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L-CAMP: Extremely local high-performance
wavelet representations in high spatial dimension

Youngmi Hur and Amos Ron

Abstract— A new wavelet-based methodology for representing
data on regular grids is introduced and studied. The main
attraction of this new L-CAMP methodology is in the way it scales
with the spatial dimension, making it, thus, highly suitable for the
representation of high dimensional data. The specific highlights
of the L-CAMP methodology are three. First, it is computed
and inverted by fast algorithms with linear complexity and very
small constants; moreover, the constants in the complexitybound
decay, rather than grow, with the spatial dimension. Second,
the representation is accompanied by solid mathematical theory
that reveals its performance in terms of the maximal level of
smoothness that is accurately encoded by the representation.
Third, the localness of the representation, measured as thesum
of the volumes of the supports of the underlying mother wavelets,
is extreme. An illustration of this last property is done by
comparing the L-CAMP system that is marked in this paper
as V with the widely used tensor-product biorthogonal 9/7. Both
are essentially equivalent in terms of performance. However, the
L-CAMP V has in 10D localness score< 29. The localness score
of the 9/7 is, in that same dimension,> 575, 000, 000, 000.

Index Terms— wavelets, multidimensional wavelets, fast
wavelet transforms, wavelet frames, Unitary Extension Principle,
L-CAMP, performance, fast algorithms, extremely local wavelets.

I. I NTRODUCTION

A (dyadic) wavelet systemX(Ψ) is a collection of linear
functionals defined onRn that are obtained by applying

integer translations and dyadic dilations to a finite setΨ of
mother wavelets:

X(Ψ) := {DjEkψ : ψ ∈ Ψ, k ∈ Z
n, j ∈ Z}.

Here, (Df)(t) := 2n/2f(2t), while (Ekf)(t) := f(t − k).
The mother waveletsΨ are assumed to lie in

L2(R
n) := {f : R

n → C : ‖f‖2 :=

∫

Rn

|f |2 <∞}.

Thewavelet representationof f ∈ L2(R
n) is then the discrete

set of inner products

(〈f, x〉)x∈X(Ψ), 〈f, g〉 :=

∫

Rn

f(t)g(t) dt.
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The wavelet representation is one of the major representa-
tions for data defined on regular grids. There are two main
reasons for the popularity of this representation. Firstly, its
discrete version is computed and inverted by a fast algorithm,
the so-called Fast Wavelet Transform (FWT) [16]. Secondly,
it is known to provide optimally sparse representations forthe
“right type” of functions/datasets (see, e.g., [7], [17]).We refer
in this paper to this latter issue as “performance”, and actu-
ally distinguish between two different types of performance,
Jackson-type and Bernstein-type. Let us pause momentarily
for a brief explanation of these notions.

Jackson-type performance guarantees that the wavelet co-
efficients decay, as a function of the dilation levelj, in a
way that corresponds to the smoothness class off . Bernstein-
type performance guarantees that the decay will not be “too
fast”. Taken together, performance is essential for the correct
detection and classification of local singularities: the more
subtle the singularity is, the higher performance is needed
for its detection. The Jackson-type performance of a wavelet
system is intimately related to vanishing moments of its
mother wavelets. Recall that the system is said to haves
vanishing momentsif the Fourier transformψ̂ of each of
the mother wavelets has a zero of orders at the origin.
A comprehensive discussion of performance is given in the
sequel.

We are interested in this paper in wavelet representations
in high-dimensions. The construction of effective wavelet
representations in high spatial dimension is a challenging
problem. At a first glance, the choice falls on the so-called
tensor-product constructions, that work by “lifting” a univari-
ate wavelet construction ton-dimensions. These constructions
are readily available, their performance is well-understood,
they are simple, convenient, and, to a degree, computationally
effective. However, as the spatial dimension grows, such
constructions become immensely non-local in space. Let us
illustrate this by the following simple example. Suppose that
our construction is inR5, and that we require Jackson-type per-
formances = 4, which essentially means that all the wavelets
have four vanishing moments. A standard choice would be
to use the tensor-product of Daubechies’8-tap filters (=:Daub
8) [3] (or one of the related biorthogonal ones, like Bior 9/7
or Bior 10/6, [2]). The 5-D tensor-product construction yields
31 mother wavelets. For the case here, the sum of the support
volumes of these 31 mother wavelets is approximately5×105.
This means that every point in space is visited approximately
half million times by the wavelets within a single scale! That
does not sound “local” at all, especially in view of the fact
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TABLE I

THE PERFORMANCE AND LOCALNESS NUMBERS OF OURL-CAMP SYSTEMS I, II, V, VII ARE COMPARED WITH THE TENSOR-PRODUCTS OF

BENCHMARK WAVELETS: DAUB 4, DAUB 8, BIOR 5/3, BIOR 9/7.

Daub 4 Bior 5/3 L-CAMP I L-CAMP II Daub 8 Bior 9/7 L-CAMP V L-CAMP VII

sJ 2 2 2 2 4 4 4 4

sB 0.55 1 1.41 2 1.62 1.70 2.02 4

vol(Ψ) (n = 3) 189 279 4.6 5.6 2401 2863 14.4 31.1

vol(Ψ) (n = 4) 1215 2145 4.8 5.8 36015 46529 16.7 37.6

vol(Ψ) (n = 5) 7533 15783 4.9 5.9 521017 726607 18.8 43.8

that the dimension of the cubic polynomial spaceΠ5
3 in 5

variables is56. The latter fact implies the existence of a single
piecewise-polynomial function whose volume of support is
56 and whose shifts provide approximation order4. While,
admittedly, spline approximation and wavelet decomposition
are not exactly comparable, one must be alarmed, and rightly
so, by the gap between the two numbers: in comparison with
the 56, half a million looks an awfully large number.

Our goal in this paper is to introduce an algorithm that,
for a given fixed performance levels (we will deal concretely
with s = 2, 3, 4) and a spatial dimensionn, yields a wavelet
system, to which we refer as an L-CAMP system, generated
by the mother waveletsΨ := Ψ(n, s) ⊂ L2(R

n) such that:
(1) The performance of the representation matches the

given grades. One can choose here to accept Jackson-type
performance or to insist on Bernstein-type performance.

(2) The representation can be computed by the FWT, hence
with linear complexity.

(3) The representation can be inverted by an algorithm
which is different from,and is at least as fast as, the standard
inversion of the FWT.

(4) A complete cycle of one decomposition step and its
inversion is not only of linear complexity, but the constantin
theO(N) bounds, whereN is the size of an initial data to be
analysed, does not grow with the spatial dimension. In fact,it
decays slightly with the dimension!

(5) The representation isextremely local: The L-CAMP
mother waveletsΨ satisfy

vol(Ψ) :=
∑

ψ∈Ψ

vol(suppψ) ≪

(
n+ s− 1

n

)
. (1)

As a glimpse into column 7 of Table IV reveals, the volume
vol(Ψ) grows, at worst, linearly with the spatial dimensionn;
in some of the constructions, it does not grow at all!

Note that
(
n+s−1
n

)
in (1) is the dimension of the spaceΠn

s−1

of (s–1)-degree polynomials inn variables, a number that
a few paragraphs above was considered to be very small in
comparison with the volume of mainstream wavelet systems.
So, the L-CAMP representation is even more local than
the most local spline approximation scheme. Concretely, in
column 7 of Table IV, we see that for the casen = 5 and
Jackson-type performance gradesJ = 4, two of our L-CAMP
systems, system V and system VI, satisfyvol(Ψ) ≈ 19 (V),
andvol(Ψ) ≈ 24 (VI). This should be considered a dramatic
improvement over thevol(Ψ) ≈ 5×105 of the tensor-product
construct that was detailed earlier. It is even better than the

spline’s 56. Had we wanted the comparison to look more
dramatic, we could have chosen a higher dimensionn: for
n = 10, for example, the L-CAMP volumes of the above
constructs are29 and 39 respectively. The volume of the
tensor-product construct is then about289, 000, 000, 000...

In Table I, we compare our L-CAMP systems I, II, V, VII
with the tensor-products of some of the benchmark wavelet
systems: Daub 4, Daub 8, [3] and Bior 5/3, Bior 9/7, [2]. The
spatial dimensions in these comparisons aren = 3, 4, 5. The
performance gradessJ (Jackson-type) andsB (Bernstein-type)
that are listed in the table are defined in the sequel.

The L-CAMP system was discovered as a variation of the
CAMP scheme of [13], which by itself was derived as a varia-
tion of the class CAP (Compression-Alignment-Prediction)of
pyramidal representations in the same paper. “M” in “CAMP”
stands for “modified”, while “L” in “L-CAMP” stands for
“local”. The CAP systems are close relatives of Burt-Adelson’s
Laplacian pyramid algorithm [1], which is used in many image
processing applications [23], [21], [12], [8], [9]. Since under-
standing the Laplacian pyramid and/or CAP/CAMP theory is
not necessary for understanding the L-CAMP representation,
we do not pursue all these connections. Instead, we construct
the L-CAMP systems from scratch and analyse directly their
performance.

