support. While there is no decisive
to be covered in detail here; instead we will sketch theeason to avoid such constructs, we preferred to Kéegpence
main ingredients of the smoothness estimation machinémy. TA, as small as we can, and to pay, instead, careful attention to
performance grade of each L-CAMP system is listed in the laie construction ofi...

two columns of the table. The enhancement filter is constructed to achieve a given
The numben := 1+ (tap-size ofh) is shown in column 2 grger 5, (3). The orders dictates the Taylor expansion of

of the table. This number, together with the number of taps §found the origin up to degree— 1. Since the filterr. is

he (listed in column 5), is important for the computation ofnyariant under permutation of the variables, we chogsto

the complexity of the algorithm (cf. (14)) as well as for thgyaye this property, too (this is done by choosing the support

total volume of the L-CAMP mother wavelet set (cf. (11)). of 1, to have this invariance). This reduces significantly the
For spatial dimensiomm = 3,4,5, we compared the Numberc of conditions thatr. needs to satisfy for ordet c =

L-CAMP systems LILV,VIl in Table | with some of the 2:4:7 conditions, fors = 2,3,4 respe_ctively. We yvanted t(_)
mainstream wavelets. There, we used formula (10) for tipeit the support of the enhancement filter on the diagonalesin

computation of the volumeol(¥) of the L-CAMP systems. this leads to the smallest possible invariant support. hewe
it is easy to see that ah. supported on the diagonal can

The details provided in Table Il and Table IV exclude=  gatisfy onlys of the Taylor expansion conditions. To this end,
1 for the systems Ill-VIIl, andn = 2 for the systems V- e ysed, fors > 2, the extra summands of the fori,. The
VIIl. The missing lower-dimensional counterparts of thedd ,ymper of summands of this form usually equalscte s.
systems can be obtained from the high-dimensional filters |ip constructions V and VII we were able to do with fewer
a trivial way. We present some of these lower-dimensionghmmands{— s = 3, while we used only two summands),

the smoothness af (column 8 in Table 1V) for these lower

. : . . The smoothness analysis was done in retrospect, i.e., after
dimensional constructs remains essentially unchanged.

the construction was completed. It consists of three main
How did we construct the above main filters and enhandegredients. The most subtle one was to study the effect of
ment filters? We start by choosing the main filter. The primagonvolving the diagonal part of the enhancement filter with
property of the main filter is to have accuraéy, which the tensor-product filtek, (whose mask is;.). We developed
determines the number of vanishing moments that the mothethis end a decomposition technique of the multivariatersl
waveletsy,, v € E’ will have. Note that in constructions VIl into the sum of2-tap ones. Another subtle point was to prove
and VIII the accuracy isV = 6, while the last wavelety)y, that each of the summands of the fofm in the definition
has only4 zero moments, hence the Jackson performanceoish. has only minor effect on the smoothnessfofan effect
sy = 4. This is not an oversight: a higher value df leads that is independent of the dimension. The third part was to
also to higher smoothness of the tensor-product function account for the (positive) effect of the smoothing. Whilg no
(associated with the mask.) which is a convolution factor trivial either, that part was less innovative since it wasi@o
in the functiong whose smoothness is critical here. So, why employing some of the tools that were used to the same
choose heréV = 6 in order to reach the requisite smoothnesand in the study of the smoothness of box splines, [5].
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APPENDIX | that X (¢¢) is Bessel, for eacly € E, wheregd(2:) := t2¢?
PROOFS OFLEMMA 2 AND THEOREMS1, 2 with t2 as in (21). Note thap? € R* impliesy? € R* since

In this section, we prove Lemma 2 and Theorems 1, 2. TR¥ery dual wavelet mask] is a trigonometric polynomial.
proofs are mostly done by specializing to our context some bp€ conditiony’7(0) = 0 is equivalent tat;(0) = 0, which is
the more general results from [10], [11], [18], [13], [14].  trivially satisfied from the assumption(0) = 7.(0) = £(0) =

