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Abstract. For 1 � p � 1, su�cient conditions on the generators f�hgh>0 are given
which ensure that the h-dilates of the shift-invariant space generated by �h provide Lp-
approximation of order k > 0. Examples where �h is an exponential box spline or certain

dilates of the Gaussian e�j�j2 are considered; it is shown that our su�cient condition then
provides an optimal lower bound on their approximation order.

1. Introduction

Let d 2 N := f1; 2; : : : g, and let C := (�1=2 : : 1=2)d denote the open unit cube in Rd.
Following [19], de�ne

Lp := ff 2 Lp(R
d) : kfkLp :=








X
j2Zd

jf( � � j)j








Lp(C)

<1g; 1 � p � 1:

Note that kfkL1 = kfkL1 � kfkLp � kfkLp whenever 1 � p � p � 1. It was shown in

[19] that if � 2 Lp, then the semi-discrete convolution operator ��0 is a bounded operator
from `p into Lp, where � �0 c := � �01 c and

� �0h c :=
X
j2Zd

c(hj)�( �=h� j); h > 0:

We de�ne Sp(�) to be the image of ��0 on `p:

Sp(�) := f
X
j2Zd

c(j)�( � � j) : c 2 `pg:

Sp(�) is said to be a shift-invariant space because f(� � j) 2 Sp(�) whenever f 2 Sp(�)
and j 2 Zd. Since Sp(�) is `generated' by the shifts (i.e. integer translates) of a single
function, we call it a principal shift-invariant space. There are, in the literature, a number
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of ways of `generating' a shift-invariant space from a single function � or a collection of
functions �. When the details are unimportant we will simply write S(�) or S(�) to
denote this space. Shift-invariant (SI) spaces and principal shift-invariant (PSI) spaces
are important in many areas of approximation theory including the study of multivariate
splines, radial basis function theory, sampling theory, wavelets, and subdivision schemes.

We can dilate any PSI space S(�) by the parameter h > 0 to obtain

Sh(�) := ff( �=h) : f 2 S(�)g:

The directed family (Sh(�))h is called a ladder of PSI spaces. When one has in hand a
ladder of PSI spaces (Sh(�))h, a standard problem, and one which has received considerable
attention in the literature, is the determination of its Lp-approximation power; i.e. the
determination of the rate of decay of dist

�
f; Sh(�);Lp

�
(as h! 0) for su�ciently smooth

f 2 Lp. Here
dist (f;A;X) := inf

x2A
kf � xkX :

In the literature, the statement, \(Sh(�))h provides Lp-approximation of order 
" has
various de�nitions1; the essential ingredient is that

(1.1) dist
�
f; Sh(�);Lp

�
= O(h
) for all su�ciently smooth f 2 Lp:

Strang and Fix [34] have shown (see also [33],[12],[2]) that if � is a compactly supported
L2 function, then the ladder (Sh2 (�))h provides \controlled" L2-approximation of order

k 2 N if and only if b�(0) 6= 0 and one of the following two equivalent conditions holds:

8 f 2 �k�1 9 g 2 �k�1 such that f = � �0 g;(1.2)

D� b�(j) = 0 8 j�j < k; j 2 2�Zdn0:(1.3)

The quali�er \controlled", as used above, places a restriction on how the approximations
to a smooth function can be drawn from Sh2 (�) as h ! 0; hence, \controlled" approxi-
mation is stronger than unquali�ed approximation. Conditions (1.3) are now known as
the Strang-Fix conditions of order k. These conditions had previously been considered for
d = 1 by Schoenberg [33]. Clari�cations and extensions of [34] can be found in Dahmen
and Micchelli [11] and Jia [17]. Finally, de Boor and Jia [7], using \local" rather than \con-
trolled" approximation, extended the L2 result of [34] to Lp for all 1 � p � 1. Later,
interest in removing the compact support assumption on the generator � developed and
was investigated by Jackson [16], Buhmann [10], Light and Cheney [25], Jia and Lei [18],
and Halton and Light [15]. The following was proved in [18].

Theorem 1.4. Let � 2 L1 satisfy for some � > 0 and k 2 N

(i) j�(x)j = O(jxj�(d+k+�)) as jxj ! 1;

(ii) �(x) = lim
"!0

"�d
Z
x+"C

� for all x 2 Rd:

1Our de�nition will be stated in x2.
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Then, for 1 � p � 1, the ladder (Shp (�))h provides \controlled" Lp-approximation of order

k if and only if b�(0) 6= 0 and the Strang-Fix conditions of order k are satis�ed.