Throughout the paper, we use the following notation. For
t = (t(1), . . . , t(n)) ∈ Rn and β = (β(1), . . . , β(n)) ∈ Nn0

(N0 := N ∪ {0}), we let |t| :=
√
t(1)2 + · · · + t(n)2 and

β := β(1)+· · ·+β(n). The inner product of two vectorst, x
in Rn is denoted byt · x. We use the following normalization
of the Fourier transform (for, e.g.,f ∈ L1(R

n)):

f̂(ω) :=

∫

Rn

f(t)e−iω·t dt.

Given f : Rn → R, we denote

fj,k := DjEkf = 2j
n

2 f(2j · −k), j ∈ Z, k ∈ Z
n.

Here, as before, we used

(Df)(t) = 2n/2f(2t), (Ekf)(t) = f(t− k). (2)

We let χ be the characteristic function of the unit cube, and
let 1 := (1, . . . , 1) ∈ Zn. Furthermore, we letE := {0, 1}n,
the set of the vertices of the unit cube and letE′ := E\0.

The outline of the paper is as follows. In Section II, we
introduce the L-CAMP systems. The extreme localness of
these systems, as well as their corresponding performance
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are discussed there. In Section III, we present an algorithm
for computing and inverting the L-CAMP representation, and
examine its complexity. In Section IV-A, we review some of
the basics of framelet (:= wavelet frame) theory, and use that
for a rigorous discussion of the Jackson-type and Bernstein-
type performance of wavelet systems. In Section IV-B, the dual
system of the L-CAMP system is introduced. The main results
concerning the performance of L-CAMP systems are stated
in Section IV-C, with their proofs placed in Appendix I. In
Section V, we finally construct concrete L-CAMP systems for
performance gradess = 2, 3, 4. Those constructs are valid in
any dimensionn, provided thatn > 2. The lower-dimensional
L-CAMP systems are given in Appendix II.

II. T HE L-CAMP SYSTEM INTRODUCED

The L-CAMP class in this paper is based on the support
functionφc := χ of the unit cube. The functionφc is refinable

with maskτc(ω) =

n∏

l=1

1 + e−iω(l)

2
, viz.,

φ̂c(2ω) = τc(ω)φ̂c(ω), ω ∈ R
n.

Here and later, we use

ω := (ω(1), . . . , ω(n)) ∈ R
n

to denote the generic point in the frequency domain. Lethc
be the filter associated withτc (i.e. ĥc = τ c). That is,

hc(−k) :=

{
2−n, k ∈ E,
0, otherwise.

More general L-CAMP constructions, that use refinable func-
tionsφc other thanχ, are available. However, the choiceφc :=
χ leads to the most local systems we are able to come up with,
makes things concrete and simple, and makes the algorithms
faster (in terms of the constants). Most importantly, and in
contrast with common misperceptions (that are, perhaps, due
to the abysmal performance of the Haar system), the use of
piecewise-constant constructs does not impede the abilityto
obtain high-performance systems; as a matter of fact, one can
obtain systems with as high performance as one wishes to.
The more sophisticated constructions that we alluded to above,
may be important only in specific applications. A review of the
graph in Fig. 1 may be useful here: functions in a smoothness
class outside the lined area may not be represented well by
the piecewise-constant version of our L-CAMP methodology.
For example, piecewise-constant L-CAMP lacks the ability
to detect most types ofnegativesmoothness, a property that
might be necessary for some PDE applications. The piecewise-
constant L-CAMP, in addition, fails to encode correctly the
Hardy spaceH1(R

n) (however, it does encode correctly
smoother versions ofH1(R

n)).

The total number of mother wavelets in our L-CAMP
construction is2n. Recall that, inn-D, the minimal number of
mother wavelets is2n−1, hence that we are slightly redundant.
We index the L-CAMP mother wavelets by the setE, i.e.,ψν ,
ν ∈ E.

The entire L-CAMP construction is based on two lowpass
filters, and on nothing else. One of these filters is used to

-
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Fig. 1. The polygon with thick boundary captures the performance range
of L-CAMP systems that are based onφc := χ. For a pair(p, s) inside the
polygon, or on its left vertical boundary, the L-CAMP representation encodes
accurately the property of “s derivatives inLp”. While the upper boundary
moves upward as the Bernstein-performance gradesB of the system gets
higher, the lower boundary is fixed, and is due to the choiceφc = χ.

define the mother waveletψ0, while the other one is used to
define all the remaining mother wavelets. We refer to the first
one as theenhancement filter, and to the latter one as themain
filter.

We start by selecting themask τe of the enhancement
filter. It can be any trigonometric polynomial (inn-variables).
Initially we require that the mask satisfies the relation

1 − τe(2ω)τc(ω) = O(|ω|s), near the origin. (3)

We say thatτe is of orders. While a highs is desired here, we
require, at a minimum, thats ≥ 2. The enhancement filterhe
is, then, the filter associated with the maskτe, i.e.,τe = ĥe. We
further would like the number of taps ofhe to be as small as
possible. The third, and final, condition that the enhancement
filter should satisfy is detailed later.

Next, we define the first mother wavelet,ψ0, by the relation

ψ̂0 := αn

(
φ̂c(·/2) − τ eφ̂c

)
. (4)

Here,αn := 2−n/2. Note that

ψ0 = αn

(
2nφc(2·) −

∑

k∈Zn

he(k)φc(· + k)

)
.

In order to define the remaining2n − 1 mother wavelets,
we choose a univariate maskτ , denote its univariate filter by
h, and refer to it as themain filter. The main filter should also
satisfy three conditions. The first condition is that it is (finite
and) supported on theodd integers, i.e.,

h(2m) = 0, m ∈ Z.

The second condition is that the filter will have high order of
polynomial accuracyN : we say thath hasaccuracyN if

h ∗ P = P, ∀P ∈ Π1
N−1. (5)

Recall that the main filter is univariate, hence the accuracy
test is conducted on univariate polynomials. A third condition
that is required of the main filter is detailed later.
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TABLE II

THREE STANDARD CHOICES FOR THE MAIN FILTER. THE FIRST COLUMN

LISTS THE ACCURACY. THE FIRST ROW LISTS THE DOMAIN OF THE

FILTERS (WHICH IS A SUBSET OF THE ODD INTEGERS). ONLY NON-ZERO

VALUES OF THE FILTERS ARE LISTED.

N \ k -5 -3 -1 1 3 5

2 1

2

1

2

4 - 1

16

9

16

9

16
- 1

16

6 3

256
- 25

256

150

256

150

256
- 25

256

3

256

Standard choices for the main filter are listed in Table II.
We note that for each filterh with accuracyN in the table,
(δ+h)/2 is the Deslauriers-Dubuc interpolatory filter of order
N , [6], whereδ is thedirac sequence.

We lift the main filter ton-dimensions by aligning it along
one of the coordinate axes. There aren different ways to do
it, i.e., for l = 1, . . . , n,

τl(ω) := τ(ω(l)).

The mother waveletψν , ν ∈ E′, is defined by the relation

eiν·ωψ̂ν(2ω) = αn
(
1 − τ⌈ν⌉(ω)

)
φ̂c(ω). (6)

Here,αn = 2−n/2 as before, and

⌈ ⌉ : E′ → {1, . . . , n}

is a map that determines the orientation ofτ that is assigned
to theν-mother wavelet. While the assignment⌈ ⌉ cannot be
done at random, there is a great deal of flexibility in choosing
it. One way for defining⌈ ⌉ goes as follows: for eachν ∈ E′,

⌈ν⌉ := the position of the last1-digit in the vectorν. (7)

Thus, for example, forn = 2,

⌈(0, 1)⌉ = ⌈(1, 1)⌉ = 2, ⌈(1, 0)⌉ = 1.

We extend the domain of the map⌈ ⌉ to E by defining⌈0⌉ :=
0. Under this convention, the valuation map⌈ ⌉ of (7) satisfies

⌈ν − e⌈ν⌉⌉ < ⌈ν⌉, ν ∈ E′. (8)

Here,el is the lth vector in the standard basis forRn.
Note that, ifh is (λ-1)-tap, thensuppψν is the union ofλ

cubes that are aligned along the⌈ν⌉-axis, each of which with
volume2−n. Hence,

vol(suppψν) =
λ

2n
, ν ∈ E′.

Defining, as before, thevolume ofΨ ⊂ L2(R
n) to be

vol(Ψ) :=
∑

ψ∈Ψ

vol(suppψ),

we obtain that the volume of the L-CAMP mother wavelet set

Ψ := {ψν : ν ∈ E} (9)

is

vol(Ψ)= vol(suppψ0) +
λ(2n − 1)

2n
(10)

< vol(suppψ0) + λ. (11)

That is, the total volume ofΨ is bounded byvol(suppψ0)+λ.
We mentioned so far two conditions that we require of the

enhancement filter (high order, and small support; the latter,
obviously, is needed for localness and has nothing to do with
performance), and two conditions that we require of the main
filter (support at odd integers and high polynomial accuracy).
Only one additional condition is required here, but it is notas
simple as the ones above.