For the proof of Lemma 2, we recall the following results!- Since we verified that)d .SatISerS all the assumptions in

Result 1 [14]): Suppose that is a finite linear combina- Result 3, we see thaX (v) is Bessel, for each € E.
tion of integer translates of(2-), and satisfieg)(0) = 0. Then ~ Combining the above with Lemma 1, we see that all the

X () is a Bessel system. requirements fof X (¥), X (¥%)) to be a UEP bi-framelet are
Result 2 [13]): Suppose that is some fixed trigonometric Satisfied, [19]. Furthermore, we showed et C R O
polynomial which has a zero of ord@rat the origin. Letpg To prove Theorems 1 and 2, we introduce a sequence space.

be some refinable function with a refinement masgkthat Fora > 0, ¢2(«) is defined to be the space of all sequences
satisfiespy € R", for somen > 0. Then for any0 < o’ <n, c¢:=(c(j,k):j € Z,k € Z") such that

there exists a trigonometric polynomiglsuch that¢(0) = 1, 1/2

and such that the refinable functignwith mask,(1 + £¢) o 2

belongs toR" . lellesoy = D2 (@GR | <oo
Result 3 [18]): Suppose that € R" for somen > 0, and JeL kerr

satisfies)(0) = 0. Then X (¢) is a Bessel system. We denote byS := S(R") the Schwartz space of test
Finally, we make the following simple observation: functions. Also, we use the notatian< b to mean that there is

Lemma 3:Let 74 and 75 be some trigonometric polyno-a constant > 0 such thatz < cb. We further use the notation
mials that satisfyr4(0) = 75(0) = 1. Let ¢, be the refinable ¢ ~ b to denote two quantities that satisfya < b < csa, for
function associated with the mask7z. Then the refinable some positive constants and c.

function ¢y associated with the masks (2-)7p is at least as  We now recall the following result (see, e.g., [10]).

smooth asp;. Result 4:Let ¢ € S be such that

Proof: We first note that there is unique refinable function 1
corresponding ta 4 (2-)75. Now from supp ¢ C {5 < |l <2},

~ ~ ~ N 3 5
TA(2:)91(2) = Ta(2)TaTBP1 = TA(2")TB (TA¢1) , |p(w)] > ¢ >0, E <w| < 3’ (24)
~ ~ —~ -, W
and from the uniqueness, we see that= 74¢:, and thusp, B(w)” + |%0(§)|2 =1, 1<wl<2,
is at least as smooth af . O ; tant. Th h
Proof of Lemma 2We see immediately that the L-CAMP or some constant. Then, we have

systemX (V) is Bessel from Result 1. Now &t < « < 7 be f= Z Z (fy0ix)0ik, f€ La(R™). (25)
fixed. JEZ keZn

We choose a number such thata < u < 7. ThengzNS €
R*. From Lemma 3 (forp, := ¢, 74 := 7. and 7 := 7,.),
the refinable functiony, associated with the mask.(2-)r. |flwg ®ny = (1 T% (p) fllea(o)- (26)
satisfiespy € R*. From the assumptions (3), (5) and from the
identity 3, g e, ™ = 2" 3" oo o (Tem) (- +7), We see
that, near the origin,

Let o > 0. Then, for everyf € Ly(R™),

We also recall two pertinent results from [13]:
Result 5:Let @ > 0. Let A be a complex-valued matrix
whose rows and columns are indexedby Z":

G=1- 76(2.)2% > et A = (A (k,m) = A(j,k;1,m) : j,1 € Z, k,m € Z").
=(1- Te(g.);c)yiETe(g.);c(l -7) Suppose that there exists a constant ¢(«) > 0 such that,
—Te(2) Y Fer)(+7) for all j, _ _
Y€{0,7}™\0 1A ill2 = 1Al e zn)—ta(zny S 20727117l
=0(- ). Then A is a bounded endomorphism 6f(c).