Here the \control" is a combination of that used in [34] and the \localness" used in
[7]. Note that the compact support assumption of [34], [11], and [7] has been replaced
by the decay assumption (i) which, incidentally, becomes stronger as the approximation
order k increases. All of the above mentioned papers employ a technique known as Quasi-
interpolation/Polynomial Reproduction for their error analysis. Note that Polynomial
Reproduction, as described in (1.2), requires that � �0 g be well de�ned for g 2 �k�1;
hence the need for something like condition (i). In 1991, de Boor and Ron [8] were able to
completely overcome condition (i) by performing their error analysis entirely in the Fourier
transformed domain. Moreover, their results applied to a more general situation which we
now describe.

The ladder (Sh(�))h is known as a stationary ladder of PSI spaces because it is
obtained by dilating the same PSI space S(�). More generally we may use, as the h-entry
of our ladder, the h-dilate of an h-dependent PSI space S(�h) to obtain a non-stationary
ladder (Sh(�h))h. While in the stationary case properties of the ladder are hoped to be
analyzed in terms of corresponding properties of the single generator �, we need, in the
non-stationary case, to inspect the entire family of generators (�h)h.

We can now state a sample from [8].

Theorem 1.5. Let (�h)h2(0:: h0] be a family of functions in L1 which satisfy b�h 6= 0 on
all of �C for some � > 0. If

sup
h2(0:: h0]

X
j2Zd n0






 b�h( � + 2�j)

(hk + j�jk)b�h






L1(�C)

<1;

then (Sh1(�h))h provides L1-approximation of order k.

Proof. [8; x2.5].

Note that the only decay assumption imposed on �h is the mild assumption �h 2 L1.
Following this result, de Boor, DeVore, and Ron [4] considered the case p = 2 where
they were able to give a complete characterization of closed SI subspaces of L2 which
provide L2-approximation of order k > 0. Their results apply to non-stationary ladders
of SI spaces and they make no decay assumptions on the generators. Kyriazis [21], in
turn, considered stationary PSI spaces for the case 1 < p < 1. Su�cient conditions on
the generator � 2 Lp are given which, when satis�ed, ensure that the stationary ladder
(Sh(�))h provides Lp-approximation of order k > 0. Again, no explicit decay assumptions
are made on the generator �.

In the present paper, we are concerned with providing lower bounds on the Lp-approximation
order (1 � p � 1) of non-stationary ladders of PSI spaces under the mild decay assump-
tion that the generators belong to Lp. An outline is as follows:
In x2, we de�ne our notion of Lp-approximation order, and we state our main results. The
proofs of these results comprise x5 and x6. These results are applied to non-stationary
ladders of PSI spaces generated by exponential box splines and dilates of the Gaussian in
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x3 and x4, respectively. The particularly long proof of a proposition in x3 is postponed
until x8. In x7, side conditions are given under which the Strang-Fix conditions of order k
are su�cient to ensure that the stationary ladder (Shp (�))h provides Lp-approximation of
order k.

Throughout this paper, jxj := jxj2 denotes the Euclidean norm of x 2 R
d while for

multi-indices � 2 f0; 1; 2; : : : gd, j�j := j�j1 :=
Pd

i=1 j�ij. For open 
 � Rd, 1 � p � 1
and m 2Z+ := f0; 1; 2; : : : g the Sobolev spaces Wm

p (
) are de�ned by

Wm
p (
) := ff : kfkWm

p (
) :=

0@ X
j�j�m

kD�fkpLp(
)

1A1=p

<1g;

with the usual modi�cation when p = 1. Corresponding to each � 2 Zd+ is the power

function ()� : Rd! C de�ned by

()� : x 7! x� :=

dY
i=1

x(i)�(i):

The space of polynomials of total degree at most k is denoted �k. The open unit ball in
Rd is denoted by B := fx 2 Rd : jxj < 1g. For f 2 L1 := L1(Rd), we denote its Fourier
transform by bf (x) := Z

Rd

e�x(t)f(t) dt;

where ex denotes the complex exponential given by

ex(t) := eix�t:

The Fourier transform extends by duality to the space of tempered distributions. The
inverse Fourier transform of a tempered distribution f is denoted f_. The collection of
compactly supported C1(Rd) functions is denoted by C1c and their Fourier transforms bydC1c . All derivatives of functions are to be understood as distributional. We use the symbol
const to denote generic constants. It always denotes a real value in the interval (0 : :1)
and depends only on its arguments. Its value may change with each occurence. When
using the scaling parameter h as in (Sh(�h))h, it is asssumed without further mention that
h 2 (0 : : h0] and h0 2 (0 : : 1].