Performance conditions.Our performance analysis of the L-
CAMP system is based on the following parameters:

• The orders ≥ 2 of the enhancement mask (cf. (3)).
• The accuracyN ≥ 2 of the main filter (cf. (5)).
• The Hölder smoothnessα of then-dimensional refinable

function φ̃ associated with the mask

τe

(
n∏

l=1

1 + τl
2

)
. (12)

For Jackson-type performance, we need to assume that

α > 0. (J)

The performance is then related tomin{s,N}. In all our
concrete constructions, this minimum iss.
Bernstein-type performance is related tomin{s,N, α}, which,
again, will coincide in our constructions withmin{s, α}. So,
for this type of performance we desire that

α ≥ s, (B)

or at least thatα does not lag far behinds.

Remark. Constructing good main filters with short support
is easy. Constructing enhancement filters with high orders
and small support is not too hard. The true challenge in the
L-CAMP theory is to obtain high values ofα. The main
challenge is related to the fact that the definition of the
enhancement filter depends on the underlying dimension, and
its support size usually grows with the dimension. All that
said, and as we will see later, we provide lower bounds
on the smoothness of the refinable functionφ̃ that do not
degrade with the dimension. We had to develop to this end new
techniques for estimating the smoothness of refinable functions
in arbitrary dimensions. It is beyond the scope of this paperto
provide the details of our smoothness estimation machinery; it
will be detailed elsewhere. One thing must be clear here: any
smoothness analysis that relies on estimating the asymptotics
of some numerical experiment (e.g., iterating numericallywith
the transfer operator) is prohibitive here, due to the need to
have the smoothness estimation valid in all dimensions.

Extreme Localness.The rule of thumb in all our constructions
is that the numberλ in (11) is smaller, usually much smaller,
than the support size of the single mother waveletψ0. This
means that the total volumevol(Ψ) from (11) is dominated by
the termvol(suppψ0). In the constructions we present in this
paper this latter number grows no faster than linearly with the
spatial dimensionn (cf. Table IV).

We might pause again to compare the above with the main-
stream tensor-product constructions. If we start, for example,
with an orthonormal univariate wavelet whose support length
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is L, then the tensor-product approach yields2n − 1 mother
wavelets, each of which with support volumeLn. Thus, the
total volume of mother wavelets in this case isLn(2n − 1),
which grows exponentially with the spatial dimensionn. This
exponential growth has nothing to do with scientific reality,
and is a mere artifact of the construction methodology.

III. FAST ALGORITHMS FOR COMPUTING AND INVERTING

THE REPRESENTATION

The L-CAMP representation can be computed and inverted by
fast algorithms with linear complexity and small constants.

L-CAMP decomposition and reconstruction algorithms.
Let he be the n-dimensional enhancement filter and leth
be the1-dimensional main filter. Forl = 1, . . . , n, let hl be
the lifting of h to ann-dimensional filter in thel-coordinate
direction. Let⌈ ⌉ be the valuation map from (7). Then:

input y0 : Zn → C

(1) Decomposition:
for j = −1,−2, . . . , j0

yj(k) = 2−n
∑
µ∈E

yj+1(2k + µ), k ∈ Zn (*)
if k ∈ 2Zn

dj+1(k) = yj+1(k) − (he ∗ yj)(k/2)
end
if k ∈ ν + 2Zn where ν ∈ E′

dj+1(k) = yj+1(k) − (h⌈ν⌉ ∗ yj+1)(k)
end

end

(2) Reconstruction:
for j = j0, . . . ,−1

if k ∈ 2Zn

yj+1(k) = dj+1(k) + (he ∗ yj)(k/2)
end
for ⌈ν⌉ = 1, · · · , n (**)

if k ∈ ν + 2Zn

yj+1(k) = dj+1(k) + (h⌈ν⌉ ∗ yj+1)(k)
end

end
end

We note that the resulted MRA(yj)j≤0 from the line
marked by (*) is the MRA associated withχ, that is,
assumingy0(k) = 〈f, χ0,k〉, k ∈ Zn, for some functionf ,
it follows that

yj(k) = 2jn/2〈f, χj,k〉, j < 0, k ∈ Z
n.

After that line, the rest of the decomposition step computes
the detail coefficientsdj+1. Note that we use2n different
rules to extract the detail coefficientsdj+1. In the signal
analysis literature, such decomposition methods are knownas
Polyphase decomposition[24], [25], [9]. The novelty of our
decomposition algorithm lies in the simple way we define the
2n rules using a singlen-dimensional filterhe and a single
1-dimensional filterh, as well as in the ability to pin down the
precise performance of the representation. The interpretation
of the detail coefficients is standard up to normalization, i.e.,

retaining the same assumption on the initial datay0, one proves
that for j < 0, ν ∈ E, k ∈ Zn,

dj+1(ν + 2k) = 2(j+1)n/2〈f, (ψν)j,k〉.

The reconstruction step does not resemble its FWT coun-
terpart. The crucial step in the reconstruction is thefor loop
marked by(**). We observe that, ifh⌈ν⌉(l) 6= 0, thenl must
be of the form

l = a e⌈ν⌉,

wheree⌈ν⌉ is the unit vector in the⌈ν⌉-coordinate direction,
and a is an odd number. This means that all the values of
yj+1 that are needed for the computation of(h⌈ν⌉ ∗ yj+1)(k),
k ∈ ν+2Zn, lie in ν−e⌈ν⌉+2Zn. Since⌈ν − e⌈ν⌉⌉ < ⌈ν⌉ for
any ν ∈ E′ from (8), we have already recovered those values
of yj+1 previously, hence we are able to computeyj+1(k) as
above.

Complexity. We measure complexity by counting the number
of “operations” needed in order to fully deriveyj and dj+1

from yj+1, and add the number of operations needed for the
inversion. Here, we define “an operation” as the need to fetch
an entry from some of our arrays/vectors. Thus, for example,
computing one entry inyj from yj+1 as in(*) requires2n

operations.
Obviously, the complexity here is linear, i.e.,∼ CM , with

M the number of non-zero entries iny0, andC some constant.
Our goal is to estimate that constant: sinceM is expected to
grow exponentially fast with the dimension, we need, at least,
to control very tightly that constant! So, we actually compute
the mean number of operations per one single entry iny0.

We observe that the number of operations required to
process the portion ofyj that lies in a cube of lengthsize2 is
about

2n + 2(1 + tap-size ofhe) + 2λ(2n − 1). (13)

This means that the cost per entry of performing one complete
cycle of decomposition/inversion is bounded by

1 + 2(λ+ 2−n(1 + tap-size ofhe)). (14)

Since the tap-size of the enhancement filters grows very slowly
(with the dimension) in comparison with the exponential2n,
the complexity constant is dominated by the term1 + 2λ.
It is then important to note that we are able to achieve the
required level of performances, simultaneously inall spatial
dimensions, without increasingλ. The concrete values ofλ
in the constructions in this paper areλ = 3, 5, 7 (Table II).
Consequently, the constants in the complexity estimation are
varying from 7 up to 15, depending on the requisite perfor-
mance, and independently of the dimension. Cf. Table IV for
details.

We would like to point out that the switch from con-
structing L-CAMP systems with a specified Jackson-level
performance to systems that deliver a similar Bernstein-level
performance barely changes the above complexity constants:
the enhancement filters in the Bernstein case can be factored
into he = h̃e ∗ hsm, wherehsm is a simple smoothing filter
(cf. (22) and (23) in Section V). The tap size of theh̃e factor
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in this decomposition is on par with the total size of the
enhancement filter in the Jackson case (the latter does not
require smoothing). Since the smoothing step has a negligible
effect on the complexity constants, we see that “Bernstein
performance is free”, at least as far as the computation of
the representation is concerned. The modified numbers, that
account for the smoothing factorization, are listed in column 6
of Table IV.

When comparing the above details to the details of com-
puting and inverting a tensor-product-based wavelet repre-
sentation, we must account to the fact that the latter can
be computed quite effectively by algorithms that bypass
completely the immense non-localness of the presentation.
A simple efficient implementation of such systems requires,
for an orthonormal univariate wavelet withL taps, aboutnL
operations per entry for decomposition only. We are not aware
of an implementation of the decomposition step of the FWT
whose constant is similar to ours, i.e., independent of the
dimension.

IV. PERFORMANCE ANALYSIS

The L-CAMP scheme was discovered as a variation of
the CAMP scheme of [13], which by itself was derived as
a variation of the class CAP of pyramidal representations,
studied in the same paper. Rather than tracing back that
evolution, we will provide here an intrinsic analysis of the
L-CAMP performance.

A. The performance of wavelet frames

Let Ψ be a finite subset ofL2(R
n). The wavelet system

generated by themother waveletsΨ is the family

X(Ψ) := {ψj,k : ψ ∈ Ψ, j ∈ Z, k ∈ Z
n}.