(The first term above has a zero of ordedirectly from our ~ Result 6:Let j,l € Z, a > 0. Suppose that there exist
assumption on the enhancement filter. It is easy to see tR@pstantsy >n and 3 € R such that for allk, m € Z",

the other terms have zero of ordar at the origin, with v iy o . —
T . o(l=j)(a+%)9—[l—3l8 1277k — m)|
the accuracy of the main filter. Since we assume here |A 1 (k,m)| < — — ,
N, we obtain the order above, as stated). Siace 2, the ' 2&"7)" 2.7
function{ has a zero of orde? (or more) at the origin. Wlth where2¢ := max{2°,1}. Then we have
70 := Te(2-)7,, we use Result 2 to conclude that there exists _ _
a suitable¢ for which the refinable functiop? lies in R®. A2 < 2U=)eg=It=ilB,
Now we argue that the dual wavelet systénf¥?) deter- Another relevant result from [14] is also in order. For its

mined by the abové is Bessel. For that, it suffices to showstatement, we need the following definition:
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Definition 2: Let A > 0 and~ > 0. Let MQ = MQ(R") Thus, by combining (27) with (28) and by invoking Result 5,

be the set of functiong such that we obtain thatM is a bounded endomorphism df(«).
_ Therefore for any < s, the L-CAMP frameX (¥) satisfies
Y
FAQIISE R IV (16). That is,s; > . 0
and, for all3 € N7 with|3] < A, Finally we present the proof of the Bernstein-type perfor-
B mance result.
/ [t° f(t)|dt < oo and / tPf(t)dt = 0. Proof of Theorem 2The Jackson-type performance result,
n n sy > s, is already proved in Theorem 1. Let< a < n be
Result 7:Let € be a linear combination of a finite numbefixed.
of translates ofy(2-), and letn € M9 for all v € N. Let We let v be a non-integer such that < u < 7. Then,
, N by Lemma 2, there exists a wavelet systam¥<) associated
Aji(k,m) = &k mm), Gyl € Z, kym €L with a refinable functiom? (whose mask is the corresponding
Then forl > j anda > —3, there exists := e(a) > 0 such 74 from (20)), so that the paitX (¥), X (¢9)) is a bi-framelet
that and U¢ c R. In particular, the L-CAMP wavelet system
A2 < ol=iag—li—jle. X () satisfies
d _ n
We further need a result from [11]. Z Z<f’ Yim) Yim = [, f € L2(R™).
Result 8:Let 3 > 0 be a non-integer. Lef > n+ 3. Then, vev lm
for j <1, This implies that
s n |2l_jk—m| 7 fv‘)ojk Zzujlmv(ﬁjk fv"/)lm> Vjvka
|<0Jka<l’m>| Sz a J)(ﬁ+2) (1+T B Yev Im

) ) o wherep € S is any function satisfying (24). That is,
providedd € RQ and¢ € M2, with X satisfying| A\ +1 > 3. . i .
We are ready to prove the Jackson-type performance result: Txpf = Z (T ) T w)) Tx ) f-
Proof of Theorem 1We first note that, thanks to Lemma 2, vew
the L-CAMP systemX (¥) is a frame. For each L-CAMP Thus, once we show that for eaalf € ¥? the operator

mother wavelet) € ¥ C Ly(R"), the following identity T () T'x ey is bounded orty(a), we will obtain that
Ty f = Ty Tx ) Tx (e f € L2(R") IT% o) flest@) S D 1Tk fleaeys | € La(R™).
HeW

is valid by (25), wherep € S is any function satisfying (24).
Let 0 < a < s be fixed.
Once we show thal'y. T, is bounded orfz(c), then
by invoking (26) in Result 4, we obtain, for eaghe ¥,

Then by invoking (26) of Result 4, we will reach the stated
Bernstein-type performance result.
So, it remains to show thaFX(@)T X () is bounded on

{5(c), for eachy? € W, This is equivalent to proving that

T < |Tx ~ o (Rn).
1Ty Flleaia) S 1 Tx (o) flleate) = [Flwg m) N = (N, (k,m) := N(j,k;l,m) : j,l € Z, k,m € Z")
Thus, it remains to show thaf*( yI'x(,) is bounded on | . N(j, k; 1, m)

= (@) ¥L,), is a bounded endomor-
l5(a), for eachy € . This is equivalent to proving that ’ '

phism of {2(«).

