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Abstract
The map H → H↓ assigns to each finite-dimensional space of

smooth functions a homogeneous polynomial space of the same di-
mension. We discuss applications of this map in the areas of multi-
variate polynomial interpolation, box spline theory and polynomial
ideals.

§1. Introduction

Let A0 be the space of all s-dimensional complex-valued functions an-
alytic at the origin. For f ∈ A0, we write its power series expansion at the
origin as

f = f0 + f1 + f2 + ..., (1)

where, for each j, fj is a homogeneous polynomial of degree j. We denote by
f↓ the least term of f , i.e., the homogeneous polynomial fk with k := max{j :
fi = 0, ∀i < j}. For a finite-dimensional subspace H of A0, we define

H↓ := span{f↓ : f ∈ H}. (2)

Note that deg f↓ = k if and only if Tk(f) = 0 6= Tk+1(f), where Tk : H →
π<k : f 7→ f0 + f1 + ... + fk−1. This means that

dim{f↓ : f ∈ H, deg f↓ = k or f = 0} = dim kerTk − dimker Tk+1. (3)

Summing this equation over all k, we obtain

Proposition 1. The space H↓ is a homogeneous polynomial space of the
same dimension as H.

In [2], we provide the following simple algorithm for the computation of
a basis for H↓ from a given basis for H. Its description uses the inner product

〈p, q〉 := p(D)q(0) = q(D)p(0) =
∑

α∈ZZs
+

Dαp(0)Dαq(0)
α!

, (4)

with p(D) :=
∑

α

(
Dαp

)
(0)/α! Dα the differential operator induced by the

polynomial p.
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Algorithm 2 [2]. Given the basis
(
pj

)
of the finite-dimensional subspace H

of A0.

For k = 1, 2, . . ., carry out the following three steps:

Step 1. qk ← pk −
∑

j<k

qj
〈rj , pk〉
〈rj , qj〉

Step 2. rk ← qk↓

Step 3. qj ← qj − qk
〈rk, qj〉
〈rk, qk〉 if deg rk > deg rj .

Then
(
rj

)
is bi-orthogonal to

(
qj

)
and provides a homogeneous orthogo-

nal basis for H↓.

§2. H↓ and multivariate polynomial interpolation

Let Θ be a finite subset of IRs (Cs will do as well). For each θ ∈ Θ,
let Pθ be a finite-dimensional polynomial space. In the interpolation problem
IP (Θ;P ), we seek a polynomial space Q such that, for every smooth function
f , there exists a unique qf ∈ Q satisfying

p(D)f(θ) = p(D)qf (θ), ∀θ ∈ Θ, p ∈ Pθ. (5)

We have

Theorem 3 [2]. For given IP (Θ;P ), define H := span{eθp : θ ∈ Θ, p ∈
Pθ}. Then the space H↓ solves IP (Θ;P ), and is of least degree among all the
solutions Q of that interpolation problem in the sense that

dim(πj ∩H↓) ≥ dim(πj ∩Q), ∀j,Q.

§3. The polynomials in a box spline space

The polynomial space associated with a given (polynomial) box spline
BX is defined as follows: Let X ⊂ IRs\0 be a spanning multiset for IRs and

IK(X) := {K ⊂ X : span(X\K) 6= IRs}.

Also, for Z ⊂ X, define the homogeneous polynomial pZ :=
∏

x∈Z〈x, ·〉, with
〈x, y〉 the scalar product of x, y ∈ IRs. The polynomial space H(X), defined
by

H(X) = {f ∈ π : pK(D)f = 0, ∀K ∈ IK(X)}, (6)

is of importance in box spline theory since the box spline BX is a piecewise-
H(X) function.

In the context of exponential box splines, one deals with the following
generalization of the above space: we associate with each direction x ∈ X
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an (arbitrary) constant λx and, correspondingly, we define the possibly non-
homogeneous polynomials pZ,λ :=

∏
x∈Z(〈x, ·〉 − λx). The exponential space

H(X,λ) is then defined analogously as

H(X,λ) := {f is entire : pK,λf = 0, ∀K ∈ IK(X)}. (7)

With the aid of H(X,λ), we identify elements in H(X). For f ∈ H(X,λ) and
K ∈ K(X),

0 = pK,λ(D)f = pK(D)f↓ + higher order terms, (8)

which implies that pK(D)f↓ = 0 and hence f↓ ∈ H(X). Consequently,

H(X,λ)↓ ⊂ H(X),

hence, by Proposition 1,

dimH(X,λ) ≤ dimH(X),

regardless of the choice of λ. Since, for a generic λ ∈ CX , H(X,λ) is spanned
by #IB(X) different exponentials, [1], with IB(X) the multiset of all bases for
IRs from X, one concludes that

#IB(X) ≤ dimH(X),

a result which is due to Dahmen and Micchelli, [4].

§4. A basis for H(X)

We know from [3] that

H(X,λ)↓ = H(X). (9)

For a generic λ, the exponentials eθ inH(X,λ) form a basis for it. The relevant
set Θ of frequencies θ is easily determined: Each B ∈ IB(X) provides a θ = θB

as the unique solution of the linear system 〈x, θ〉 = λx, ∀x ∈ B. Thus, a basis
for the polynomial space H(X) can be obtained as follows:

Step 1. Compute the exponential basis for a suitable H(X,λ).

Step 2. Apply to this basis the Algorithm 2 for the construction of a basis
for H↓ from a basis for H.

Note that the algorithm requires the determination of the least term
of functions. This presents no numerical problem in the present situation in
case X ⊂ ZZs. For, then λ can be chosen so that each θ is rational, and the
algorithm’s calculations can be carried out in exact (i.e., integer) arithmetic.
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§5. Subspaces of H(X)

The observations based on (8) made about the action of differential oper-
ators on H(X) and H(X,λ) can be formulated in terms of polynomial ideals
and extended to more general settings, [3]. We omit here these details, yet
describe the application of these extensions to subspaces of H(X).

Note that the elements of IK(X) are exactly all subsets of X which inter-
sect every element of IB(X). Suppose now that IB1 is a subset of IB(X). Let
IK1 := {K ∈ X : K ∩B 6= ∅, ∀B ∈ IB1}. Define

H1 := {f : pK(D)f = 0, ∀K ∈ K1}.

One checks that H1 ⊂ H(X).

Theorem 4 [3].
#IB1 ≤ dimH1. (10)

The inequality in the theorem is sometimes strict. To guarantee equality,
one may choose IB1 to be order-closed: suppose that X is ordered, X =
{x1, ..., x#X} say. This order induces a partial ordering on IB(X):

B1 = {y1, ..., ys} ≤ B2 = {z1, ..., zs} ⇐⇒ yj ≤ zj , ∀j.

We call IB1 ⊂ IB(X) order-closed if the condition

B1 ≤ B2, B2 ∈ IB1 =⇒ B1 ∈ IB1

holds for all B1, B2 ∈ IB(X).

Theorem 5 [3]. If IB1 is an order-closed subset of IB(X), then

#IB1 = dimH1.

Similar results hold for subspaces of the more general space H(X,λ).
These results allow us to identify the local approximation order of subspaces
of H(X,λ),[3].
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