The analysis operatoris defined as

T ∗
X(Ψ) : f 7→ (〈f, x〉)x∈X(Ψ);

the entries ofT ∗
X(Ψ)f are thewavelet coefficientsof f (with

respect to the systemX(Ψ)). The systemX(Ψ) is a frame
if the analysis operator is bounded above and below, viz., if
there exist two positive constantsA,B such that

A ‖f‖2
L2(Rn) ≤

∑

x∈X(Ψ)

|〈f, x〉|2 ≤ B ‖f‖2
L2(Rn), (15)

for all f ∈ L2(R
n). X(Ψ) is a Bessel systemif T ∗

X(Ψ) is
bounded, i.e., the right-hand side of (15) is valid.

We pay attention here only to wavelet frames that are
derived from amultiresolution analysis(MRA) ([16], [17],
[20], [4]). One begins with the selection of a functionφ ∈
L2(R

n). With φ in hand, one defines

V0 := V0(φ)

to be the closed linear span of the shifts ofφ, i.e., V0 is the
smallest closed subspace ofL2(R

n) that containsE(φ) :=
{φ(· − k) : k ∈ Zn}. Then, withD the operator of dyadic
dilation (cf. (2)),

Vj := Vj(φ) := DjV0(φ), j ∈ Z.

The primary condition of the MRA setup is that the(Vj)j
sequence is nested:

· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · .

Whenever this condition holds, one refers toφ as arefinable
function. In addition, one requires that the union∪jVj is dense
in L2(R

n). However, ifφ is compactly supported and̂φ(0) 6=
0, the density condition always holds.

Next, we illustrate the way the “performance” of a wavelet
frameX(Ψ) may be graded, and use theL2-setup1 to this end.
For α > 0, let Wα

2 (Rn) be the usual Sobolev space. That is,
Wα

2 (Rn) is the set of functionsf ∈ L2(R
n) such that

|f |Wα

2
(Rn) := ‖(| · |αf̂ )∨‖L2(Rn) <∞.

We would like first the wavelet systemX(Ψ) to be a frame
and to satisfy
∑

ψ∈Ψ

‖T ∗
X(ψ)f‖ℓ2(α) ≤ Aα|f |Wα

2
(Rn), ∀f ∈Wα

2 (Rn).

(16)
Here,

‖T ∗
X(ψ)f‖ℓ2(α) :=




∑

j∈Z,k∈Zn

22jα|〈f, ψj,k〉|
2




1/2

. (17)

The supremum

sJ := sup{α > 0 : X(Ψ) satisfies (16) for the givenα},

is one way to quantify the “performance-grade” of a frame
X(Ψ). Since the inequality (16) is the counterpart of the
Jackson-type inequalities in Approximation Theory, we refer
to the abovesJ as theJackson-type performanceof X(Ψ). It
is known that the essential conditionΨ needs to satisfy for
having “performance-grade”sJ is that eachψ ∈ Ψ has sJ
vanishing moments:

ψ̂ = O(| · |sJ ), near the origin.

Another way to measure the performance ofX(Ψ) is to insist
that, in addition to (16), the inverse inequality holds as well:
∑

ψ∈Ψ

‖T ∗
X(ψ)f‖ℓ2(α) ≥ Bα|f |Wα

2
(Rn), ∀f ∈ L2(R

n). (18)

For a frameX(Ψ), we definesB to be

sup{α > 0 : X(Ψ) satisfies (16) and (18) for the givenα}.

The inequality (18) is the counterpart of the Bernstein-type
inequalities in Approximation Theory, and therefore we refer
to the abovesB as theBernstein-type performanceof X(Ψ).
Obviously,sB ≤ sJ , and usually strict inequality holds. The
value of sB is not connected directly to any easy-to-check
property of the systemX(Ψ). As a matter of fact, the value
of sB is related to the smoothness of thedual frameX(Ψd),
which we now describe.

1Our entire performance analysis in this paper is done forWα
2

, α > 0,
solely for simplicity. The conditions required forα-performance in theWα

2

sense would imply the same performance in the Besov spaceBα
p,p, [22],

sense. We refer to Fig. 1, and, for more details, to [13], [14].
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First, one defines a mapΨ ∋ ψ 7→ ψd ∈ L2(R
n), and

extends it naturally toX(Ψ) (i.e.,(ψj,k)d := (ψd)j,k). Assume
thatX(Ψd) is also a frame. The frameX(Ψd) is then said to
bedual toX(Ψ) if one has theperfect reconstruction property:

f = TX(Ψd)T
∗
X(Ψ)f =

∑

x∈X(Ψ)

〈f, x〉xd, f ∈ L2(R
n).

Here,TX(Ψd) is thesynthesis operator:

TX(Ψd) : C
X(Ψd) ∋ a 7→

∑

x∈X(Ψd)

a(x)x.

Thus, one strives to build wavelet frames that have a high
number of vanishing moments, and have smooth dual frames.
This brings us to the question of how wavelet systems are
constructed. The most general recipe in this regard is known
as the Oblique Extension Principle (OEP, [4]). However, in this
paper, we will need its special and simpler case, the Unitary
Extension Principle (UEP). Both lead to the simultaneous
construction of a frame and its dual frame. We describe now
the UEP.

The refinability assumption on the functionφ is equivalent
to the condition that

φ̂(2·) = τφ̂,

for some2π-periodic functionτ , called therefinement mask.
Let us assume for simplicity thatτ is a trigonometric
polynomial. We assume that the mother wavelet setΨ :=
{ψ1, . . . , ψL} is a subset ofV1(φ). This amounts to the
existence of2π-periodic functions (=:wavelet masks) (τi)

L
i=1

such that

ψ̂i(2·) = τiφ̂, i = 1, · · · , L.

Again, we assume for simplicity that(τi)
L
i=1 are trigonometric

polynomials. The dual system is constructed similarly, using
a dual MRA that is derived from a dual refinable function
φd. Let us assume that the dual refinable functionφd has a
trigonometric polynomial refinement maskτd. The assumption
that Ψd := {ψd1 , . . . , ψ

d
L} ⊂ V1(φ

d) amounts to the existence
of 2π-periodic functions(τdi )Li=1 such that

ψ̂di (2·) = τdi φ̂
d, i = 1, · · · , L.

Again, we assume that the masks(τdi ) are trigonometric
polynomials.

Suppose now that the two systemsX(Ψ) andX(Ψd) are
known to be, each, a Bessel system, and they satisfy the Mixed
Unitary Extension Principle (MUEP) :

τ(· + γ)τd +

L∑

i=1

τi(· + γ)τdi =

{
1, γ = 0,
0, γ ∈ {0, π}n\0, (19)

and φ̂(0) = φ̂d(0) = 1. ThenX(Ψ) andX(Ψd) form a pair
of a wavelet frame and a dual wavelet frame [19]. We refer
then to the pair(X(Ψ), X(Ψd)) as a (UEP) bi-framelet.

B. The dual system

Our next goal is to complement the L-CAMP system by a
suitable dual system. In fact, the next lemma exhibits a large
class of dual systems. At this point, we will merely introduce
all these dual systems, and prove their core connection with
the L-CAMP system. We are not (yet) claiming that these
systems are dual to our L-CAMP systems; that further claim
will be established in Lemma 2.

We first define the following partial ordering onE:

ν′ ≥ ν ⇐⇒ ν′(l) = ν(l), l = 1, . . . , ⌈ν⌉,

where ⌈ ⌉ is defined as in (7). In particular,ν′ ≥ 0 for all
ν′ ∈ E. Given a vectora ∈ Cn, we define

aν :=

n∏

l=1

a(l)ν(l).

Lemma 1:For ν ∈ E, let tν be the wavelet mask that
corresponds to the mother waveletψν defined in (4) and (6).
Let ξ be any trigonometric polynomial such thatξ(0) = 1 and
define a new refinement mask

τd := τe(2·)τr

(
1 + ξ

(
1 −

τe(2·)

2n

∑

ν∈E

eντ
ν

))
, (20)

where τr :=
∏n
l=1(1 + τl)/2, τ := (τ1, τ2, . . . , τn), and

eν(ω) := eiν·ω for ω ∈ Tn. We also define dual wavelet
masks

tdν = αne−ν
∑

ν′≥ν

τ
ν′−ν (1 − ξτe(2·)τreν′), ν ∈ E, (21)

with αn = 2−n/2 as before. Then the masks(τc, (tν)ν∈E) and
(τd, (tdν)ν∈E) satisfy the MUEP condition (19), i.e.

τc(· + γ)τd +
∑

ν∈E

tν(· + γ)tdν =

{
1, if γ = 0,
0, if γ ∈ {0, π}n\0.

Proof: We first note that, for anya, b ∈ C
n, andν ∈ E,

bν − aν

=
n∑

m=1

(b(m)ν(m) − a(m)ν(m))
m−1∏

l=1

b(l)ν(l)
n∏

l=m+1

a(l)ν(l).