M := (M, (k,m) := M(j, k;1,m) : j,1 € Z, k,m € Z"), When! > j, we use the facts that? has at least one

' vanishing moment and is of compact support. Result 8 (for

with M(j, k;l,m) = (¢ k, p1,m), iS @ bounded endomor-¢ := ¢ and ¢ := %) implies then that for any) < 8 < 1,
phism of {5(«). with e; ;== 4+ a >0,

When! > j, we can apply Result 7 to our matrd since ol N
it satisfies all the assumptions there. Thus, there exists 0 N, (k, m)|< 2~ (~)(B+3) (1 + |l7_m>
such that 2

ML ]| < 2U—9)eg=li=dler, (27) 20=i)(at5)g-ll=jler <1+ |2lﬂ'1€—m|)7

) . 2(1=j)n 2l—j
Whenj > [, we choose a non-integerso thate < u < s.
Using the fact that) has at least vanishing moments and When j > [, we use the fact thap? € R*. Result 8 (for
using Result 8 (foW := ¢, ( :=1, B:=u, A :=s5— 1), we 0:= Y»® and( := ¢) implies then that, withes ;== v —a > 0,

get, withes :=u — a > 0, il -
NG (k,m)|S 9—(i—D(u+%) (1 N M)

- n 2=t — k| " 271
| <o-G-Duty) (14 [FTm K
Mo (k, m)| S 2 ’ (1 * 25—l > — 9= (a+3)9—ll—jlez (1 + |217j/€ _ Tnl)_V
= 2=t g)gmlimdle (1 4 (20 —m|) By invoking Result 5 and Result 6, we obtain tHstis a
bounded endomorphism @k («). Thus, for anya < 7, the
} . L-CAMP frame X (V) satisfies (18). Therefore, we get >
Mo < 2U-eg=li=iles, (28) min{s,n}. O

From Result 6, we obtain
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TABLE V
THE L-CAMP SYSTEMS IN1 DIMENSIONFORs = 3 AND s = 4.
L-CAMP accuracy | order he (he =: he * hsm) A | tap-size| vol(¥) SJ sB
SYSTEMS of h ofhem |-3] 2 ] -1 0] 1] 2 of he
lil-a 4 0 HERERE 3 5.5 3 | >2.3561
IV-a 4 1 N ERE 5 4 6.5 3 3
5 55 7 3
Vi-a 4 0 AR 5 4 6.5 4 | > 20342
Vill-a 6 2 LBz 7 6 9.5 4 | >3.7604
TABLE VI
THE L-CAMP SYSTEMS IN2 DIMENSIONS FORs = 4.
L-CAMP accuracy | order ha ha, ha, A | tap-size | vol(¥) sy | s>
SYSTEMS|| ofh | ofhem | 20| -1 [ 0| 1 [ 21 | ea [p1 || ca [ p2]lo of he
51 20 i 3
VI-b 4 0 _ -6—;1 ? G—él &1 = 0 -1 o 0 1 5 8 11.75 4 2.0113
1 80 € 5 1
Viil-b 6 2 TR 2lo]a]-Z]o]|1]7] 14 19.25 || 4 | 3.7604
APPENDIXII [16] S. G. Mallat, “A theory for multiresolution signal demposition: The

L-CAMP SYSTEMS IN LOWER DIMENSIONS

The L-CAMP systems that are detailed in Table Il an{i7]

Table IV of Section V require the spatial dimension to b
“minimally high”. Needless to say, constructing low dimen

fig]

sional counterparts of those systems is easier than catisggu [19]
the general ones in that section. We provide here some of the
examples of such low-D L-CAMP constructions. In Table Vjpq

we

list the 1D systems fos = 3 ands = 4. In Table VI, we

list the 2D systems fog = 4.
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