2. The Main Results

In order to make precise the notion, \Lp-approximation of order 
", we need to specify
which functions f 2 Lp are su�ciently smooth. This will be the Besov space B
;1

p which

we now de�ne. Let � 2 dC1c satisfy b� = 1 on a neighborhood of the origin, and for tempered
distributions f , de�ne

(2.1) fk :=

8><>:
�b�(2�) bf�_ ; if k = 0;�
(b��21�k��� b��22�k��) bf�_ ; if k > 0:
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For 1 � p � 1, 
 � 0, 1 � q � 1, the Besov space B
;q
p (see [26]) can be de�ned as the

collection of all tempered distributions f for which

kfkB
;q
p (�) :=

 
1X
k=0

2
k kfkk
q
Lp

!1=q

<1;

with the usual modi�cation when q =1. It is known that B
;q
p is a Banach space, and as

such, is independent of the choice of � (i.e. di�erent choices of � yield equivalent norms).
We mention the following continuous imbeddings (cf. [26]; p. 62):

B
;q
p ,! B
1;q1

p ; if 
1 < 
 or 
1 = 
; q1 � q;

Bk;1
p ,!W k

p (R
d) ,! Bk;1

p ; if k 2Z+;

B
;1
p ,!H


p ,! B
;1
p ; if 1 < p <1;

where H

p is the potential space normed by

kfkH

p
:=







��

1 + j�j2
�
=2 bf�_






Lp

; 
 � 0; 1 < p <1:

De�nition 2.2. Let 1 � p � 1 and let (�h)h2(0:: h0] be a family in Lp. We say that the

ladder (Shp (�h))h provides Lp-approximation of order 
 > 0 if there exists c <1 such
that

dist
�
f; Shp (�h);Lp

�
� ch
 kfkB
;1

p (�) ; 8 h 2 (0 : : h0]; f 2 B

;1
p :

We mention that it is a straightforward matter to show that if (Shp (�h))h provides
Lp-approximation of order 
, then

dist
�
f; Shp (�h);Lp

�
= O(h�) as h! 0 8f 2 B�;1

p ; 0 < � < 


dist
�
f; Shp (�h);Lp

�
= O(h
 j loghj) as h! 0 8f 2 B
;1

p :

Throughout the remainder of this section, the exponent p will lie in the range 1 � p �1,
the family of functions (�h)h2(0:: h0] will belong to Lp, � will lie in (0 : : 2�), and � will be

a function in dC1c which satis�es

supp b� � �C and b� = 1 on
1

2
�C;

where C = (� 1
2
: : 1

2
)d.

The result which forms the foundation of the present paper is the following:
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Theorem 2.3. If

(2.4) sup
0<r�h

dist
�
�; Sh1 (�r);Lp

�
= O(h
) as h! 0;

then (Shp (�h))h provides Lp-approximation of order 
 for all 1 � p � p.

Proof. cf. x6.

Note that in the stationary case, a necessary condition for (Shp (�))h to provide Lp-
approximation of order 
 is that

(2.5) dist
�
�; Shp (�);Lp

�
= O(h
) as h! 0:

Theorem 2.3 says that a condition slightly stronger than (2.5) (in fact, identical when
p = 1) is actually su�cient:

(2.6) dist
�
�; Sh1 (�);Lp

�
= O(h
) as h! 0:

In the non-stationary case, condition (2.6) su�ces provided it is equipped with a certain
downward uniformity as described in (2.4). Once (2.4) has been established, the fact that
we then obtain Lp-approximation orders for all 1 � p � p is a simple consequence of the
fact that k�kLp � k�kLp .

With Theorem 2.3 in hand the job of establishing lower bounds on the Lp-approximation
order of (Shp (�h))h, 1 � p � p, can be performed by estimating the ability of Sh1 (�r) to

approximate � in Lp. One means for this is to choose s 2 Sh1 (�r) so that bs = b� on 2�C=h,
and then conclude that

(2.7) dist
�
�; Sh1 (�r);Lp

�
� k� � skLp :

This approach yields the following estimates:

Proposition 2.8. Assume that b�h(h0�) 6= 0 on all of �C, 8 0 < h � h0. Then for
0 < r � h � h0,

(1) dist
�
�; Sh1 (�r);Lp

�
�








0@b�r(h�) X

j2Zdn0

b�( � + 2�j=h)b�r(h �+2�j)
1A_







Lp

;

(2) dist
�
�; Sh1 (�r);Lp

�
�

X
j2Zdn0







 b�b�r(h �+2�j)b�r(h �)

!_





Lp

;

(3) dist
�
�; Sh1 (�r);Lp

�
� const(d; �; p)

0@ X
j2Zdn0






 b�r(h �+2�j)b�r(h �)






q

Wm
q
(�C)

1A1=q

;
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where (3) holds if 2 � p �1 in which case q is the exponent conjugate to p (i.e. satisfying
1=p+ 1=q = 1) and m is the least integer satisfying m > d=q.