This implies that

bν − aν =
∑

ν′≤ν

(b(⌈ν′⌉) − a(⌈ν′⌉)) aν−ν
′

bν
′

− ,

whereν′− is obtained fromν′ by replacing the last 1-digit of
ν′ (whose position is at⌈ν′⌉) by 0. We now fix ν ∈ E′ and
γ ∈ {0, π}n, and choosea := τ (ω) and b = (e−iγ(l))nl=1. In
that notation

tν(ω + γ) = αne−ν(ω)bν− (b(⌈ν⌉) − a(⌈ν⌉)) ,

and thus
∑

ν′∈E′

tν′(·+ γ)tdν′ = α2
n

∑

ν∈E′

(1− ξτe(2·)τreν)(e
−iγ·ν − τ

ν).

From this, we obtain

αntd0 +
∑

ν∈E′

tν(· + γ)tdν = α2
n

∑

ν∈E

e−iγ·ν(1 − ξτe(2·)τreν).
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Sincet0 = αn

(
1 − τe(2·)τc

)
from (4), then, once we observe

that τc = 2−n
∑
ν∈E

e−ν and

td0 = αn

(
2nτr − ξτe(2·)τr

∑

ν∈E

eντ
ν

)
,

we get

τc(· + γ)τd +
∑

ν∈E

tν(· + γ)tdν

= α2
n

∑

ν∈E

e−iγ·ν(1 − ξτe(2·)τreν)

+ τc(· + γ)(τd − αntd0τe(2·))

= α2
n

∑

ν∈E

e−iγ·ν(1 − ξτe(2·)τreν) + τc(· + γ)ξτe(2·)τr

= α2
n

∑

ν∈E

e−iγ·ν =

{
1, if γ = 0,
0, if γ ∈ {0, π}n\0.

Discussion.We examine the functionξ that was used in (20)
and (21) more closely in order to understand the L-CAMP
representation in several different complementary ways. Let
φd be the refinable function associated withτd.

The simplest choice forξ is to let ξ := 0. That yields

τd = τe(2·)τr, tdν = αne−ν

n∏

l=⌈ν⌉+1

(1 + τl), ν ∈ E.

This interpretation shows that we view the synthesis step
as forming linear combination with the dilated shifts of the
refinable functionφd whose mask isτe(2·)τr. However, our
proposed reconstruction algorithm seems to be more effi-
cient than the one offered here. Also, as far as performance
analysis goes, the synthesis “wavelets” in this interpretation
lack vanishing moments; the lack of this property makes the
performance analysis awkward at best.

For performance analysis, we need to chooseξ such that
ξ(0) = 1. For suchξ, all the maskstdν vanish at the origin,
which means that each of the dual waveletsψdν has at least
one vanishing moment. However, the refinement maskτd

becomes more involved, and as a result the refinable function
φd becomes less smooth.

C. The performance of L-CAMP systems

We are finally ready to present our performance analysis of
L-CAMP systems. We start with the definition of a smoothness
class :

Definition 1: Let η > 0 be a non-integer, andγ > 0. We

defineRη
γ := Rη

γ(R
n) to be the set of all functionsf such

that, with some constantc,

|f (β)(t)| ≤ c (1 + |t|)−γ , β ∈ N
n
0 and β ≤ ⌊η⌋

and

|f (β)(z) − f (β)(t)| ≤ c |z − t|η−⌊η⌋ sup
|u|≤|z−t|

(1 + |u− t|)
−γ
,

for β ∈ Nn0 , β = ⌊η⌋ and |z − t| ≤ 3.

The set of all the compactly supported functions withinRη
γ is

denoted byRη := Rη(Rn) (and is trivially independent ofγ).

Finally, for positive integersN = 1, 2, · · ·, we let RN :=⋂
0<η<N Rη.

We note that under the above definition, iff is a compactly
supported function with Hölder smoothnessα, thenf ∈ Rα.

We approach the performance analysis as follows. We first
fix an integers ≥ 2. We then require the enhancement maskτe
to be of orders (i.e. to satisfy (3)), and require the main filter
h to have accuracys as well (i.e., to satisfy (5) forN := s).
Now suppose that we construct the L-CAMP wavelet system
using τe and h as explained in Section II. LetΨ be the L-
CAMP mother wavelet set as in (9). Then we see that each of
the mother wavelets hass vanishing moments: forψ0 this is
due to the order ofτe, and for all the other mother wavelets
this is due to the accuracy of the main filterh.

The other important information needed for the performance
analysis ofX(Ψ) is the smoothness of the dual system. To this
end, we will show that it suffices to know the smoothness of
the refinable functioñφ, the refinable function associated with
the maskτeτr, (cf. (12) and (20)). We note that the standard
performance analysis will hinge on the smoothness of the more
complicatedφd associated withτd (see, e.g., [17], [15]); thus
the reduction of the performance analysis to the smoothness
of φ̃ is an important step here.

Jackson-type performance follows once we make a minimal
smoothness assumption on the functionφ̃:

Theorem 1:Let s ≥ 2 be an integer. Assume that we have
an L-CAMP system that satisfies (3) for the givens, and (5)
for N := s. Suppose that̃φ ∈ Rη for someη > 0. Then
X(Ψ) providessJ ≥ s.

The proof of the above theorem invokes the following
lemma, which might be of independent interest. It guarantees,
for the given L-CAMP wavelet systemX(Ψ), that there exists
a dual wavelet systemX(Ψd) associated withφd, so that
the pair (X(Ψ), X(Ψd)) is a bi-framelet, and so that the
smoothness of the dual mother waveletsΨd is as close as
one wishes to the smoothness of the aboveφ̃.

Lemma 2:Let s ≥ 2 be an integer. Assume that we have
an L-CAMP system that satisfies (3) for the givens, and (5)
for N := s. Suppose that̃φ ∈ Rη for someη > 0. Then
for every 0 < α < η, there exists a wavelet frameX(Ψd)
associated with a refinable functionφd that corresponds to the
maskτd in (20), so that the pair(X(Ψ), X(Ψd)) is a (UEP)
bi-framelet andΨd ⊂ Rα.

From Theorem 1, we see that for Jackson-type performance
grades all we need is that the vanishing moments of the L-
CAMP wavelets will be of orders, and thatφ̃ will be min-
imally smooth. For the stronger, full-fledged, Bernstein-type
performance, the smoothness ofφ̃ plays a more substantial
role:

Theorem 2:Let s ≥ 2 be an integer. Assume that we have
an L-CAMP system that satisfies (3) for the givens, and (5)
for N := s. Suppose that̃φ ∈ Rη for someη > 0. Then
X(Ψ) providessJ ≥ s andsB ≥ min{s, η}.



HUR AND RON: L-CAMP: EXTREMELY LOCAL HIGH-PERFORMANCE WAVELET REPRESENTATIONS IN HIGH SPATIAL DIMENSION 9

TABLE III

THE EIGHT L-CAMP SYSTEMS THAT ARE CONSTRUCTED IN THIS PAPER. COLUMN 1 ENUMERATES THOSE SYSTEMS. THE ACCURACY OF THE MAIN

FILTER IS LISTED IN COLUMN 2. (SEE TABLE II FOR THE ACTUAL FILTER THAT CORRESPONDS TO THIS ACCURACY.) THE DETAILS OF THE

ENHANCEMENT FILTER OCCUPY THE OTHER COLUMNS. WE EXPLAIN IN THE TEXT HOW TO READ THESE DETAILS.

L-CAMP accuracy order hG := diagonal part ofehe hA1
hA2

hA3

SYSTEMS of h =: N of hsm -31 -21 -1 0 1 21 c1 p1 l1 c2 p2 l2 c3 p3 l3

I 2 0 3

4

1

4

II 2 1 1

4

3

4

III 4 0 9

16

9

16
- 2

16

1

16
0 1

IV 4 1 - 3

16

11

16

8

16

1

16
-1 -1

V 4 0 - 41

576

462

576

183

576
- 28

576

1

576
1 -3 27

576
0 1

VI 4 0 - 3

64

52

64

17

64
- 2

64

2

64
0 -1 1

64
0 1 1

64
1 1

VII 6 2 - 157

2304

1890

2304

976

2304
- 405

2304

4

2304
-31 3 108

2304
0 -1

VIII 6 2 - 17

64

74

64

15

64
- 8

64

2

64
0 -1 - 1

64
0 1 3

64
-1 1

The proofs of the above results (Lemma 2 and Theo-
rems 1,2) are placed in Appendix I.

From Theorem 1 and Theorem 2 (forη := s), and from
the fact thatφ̃ is compactly supported, we see that the L-
CAMP systems satisfying the assumptions inPerformance
conditions (in Section II) have performance grade at leasts,
in the Jackson sense if we assume (J), and in the Bernstein
sense if we assume (B).

V. EXAMPLES OF L-CAMP SYSTEMS

We present eight examples of L-CAMP systems, spanning
the range of performance froms = 2 to s = 4, with
performance either in the Jackson sense or in the Bernstein
sense. Note that each “system” is actually infinitely many ones,
as we cover any possible spatial dimension, and, at least as far
as the enhancement filter is concerned, the construction details
do depend on the underlying dimension.

