The limit at the origin of a smooth function space
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Abstract

The map H — H| assigns to each finite-dimensional space of
smooth functions a homogeneous polynomial space of the same di-
mension. We discuss applications of this map in the areas of multi-
variate polynomial interpolation, box spline theory and polynomial
ideals.

§1. Introduction

Let Ag be the space of all s-dimensional complex-valued functions an-
alytic at the origin. For f € Ay, we write its power series expansion at the
origin as

f=fh+hh+fot. (1)

where, for each j, f; is a homogeneous polynomial of degree j. We denote by
f1 the least term of f, i.e., the homogeneous polynomial f; with k := max{j :
fi =0, Vi < j}. For a finite-dimensional subspace H of Ay, we define

H| :=span{f, : fe H}. (2)

Note that deg f; = k if and only if Ty(f) = 0 # Tk+1(f), where T}, : H —
ek : [ fo+ f1+ ...+ fr_1. This means that

dim{f, : fe H, degf, =kor f=0} =dimkerT; —dimkerTj+1. (3)
Summing this equation over all k, we obtain

Proposition 1. The space H| is a homogeneous polynomial space of the
same dimension as H.

In [2], we provide the following simple algorithm for the computation of
a basis for H| from a given basis for H. Its description uses the inner product

Dp(0)D*¢(0)

al

(p,q) := p(D)q(0) = ¢(D)p(0) = > _ : (4)

aEZi

with p(D) := Y, (D*p)(0)/a! D* the differential operator induced by the
polynomial p.
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Algorithm 2 [2]. Given the basis (p;) of the finite-dimensional subspace H

of Ao.
For k =1,2,..., carry out the following three steps:
5, Pk
Step 1. g — pr — qu <<TJ. >>
i<k 43
Step 2. Tk < Q|
Step 3. qj <« q; — qkm if degry > degr;.
(T qr)

Then (Tj) is bi-orthogonal to (qj) and provides a homogeneous orthogo-
nal basis for H|.

§2. H| and multivariate polynomial interpolation

Let ® be a finite subset of R* (C* will do as well). For each 6 € O,
let Py be a finite-dimensional polynomial space. In the interpolation problem
IP(®; P), we seek a polynomial space @) such that, for every smooth function
f, there exists a unique g5 € @ satisfying

p(D)f(0) = p(D)gs(0), V6 € ©, p € Py. (5)

We have

Theorem 3 [2]. For given IP(®; P), define H := span{egp : 6 € O, p €
Py}. Then the space H| solves I P(®; P), and is of least degree among all the
solutions () of that interpolation problem in the sense that

dim(ﬂ'j N Hl) 2 dim(ﬂ'j N Q), VJ,Q

63. The polynomials in a box spline space

The polynomial space associated with a given (polynomial) box spline
Bx is defined as follows: Let X C IR*\0 be a spanning multiset for IR* and

K(X):={K C X : span(X\K) # IR"}.

Also, for Z C X, define the homogeneous polynomial pz := [], ., (z,-), with
(x,y) the scalar product of z,y € IR*. The polynomial space H(X), defined
by

HX)={fen: pr(D)f =0, VK € K(X)}, (6)

is of importance in box spline theory since the box spline By is a piecewise-
H(X) function.

In the context of exponential box splines, one deals with the following
generalization of the above space: we associate with each direction x € X
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an (arbitrary) constant A\, and, correspondingly, we define the possibly non-
homogeneous polynomials pz x := [[,.,({(z,-) — Az). The exponential space
H(X, \) is then defined analogously as

H(X, ) :={f isentire: pgrf =0, VK € IK(X)}. (7)

With the aid of H(X, ), we identify elements in H(X). For f € H(X,\) and
K € K(X),
0=prA(D)f =pr(D)f + higher order terms, (8)

which implies that px (D) f; = 0 and hence f; € H(X). Consequently,
H(X,\) C H(X),
hence, by Proposition 1,
dimH(X, ) < dimH(X),

regardless of the choice of \. Since, for a generic A € C~, H(X, ) is spanned
by #IB(X) different exponentials, [1], with IB(X) the multiset of all bases for
IR? from X, one concludes that

#IB(X) < dim H(X),

a result which is due to Dahmen and Micchelli, [4].

§4. A basis for H(X)
We know from [3] that

H(X,\)| = H(X). 9)

For a generic A, the exponentials eg in H (X, ) form a basis for it. The relevant
set © of frequencies 0 is easily determined: Fach B € IB(X) provides a § = 0p
as the unique solution of the linear system (z,0) = \,, Vo € B. Thus, a basis
for the polynomial space H(X) can be obtained as follows:

Step 1. Compute the exponential basis for a suitable H(X, \).

Step 2. Apply to this basis the Algorithm 2 for the construction of a basis
for H| from a basis for H.

Note that the algorithm requires the determination of the least term
of functions. This presents no numerical problem in the present situation in
case X C 7ZZ°. For, then A\ can be chosen so that each 6 is rational, and the
algorithm’s calculations can be carried out in exact (i.e., integer) arithmetic.
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§5. Subspaces of H(X)

The observations based on (8) made about the action of differential oper-
ators on ‘H(X) and H(X, A) can be formulated in terms of polynomial ideals
and extended to more general settings, [3]. We omit here these details, yet
describe the application of these extensions to subspaces of H(X).

Note that the elements of IK(X) are exactly all subsets of X which inter-
sect every element of IB(X). Suppose now that 1By is a subset of IB(X). Let
K,:={KeX: KNB#(, VB € B;y}. Define

Hy = {f : pK(D)f =0, VK € Kl}

One checks that H; C H(X).

Theorem 4 [3].

The inequality in the theorem is sometimes strict. To guarantee equality,
one may choose IB; to be order-closed: suppose that X is ordered, X =
{z1,...,x4x } say. This order induces a partial ordering on IB(X):

B1 = {yl, ...,ys} S B2 = {Zl, ...,ZS} e Yj S Zj, V]
We call By C IB(X) order-closed if the condition
B1§B2, BQGIB1:>B1€IBl

holds for all By, Bs € B(X).
Theorem 5 [3]. If By is an order-closed subset of IB(X), then

#1B; = dim M,.

Similar results hold for subspaces of the more general space H(X,\).
These results allow us to identify the local approximation order of subspaces
of H(X, \),[3].
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