Proof. cf. x6.

The proposition is intended to be used in conjunction with Theorem 2.3. The estimate
(1) is actually a rewording of (2.7). The estimate (2) derives from (1) simply by pulling
the summation outside of the norm. (3) derives from (1) using the crude estimate

kgkLp � const(d; �; p) kbgkWm
q
(Rd ) :

In x4 we will use Theorem 2.3 in conjunction with Proposition 2.8 (2) to investigate
the approximation order of non-stationary ladders generated by dilates of the Gaussian

e�j�j
2

. In x7, we apply Theorem 2.3 in conjunction with Proposition 2.8 (1) to show that
in the stationary case, under certain side conditions, the Strang-Fix conditions of order k
are su�cient to obtain approximation of order k. Here is a sample.

Theorem 2.9. Let � 2 L1 satisfy b� 2 Cd+1(�C) and b� 2 W d+k
1 (�C + 2�Zdn0). Ifb�(0) 6= 0 and � satis�es the Strang-Fix conditions of order k (1.3), then the stationary

ladder (Shp (�))h provides Lp-approximation of order k for all 1 � p �1.

Proof. cf. x7.

An alternative means for estimating the Lp distance between � and Sh1 (�r) is to take
existing results for convergence in Lp and then show that when the approximand is �, the

convergence is actually in Lp. Since � 2 dC1c decays rapidly it is not surprising that the Lp
convergence can be lifted to Lp if the approximation scheme is su�ciently local (condition
(i) below).

Theorem 2.10. Assume that there exists  h 2 S1(�h), h 2 (0 : : h0], such that for some
N 2 N and c1; c2 <1,

(i) j h(x)j � c1 (1 + jxj)�(d+
) ; 8 x 2 Rd; h 2 (0 : : h0];

(ii) kf �  r �
0
h fkLp � c2 kfkN h
 ; 8 0 < r � h � h0; f 2 C

1
c ;

where kfkN := max
j�j�N

max
x2Rd

(1 + jxj2)N j(D�f)(x)j :

Then

sup
0<r�h

dist
�
�; Sh1 (�r);Lp

�
= O(h
) as h! 0:

Hence, by Theorem 2.3, (Shp (�h))h provides Lp-approximation of order 
 for all 1 � p � p.

Proof. cf. x6.

By employing an error analysis like that of [8] in order to verify condition (ii) of Theorem
2.10, we obtain the following result (compare with Theorem 1.4).
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Theorem 2.11. Let 2 � p � 1 and let q be the exponent conjugate to p (i.e. satisfying
1=p+ 1=q = 1). If there exists c; " 2 (0 : :1) such that

(i) j�h(x)j � c(1 + jxj)�(d+d
e+"); 8 x 2 Rd; h 2 (0 : : h0];

(ii) inf
h2(0:: h0]

���b�h(0)��� > 0;

(iii) A(�; 
; q) := sup
h2(0:: h0]

0@ X
j2Zdn0






 b�h( � + 2�j)

h
 + j�j








q

L1(�C)

1A1=q

<1;

then (Shp (�h))h provides Lp-approximation of order 
 for all 1 � p � p.

Here, d
e denotes the least integer greater or equal to 
. In x3, using Theorem 2.10
and Theorem 2.11 as well as results from [28], [31], and [20], we will determine exactly the
Lp-approximation order of exponential box splines for 1 � p �1.