We divide the discussion into two. We first present a few
tables that contain pertinent information about our eight L-
CAMP systems, and explain how to read and interpret the
information from those tables. We then sketch the methods
we used in order to assess the order of the enhancement filter,
and, most importantly, in order to estimate the smoothness of
the refinable functioñφ.

In Table III, we collect the details that are needed in order to
construct the main filters and the enhancement filters of our
systems. The system itself is identified in the first column.
The accuracy of the main filter is listed in the second column.
Using the listed accuracy, one can recover the details of
the main filter from Table II. The rest of Table III refers
to the enhancement filter, and can be viewed as a set of
directions for assembling that filter. Let us explain how those
“directions” should be read. Those details are correct whenever
the dimension is “large enough”, which meansn ≥ 2 for the
systems III-IV, andn ≥ 3 for the systems V-VIII.

The constructed enhancement filtershe in the table are of
the form

he = hsm ∗

(
hG +

M∑

m=1

hAm

)
=: hsm ∗ h̃e. (22)

Here,hsm is a smoothing filter, i.e., a filter with Fourier series

ĥsm(ω) =

(
1

2
+

1

2
e−i1·ω

)r
. (23)

The orderr of the smoothing is listed in the 3rd column of
Table III. Next, the summandhG is a filter defined on the
diagonalZ1 of Z

n. The values ofhG can be found in columns
4-9 of Table III. One can see thathG has small support: it is
2-tap at best, and 4-tap filter at worst.

The other summands, i.e., those that are denoted ashAm
, are

obtained by translating, dilating and multiplying by a constant
a fixed (n+ 1)-tap filter that we denote ashA:

hA(k) :=

{
n, k = 0,
−1, k = el, 1 ≤ l ≤ n,
0, otherwise.

Here, as before,el is the unit vector in thel-coordinate
direction. Columns10-18 of Table III explain how to obtain
hAm

from hA: cm is a multiplicative constant,pm is the
translation vector, andlm is the (unnormalized) dilation param-
eter. For example, the filterhA1

in system V has parameters
c1 = 1/576, p1 = 1, andl1 = −3, hence it is defined as

hA1
(k) :=

1

576
×

{
n, k = 1,
−1, k = 1− 3el, 1 ≤ l ≤ n,
0, otherwise.

Note that the translation vector lies always on the diagonal,
hence that all the enhancement filters we construct here are
invariant under any permutation of the coordinates. Note also
that the number of taps inhe is primarily determined by
the number of summands of the formhA that appear in its
definition, which ranges between0 and3 in our constructions.
One may also wish to pay attention to the dilation parameters.
The L-CAMP system V uses an enhancement filter with fewer
taps as compared to system VI. However, one of the dilations
in system V definition is−3, making the support of that
enhancement filter less local than one might desire. The filter
in system VI uses more taps, but its support is more local.
Which one may be better for applications we do not know,
and it might depend on the details of that application. Hence
we listed both options. Similarly, the filter in system VIII uses
more taps as compared to system VII, but its support is more
local.
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TABLE IV

SOME OF THE BASIC PROPERTIES OF THE EIGHT SYSTEMS FROMTABLE III. T HE TABLE HERE HIGHLIGHTS THE SMALL CONSTANTS IN THE COMPLEXITY

BOUNDS, AND THE EXTREME LOCALNESS. THE PERFORMANCE IS LISTED AS WELL, TOGETHER WITH THE BEST ESTIMATE WE GOT FOR THE

SMOOTHNESS OFeφ.

L-CAMP λ = tap-size of tap-size of tap-size ofhe tap-size ofehe vol(Ψ) Hölder smoothness sJ sB

SYSTEMS N + 1 hsm
ehe = vol(suppψ0) + tap-size ofhsm < of eφ ≥

I 3 1 2 2 3 5 1.4150 2 ≥ 1.4150

II 3 2 2 3 4 6 2.4150 2 2

III 5 1 n+3 n+3 n+4 n+8 2.3561 3 ≥ 2.3561

IV 5 2 n+3 2n+4 n+5 2n+9 3.1926 3 3

V 5 1 2n+4 2n+4 2n+5 2n+9 2.0227 4 ≥ 2.0227

VI 5 1 3n+4 3n+4 3n+5 3n+9 2.0342 4 ≥ 2.0342

VII 7 3 2n+4 6n+7 2n+7 6n+14 4.3353 4 4

VIII 7 3 3n+4 7n+6 3n+7 7n+13 3.7604 4 ≥ 3.7604

In Table IV, we list the properties of each L-CAMP system
(n ≥ 2 for the systems III-IV,n ≥ 3 for the systems V-
VIII). Here, we letφ̃ be the refinable function associated with
the refinement maskτeτr (cf. (12) and (20)). In column 8
of the table, we list the smoothness ofφ̃, which plays an
important role in the performance analysis (cf. Theorems 1,2).
As said, the smoothness estimation techniques are too involved
to be covered in detail here; instead we will sketch the
main ingredients of the smoothness estimation machinery. The
performance grade of each L-CAMP system is listed in the last
two columns of the table.

The numberλ := 1 + (tap-size ofh) is shown in column 2
of the table. This number, together with the number of taps of
he (listed in column 5), is important for the computation of
the complexity of the algorithm (cf. (14)) as well as for the
total volume of the L-CAMP mother wavelet set (cf. (11)).

For spatial dimensionn = 3, 4, 5, we compared the
L-CAMP systems I,II,V,VII in Table I with some of the
mainstream wavelets. There, we used formula (10) for the
computation of the volumevol(Ψ) of the L-CAMP systems.

The details provided in Table III and Table IV excluden =
1 for the systems III-VIII, andn = 2 for the systems V-
VIII. The missing lower-dimensional counterparts of the listed
systems can be obtained from the high-dimensional filters in
a trivial way. We present some of these lower-dimensional
filters in Appendix II. We note here that the lower bound for
the smoothness of̃φ (column 8 in Table IV) for these lower
dimensional constructs remains essentially unchanged.

How did we construct the above main filters and enhance-
ment filters? We start by choosing the main filter. The primary
property of the main filter is to have accuracyN , which
determines the number of vanishing moments that the mother
waveletsψν , ν ∈ E′ will have. Note that in constructions VII
and VIII the accuracy isN = 6, while the last wavelet,ψ0,
has only4 zero moments, hence the Jackson performance is
sJ = 4. This is not an oversight: a higher value ofN leads
also to higher smoothness of the tensor-product functionφr
(associated with the maskτr) which is a convolution factor
in the functionφ̃ whose smoothness is critical here. So, we
choose hereN = 6 in order to reach the requisite smoothness

that is needed for performancesB = 4. In theory, we could
have taken in all of our constructions very large values ofN ,
and obtained in this way very smooth̃φ. We avoided doing
that since such approach creates mother wavelet with small
volume of support (since the volume grows only linearly with
the accuracy (cf. (11)), regardless of the dimension), but with
large diameter for their support. While there is no decisive
reason to avoid such constructs, we preferred to keepN , hence
λ, as small as we can, and to pay, instead, careful attention to
the construction ofhe.

The enhancement filter is constructed to achieve a given
order s, (3). The orders dictates the Taylor expansion ofτe
around the origin up to degrees − 1. Since the filterτc is
invariant under permutation of the variables, we chooseτe to
have this property, too (this is done by choosing the support
of he to have this invariance). This reduces significantly the
numberc of conditions thatτe needs to satisfy for orders: c =
2, 4, 7 conditions, fors = 2, 3, 4 respectively. We wanted to
put the support of the enhancement filter on the diagonal, since
this leads to the smallest possible invariant support. However,
it is easy to see that anhe supported on the diagonal can
satisfy onlys of the Taylor expansion conditions. To this end,
we used, fors > 2, the extra summands of the formhA. The
number of summands of this form usually equals toc − s.
In constructions V and VII we were able to do with fewer
summands (c − s = 3, while we used only two summands),
by carefully selecting the supports of the summands.

The smoothness analysis was done in retrospect, i.e., after
the construction was completed. It consists of three main
ingredients. The most subtle one was to study the effect of
convolving the diagonal part of the enhancement filter with
the tensor-product filterhr (whose mask isτr). We developed
to this end a decomposition technique of the multivariate filters
into the sum of2-tap ones. Another subtle point was to prove
that each of the summands of the formhA in the definition
of he has only minor effect on the smoothness ofφ̃, an effect
that is independent of the dimension. The third part was to
account for the (positive) effect of the smoothing. While not
trivial either, that part was less innovative since it was done
by employing some of the tools that were used to the same
end in the study of the smoothness of box splines, [5].
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APPENDIX I
PROOFS OFLEMMA 2 AND THEOREMS1, 2

In this section, we prove Lemma 2 and Theorems 1, 2. The
proofs are mostly done by specializing to our context some of
the more general results from [10], [11], [18], [13], [14].

For the proof of Lemma 2, we recall the following results:
Result 1 ([14]): Suppose thatψ is a finite linear combina-

tion of integer translates ofχ(2·), and satisfieŝψ(0) = 0. Then
X(ψ) is a Bessel system.

Result 2 ([13]): Suppose thatζ is some fixed trigonometric
polynomial which has a zero of order2 at the origin. Letφ0

be some refinable function with a refinement maskτ0 that
satisfiesφ0 ∈ Rη, for someη > 0. Then for any0 < η′ < η,
there exists a trigonometric polynomialξ such thatξ(0) = 1,
and such that the refinable functionφ with maskτ0(1 + ξζ)
belongs toRη′ .

Result 3 ([18]): Suppose thatψ ∈ Rη for someη > 0, and
satisfiesψ̂(0) = 0. ThenX(ψ) is a Bessel system.

Finally, we make the following simple observation:
Lemma 3:Let τA and τB be some trigonometric polyno-

mials that satisfyτA(0) = τB(0) = 1. Let φ1 be the refinable
function associated with the maskτAτB . Then the refinable
function φ0 associated with the maskτA(2·)τB is at least as
smooth asφ1.

Proof: We first note that there is unique refinable function
corresponding toτA(2·)τB . Now from

τA(2·)φ̂1(2·) = τA(2·)τAτBφ̂1 = τA(2·)τB

(
τAφ̂1

)
,

and from the uniqueness, we see thatφ̂0 = τAφ̂1, and thusφ0

is at least as smooth asφ1.
Proof of Lemma 2:We see immediately that the L-CAMP

systemX(Ψ) is Bessel from Result 1. Now let0 < α < η be
fixed.

We choose a numberu such thatα < u < η. Then φ̃ ∈
Ru. From Lemma 3 (forφ1 := φ̃, τA := τe and τB := τr),
the refinable functionφ0 associated with the maskτe(2·)τr
satisfiesφ0 ∈ Ru. From the assumptions (3), (5) and from the
identity

∑
ν∈E

eντ
ν = 2n

∑
γ∈{0,π}n(τ cτr)(· + γ), we see

that, near the origin,

ζ:= 1 − τe(2·)
1

2n

∑

ν∈E

eντ
ν

= (1 − τe(2·)τ c) + τe(2·)τc(1 − τr)

−τe(2·)
∑

γ∈{0,π}n\0

(τ cτr)(· + γ)

=O(| · |s).

(The first term above has a zero of orders directly from our
assumption on the enhancement filter. It is easy to see that
the other terms have zero of orderN at the origin, withN
the accuracy of the main filter. Since we assume heres ≥
N , we obtain the order above, as stated). Sinces ≥ 2, the
function ζ has a zero of order2 (or more) at the origin. With
τ0 := τe(2·)τr , we use Result 2 to conclude that there exists
a suitableξ for which the refinable functionφd lies in Rα.

Now we argue that the dual wavelet systemX(Ψd) deter-
mined by the aboveξ is Bessel. For that, it suffices to show

thatX(ψdν) is Bessel, for eachν ∈ E, whereψ̂dν(2·) := tdν φ̂
d

with tdν as in (21). Note thatφd ∈ Rα impliesψdν ∈ Rα since
every dual wavelet masktdν is a trigonometric polynomial.
The conditionψ̂dν(0) = 0 is equivalent totdν(0) = 0, which is
trivially satisfied from the assumptionτ(0) = τe(0) = ξ(0) =
1. Since we verified thatψdν satisfies all the assumptions in
Result 3, we see thatX(ψdν) is Bessel, for eachν ∈ E.

Combining the above with Lemma 1, we see that all the
requirements for(X(Ψ), X(Ψd)) to be a UEP bi-framelet are
satisfied, [19]. Furthermore, we showed thatΨd ⊂ Rα.

To prove Theorems 1 and 2, we introduce a sequence space.
Forα > 0, ℓ2(α) is defined to be the space of all sequences

c := (c(j, k) : j ∈ Z, k ∈ Zn) such that

‖c‖ℓ2(α) :=




∑

j∈Z,k∈Zn

(
2jα|c(j, k)|

)2



1/2

<∞.

We denote byS := S(Rn) the Schwartz space of test
functions. Also, we use the notationa . b to mean that there is
a constantc > 0 such thata ≤ cb. We further use the notation
a ≈ b to denote two quantities that satisfyc1a ≤ b ≤ c2a, for
some positive constantsc1 andc2.

We now recall the following result (see, e.g., [10]).
Result 4: Let ϕ ∈ S be such that

supp ϕ̂ ⊂ {
1

2
≤ |ω| ≤ 2},

|ϕ̂(ω)| ≥ c > 0,
3

5
≤ |ω| ≤

5

3
, (24)

|ϕ̂(ω)|2 + |ϕ̂(
ω

2
)|2 = 1, 1 < |ω| < 2,

for some constantc. Then, we have

f =
∑

j∈Z

∑

k∈Zn

〈f, ϕj,k〉ϕj,k, f ∈ L2(R
n). (25)

Let α > 0. Then, for everyf ∈ L2(R
n),

|f |Wα

2
(Rn) ≈ ‖T ∗

X(ϕ)f‖ℓ2(α). (26)

We also recall two pertinent results from [13]:
Result 5: Let α > 0. Let A be a complex-valued matrix

whose rows and columns are indexed byZ × Zn:

A := (Aj,l(k,m) := A(j, k; l,m) : j, l ∈ Z, k,m ∈ Z
n).

Suppose that there exists a constantε := ε(α) > 0 such that,
for all j, l,

‖Aj,l‖2 := ‖Aj,l‖ℓ2(Zn)→ℓ2(Zn) . 2(l−j)α2−|l−j|ε.

ThenA is a bounded endomorphism ofℓ2(α).
Result 6: Let j, l ∈ Z, α > 0. Suppose that there exist

constantsγ > n andβ ∈ R such that for allk,m ∈ Zn,

|Aj,l(k,m)| .
2(l−j)(α+ n

2
)2−|l−j|β

2
(l−j)n
+

(
1 +

|2l−jk −m|

2l−j+

)−γ

,

where2a+ := max{2a, 1}. Then we have

‖Aj,l‖2 . 2(l−j)α2−|l−j|β.
Another relevant result from [14] is also in order. For its

statement, we need the following definition:
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Definition 2: Let λ ≥ 0 andγ > 0. Let Mλ
γ := Mλ

γ(R
n)

be the set of functionsf such that

|f(t)| . (1 + |t|)−γ ,

and, for allβ ∈ Nn0 with β ≤ λ,
∫

Rn

|tβf(t)| dt <∞ and
∫

Rn

tβf(t) dt = 0.

Result 7: Let ξ be a linear combination of a finite number
of translates ofχ(2·), and letη ∈ M0

γ for all γ ∈ N. Let

Aj,l(k,m) := 〈ξj,k, ηl,m〉, j, l ∈ Z, k,m ∈ Z
n.

Then for l > j andα > − 1
2 , there existsε := ε(α) > 0 such

that
‖Aj,l‖2 . 2(l−j)α2−|l−j|ε.

We further need a result from [11].
Result 8: Let β > 0 be a non-integer. Letγ > n+β. Then,

for j ≤ l,

|〈θj,k, ζ l,m〉| . 2−(l−j)(β+ n

2
)

(
1 +

|2l−jk −m|

2l−j

)−γ

,

providedθ ∈ Rβ
γ andζ ∈ Mλ

γ , with λ satisfying⌊λ⌋+1 > β.

We are ready to prove the Jackson-type performance result:
Proof of Theorem 1:We first note that, thanks to Lemma 2,

the L-CAMP systemX(Ψ) is a frame. For each L-CAMP
mother waveletψ ∈ Ψ ⊂ L2(R

n), the following identity

T ∗
X(ψ)f = (T ∗

X(ψ)TX(ϕ))T
∗
X(ϕ)f, f ∈ L2(R

n)

is valid by (25), whereϕ ∈ S is any function satisfying (24).
Let 0 < α < s be fixed.
Once we show thatT ∗

X(ψ)TX(ϕ) is bounded onℓ2(α), then
by invoking (26) in Result 4, we obtain, for eachψ ∈ Ψ,

‖T ∗
X(ψ)f‖ℓ2(α) . ‖T ∗

X(ϕ)f‖ℓ2(α) ≈ |f |Wα

2
(Rn).

Thus, it remains to show thatT ∗
X(ψ)TX(ϕ) is bounded on

ℓ2(α), for eachψ ∈ Ψ. This is equivalent to proving that

M := (Mj,l(k,m) := M(j, k; l,m) : j, l ∈ Z, k,m ∈ Z
n),

with M(j, k; l,m) := 〈ψj,k, ϕl,m〉, is a bounded endomor-
phism ofℓ2(α).