3. Exponential Box Splines

Example 3.1. Let � be a multiset of directions in Rdn0 whose span covers all of Rd, and
let � 2 C � . The family of exponential box splines �h, h � 0, is then de�ned by

(3.2) b�h := Y
�2�

!h� ; where !h� (x) :=

Z 1

0

e(h���i��x)t dt:

We will show that for all 1 � p � 1, the Lp-approximation order of (Shp (�h))h is exactly
k0 de�ned by

Kj := f� 2 � : � � j 2Zn0g; j 2Zdn0;

k0 := minf#Kj : j 2Z
dn0g:

For a general reference on box splines, the reader is referred to [6]. Actually, most of
the claim in 3.1 is already known in its essence (i.e. in the sense of 1.1). The case when �
is con�ned to integral directions and � = 0 has been settled in the work of [5]. The works
of [27], [13], and [24] treat the case of integral � and general �. For p = 1, [31] and [28]
have settled the case of general � and � = 0. [8], also working with p = 1, established
the upper bound on the approximation order for general � and general �. They provided
the lower bound in case �0 was su�ciently smooth and the directions in � were rational
(while � is still general). [30] considers rational � and general �. For p = 2, both the lower
bound and the upper bound is established. The lower bound on the approximation order

is established for 2 < p � 1 excepting that in case p = 1 it is required that b�0 2 L1.
[20] established the upper bound on the approximation order for general � and general �
for 1 � p � 1. After completing the work on this example, I learned that Kyriazis [22]
has extended the techniques of [21] to include some non-stationary ladders of PSI spaces.
For 1 < p < 1, he establishes the lower bound for rational � and general � under the

assumption that b�0 2 L1.
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The remainder of this section is devoted to proving the claim in 3.1. Since we are assum-
ing that the directions in � spanRd it follows that �h is a piecewise-exponential polynomial
function supported in �[0 : : 1]m, where m := #� (cf. [27]). Also, as a distribution, �h has
the following representation:Z

Rd

�hf dm =

Z
[0:: 1]m

eh��tf(�t) dt; f 2 C1c :

It was shown in [20] that for all f 2 dC1c n0,
dist

�
f;Shp (�h);Lp

�
6= o(hk

0

) as h! 0;

where Sp(�h) is de�ned in [20]. For 1 � p < 1, Sp(�h) is de�ned to be the closure in
Lp of the �nite linear span of the integer shifts of �h. Consequently, Sp(�h) is contained
in Sp(�h) for 1 � p < 1. For p = 1 it was shown [20; prop.2.2] that S1(�) � S1(�)
whenever � satis�es

(3.3)
X
j2Zd

k�kL1(j+C) <1:

Since �h is bounded and compactly supported, (3.3) holds and we conclude that for all

f 2 dC1c n0 and 1 � p �1,

dist
�
f; Shp (�h);Lp

�
6= o(hk

0

) as h! 0:

Thus we need only concern ourselves with the task of showing that (Shp (�h))h provides
Lp-approximation of order k0 for all 1 � p � 1. Since this task is vacuous when k0 = 0,
we may assume that k0 > 0.

Lemma 3.4.
k�h � �0kL1 � const(d; �;�)h; 8 h 2 [0 : : h0]:

Proof. Since supp�h � �[0 : : 1]m for all h � 0, it su�ces to show that

k�h � �0kL1 � const(d; �;�)h; 8 h 2 [0 : : h0]:

Recall that for any piecewise continuous function g,

kgkL1 = supf

����Z
Rd

gf dm

���� : f 2 C1c ; f � 0 and kfkL1 = 1g:

So let f 2 C1c be such that f � 0 and kfkL1 = 1. Then����Z
Rd

(�h � �0)f dm

���� =
�����
Z
[0:: 1]m

(eh��t � 1)f(�t) dt

�����
� const(d; �)h

Z
[0:: 1]m

f(�t) dt � const(d; �)h k�0kL1 = const(d; �;�)h:
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�

Note that as a consequence of the above lemma, we have that k�hkL1 is bounded

independently of h 2 [0 : : h0].
In order to consider �rst an easier case, assume (for the time being) that k0 = 1. We

will be applying Theorem 2.10 so let p := 1 and 
 := 1. It is known (cf. [31] and [28;
th.2.8]) that

(3.5) kf � �0 �
0
h fkL1 � const(d;�)h kfkW1

1

; 8 f 2W 1
1:

Let  h := �h, h 2 [0 : : h0]. That  h 2 S1(�h) is of course trivial, and since the functions
�h as well as their supports are bounded independently of h 2 [0 : : h0], it follows that
condition (i) of Theorem 2.10 is satis�ed. In order to verify condition (ii), let f 2 C1c .
Then, for 0 < r � h � h0,

kf �  r �
0
h fkL1 � kf � �0 �

0
h fkL1 + k(�0 � �r) �

0
h fkL1

� const(d;�)h kfkW1
1

+ k�0 � �rkL1 kfkL1 ; by (3.5) and Lemma 5.1,

� const(d; �;�)h kfk1 by Lemma 3.4 as r � h:

Thus condition (ii) of Theorem 2.10 is satis�ed with N := 1 and we conclude therefore
that (Shp (�h))h provides Lp-approximation of order k0 = 1 for all 1 � p � 1.