When l > j, we can apply Result 7 to our matrixM since
it satisfies all the assumptions there. Thus, there existsε1 > 0
such that

‖Mj,l‖2 . 2(l−j)α2−|l−j|ε1 . (27)

Whenj ≥ l, we choose a non-integeru so thatα < u < s.
Using the fact thatψ has at leasts vanishing moments and
using Result 8 (forθ := ϕ, ζ := ψ, β := u, λ := s − 1), we
get, with ε2 := u− α > 0,

|Mj,l(k,m)|. 2−(j−l)(u+ n

2
)

(
1 +

|2j−lm− k|

2j−l

)−γ

= 2(l−j)(α+ n

2
)2−|l−j|ε2

(
1 + |2l−jk −m|

)−γ
.

From Result 6, we obtain

‖Mj,l‖2 . 2(l−j)α2−|l−j|ε2 . (28)

Thus, by combining (27) with (28) and by invoking Result 5,
we obtain thatM is a bounded endomorphism ofℓ2(α).
Therefore for anyα < s, the L-CAMP frameX(Ψ) satisfies
(16). That is,sJ ≥ s.

Finally we present the proof of the Bernstein-type perfor-
mance result.

Proof of Theorem 2:The Jackson-type performance result,
sJ ≥ s, is already proved in Theorem 1. Let0 < α < η be
fixed.

We let u be a non-integer such thatα < u < η. Then,
by Lemma 2, there exists a wavelet systemX(Ψd) associated
with a refinable functionφd (whose mask is the corresponding
τd from (20)), so that the pair(X(Ψ), X(Ψd)) is a bi-framelet
and Ψd ⊂ Ru. In particular, the L-CAMP wavelet system
X(Ψ) satisfies

∑

ψ∈Ψ

∑

l,m

〈f, ψl,m〉ψdl,m = f, f ∈ L2(R
n).

This implies that

〈f, ϕj,k〉 =
∑

ψ∈Ψ

∑

l,m

〈ψdl,m, ϕj,k〉〈f, ψl,m〉, ∀j, k,

whereϕ ∈ S is any function satisfying (24). That is,

T ∗
X(ϕ)f =

∑

ψ∈Ψ

(T ∗
X(ϕ)TX(ψd))T

∗
X(ψ)f.

Thus, once we show that for eachψd ∈ Ψd the operator
T ∗
X(ϕ)TX(ψd) is bounded onℓ2(α), we will obtain that

‖T ∗
X(ϕ)f‖ℓ2(α) .

∑

ψ∈Ψ

‖T ∗
X(ψ)f‖ℓ2(α), f ∈ L2(R

n).

Then by invoking (26) of Result 4, we will reach the stated
Bernstein-type performance result.

So, it remains to show thatT ∗
X(ϕ)TX(ψd) is bounded on

ℓ2(α), for eachψd ∈ Ψd. This is equivalent to proving that

N := (Nj,l(k,m) := N(j, k; l,m) : j, l ∈ Z, k,m ∈ Z
n)

with N(j, k; l,m) := 〈ϕj,k, ψ
d
l,m〉, is a bounded endomor-

phism ofℓ2(α).
When l > j, we use the facts thatψd has at least one

vanishing moment and is of compact support. Result 8 (for
θ := ϕ and ζ := ψd) implies then that for any0 < β < 1,
with ε1 := β + α > 0,

|Nj,l(k,m)|. 2−(l−j)(β+ n

2
)

(
1 +

|2l−jk −m|

2l−j

)−γ

=
2(l−j)(α+ n

2
)2−|l−j|ε1

2(l−j)n

(
1 +

|2l−jk −m|

2l−j

)−γ

.

When j ≥ l, we use the fact thatψd ∈ Ru. Result 8 (for
θ := ψd andζ := ϕ) implies then that, withε2 := u−α > 0,

|Nj,l(k,m)|. 2−(j−l)(u+ n

2
)

(
1 +

|2j−lm− k|

2j−l

)−γ

= 2(l−j)(α+ n

2
)2−|l−j|ε2

(
1 + |2l−jk −m|

)−γ
.

By invoking Result 5 and Result 6, we obtain thatN is a
bounded endomorphism ofℓ2(α). Thus, for anyα < η, the
L-CAMP frameX(Ψ) satisfies (18). Therefore, we getsB ≥
min{s, η}.
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TABLE V

THE L-CAMP SYSTEMS IN1 DIMENSION FORs = 3 AND s = 4.

L-CAMP accuracy order ehe (he =: ehe ∗ hsm) λ tap-size vol(Ψ) sJ sB

SYSTEMS of h of hsm -3 -2 -1 0 1 2 of he

III-a 4 0 5

8

4

8
- 1

8
5 3 5.5 3 ≥ 2.3561

IV-a 4 1 - 1

4

3

4

2

4
5 4 6.5 3 3

VI-a 4 0 - 5

64

55

64

17

64
- 3

64
5 4 6.5 4 ≥ 2.0342

VIII-a 6 2 - 17

64

75

64

13

64
- 7

64
7 6 9.5 4 ≥ 3.7604

TABLE VI

THE L-CAMP SYSTEMS IN2 DIMENSIONS FORs = 4.

L-CAMP accuracy order hG hA1
hA2

λ tap-size vol(Ψ) sJ sB ≥

SYSTEMS of h of hsm -21 -1 0 1 21 c1 p1 l1 c2 p2 l2 of he

VI-b 4 0 - 4

64

51

64

20

64
- 3

64

1

64
0 -1 3

64
0 1 5 8 11.75 4 2.0113

VIII-b 6 2 - 17

64

80

64

9

64
- 8

64

5

64
0 -1 - 1

64
0 1 7 14 19.25 4 3.7604

APPENDIX II
L-CAMP SYSTEMS IN LOWER DIMENSIONS

The L-CAMP systems that are detailed in Table III and
Table IV of Section V require the spatial dimension to be
“minimally high”. Needless to say, constructing low dimen-
sional counterparts of those systems is easier than constructing
the general ones in that section. We provide here some of the
examples of such low-D L-CAMP constructions. In Table V,
we list the 1D systems fors = 3 ands = 4. In Table VI, we
list the 2D systems fors = 4.
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[5] C. de Boor, K. Höllig, and S. Riemenschneider,Box Splines. Berlin:
Springer-Verlag, 1993.

[6] G. Deslauriers and S. Dubuc, “Interpolation dyadique,”in Fractals,
Dimensions Non Entières et Applications, Masson, Paris, 1987, pp. 44–
55.

[7] R. DeVore, B. Jawerth, and V. Popov, “Compression of wavelet decom-
positions,”Amer. J. Math, vol. 114, no. 4, pp. 737–785, 1992.

[8] M. N. Do and M. Vetterli, “Pyramidal directional filter banks and
curvelets,” in Proc. IEEE Int. Conf. Image Process., Thessaloniki,
Greece, Oct. 2001.

[9] ——, “Framing pyramids,” IEEE Trans. Signal Processing, vol. 51,
no. 9, pp. 2329–2342, 2003.

[10] M. Frazier and B. Jawerth, “Decomposition of besov spaces,” Indiana
Univ. Math. J., vol. 34, no. 4, pp. 777–799, 1985.

[11] ——, “A discrete transform and decompositions of distribution spaces,”
J. Funct. Anal., vol. 93, no. 1, pp. 34–170, 1990.

[12] D. J. Heeger and J. R. Bergen, “Pyramid-based texture analy-
sis/synthesis,” inProc. ACM SIGGRAPH, 1995, pp. 229–238.

[13] Y. Hur and A. Ron, “CAPlets: wavelet representa-
tions without wavelets,” 2005, preprint. [Online]. Available:
ftp://ftp.cs.wisc.edu/Approx/huron.ps

[14] ——, “New constructions of piecewise-constant wavelets,” 2005,
preprint. [Online]. Available: ftp://ftp.cs.wisc.edu/Approx/pcf.ps

[15] G. Kyriazis, “Decomposition systems for function spaces,”Studia Math.,
vol. 157, no. 2, pp. 133–169, 2003.

[16] S. G. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation,”IEEE Trans. Pattern Anal. Machine Intell.,
vol. 11, no. 7, pp. 674–693, 1989.

[17] Y. Meyer, Wavelets and operators. Cambridge: Cambridge University
Press., 1992.

[18] Y. Meyer and R. Coifman,Wavelets: Calderón-Zygmund and multilinear
operators. Cambridge: Cambridge University Press., 1997.

[19] A. Ron and Z. Shen, “Affine systems inL2(Rd) II: dual systems,”J.
Fourier Anal. Appl., vol. 3, pp. 617–637, 1997. [Online]. Available:
ftp://ftp.cs.wisc.edu/Approx/dframe.ps

[20] ——, “Affine systems inL2(Rd): the analysis of the analysis operator,”
J. Funct. Anal., vol. 148, no. 2, pp. 408–447, 1997. [Online]. Available:
ftp://ftp.cs.wisc.edu/Approx/affine.ps

[21] S. Toelg and T. Poggio, “Towards an example-based imagecompression
architecture for video-conferencing,” 1994, A.I. Memo No.1494, M.I.T.

[22] H. Triebel, Theory of Function Spaces. Birkhäuser., 1983.
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