We turn now to the more di�cult case k0 > 1 where we will apply Theorem 2.11 with

 := k0 and p := 1. It follows from (3.2) that there exists � 2 (0 : : �) and h0 2 (0 : : 1],
depending only on (d; �;�), such that

(3.6)

���b�h(x)��� > �; 8 x 2 �C; h 2 [0 : : h0]; and

jh�� � i� � xj < 1 8 x 2 �C; h 2 [0 : : h0]; � 2 �:

In particular, condition (ii) of Theorem 2.11 is satis�ed. Since the functions �h as well as
their supports are bounded independently of h 2 [0 : : h0], condition (i) of Theorem 2.11 is
satis�ed.

In showing that condition (iii) of Theorem 2.11 is satis�ed, we will be following the
approach taken in the Box Spline section of [8]. There, A(�; k0; 1) < 1 was established
only when �0 was su�ciently smooth and � was rational. Later, the su�ciently smooth

aspect was identi�ed [30] as being when b�0 2 L1. The following proposition can be used

to show that b�0 2 L1 whenever k0 > 1.

Proposition 3.7. If k0 > 1, thenX
j2Zdn0

Y
�2�

1

1 + j� � jj
<1:

Proof. cf. x8.

The following lemma and its proof are taken almost directly from [8]. By placing
1+ j� � jj in the denominator of our estimate (instead of j� � jj as in [8] and [30]) we get by
without assuming � to be rational.
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Lemma 3.8. For all j 2Zdn0, h 2 [0 : : h0], and x 2 �C,

��!h� (x + 2�j)
�� � const(d; �;�)

1 + j� � jj

�
1; � 2 �nKj

h+ jxj ; � 2 Kj :

Proof. Fix j 2Zdn0, � 2 �, h 2 [0 : : h0] and x 2 �C. Note that

!h� (x + 2�j) =

8<:
1; if h�� � i� � x = 2�i� � j

eh���i��(x+2�j) � 1

h�� � i� � x� 2�i� � j
; otherwise.

Also, by (3.2) and (3.6),
���!h� (x + 2�j)

��� � e.

Case 1. � 2 �nKj .
If j� � jj � 1, then the Lemma holds with const(d; �;�) � 2e. If on the other hand,

j� � jj > 1, then h�� � i� � x 6= 2�i� � j and hence

��!h� (x + 2�j)
�� � ejh��j + 1

j2�� � jj � 1
�

e+ 1

(2� � 2) j� � jj+ 2 j� � jj � 1

�
e+ 1

(2� � 2) j� � jj+ 1
�

const(d; �;�)

1 + j� � jj
:

Case 2. � 2 Kj .
By (3.6), h�� � i� � x 6= 2�i� � j; hence,

��!h� (x + 2�j)
�� � ��eh���i��x � 1

��
2� j� � jj � 1

�
const(d; �;�)(h + jxj)

(2� � 2) j� � jj+ 1
�

const(d; �;�)(h + jxj)

1 + j� � jj
:

Thus proving the lemma. �

Therefore, by (3.2) and Lemma 3.8,���b�h(x+ 2�j)
��� � const(d; �;�)(h + jxj)#Kj

Y
�2�

1

1 + j� � jj

� const(d; �;�)(hk
0

+ jxjk
0

)
Y
�2�

1

1 + j� � jj
; 8 x 2 �C; j 2Zdn0:

Hence, with Proposition 3.7 in view,

A(�; k0; 1) � const(d; �;�)
X

j2Zdn0

Y
�2�

1

1 + j� � jj
<1:

Thus establishing condition (iii) of Theorem 2.11. Therefore, by Theorem 2.11, (Shp (�h))h
provides Lp-approximation of order k0 for all 1 � p � 1.
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4. The Gauss kernel

Example 4.1. For h 2 (0 : : 1], de�ne �h by

b�h(x) := e��(h)jxj
2=4�2 ; where �(h) := 
 log(e=h)

for some 
 > 0. We will show that the Lp-approximation order of (Shp (�h))h is exactly 

for all 1 � p �1.

That (Shp (�h))h provides Lp-approximation of order 
 (in, say, the sense of (1.1)) is
known for p = 1 and p = 2. For the precise details see [3], [8; th.3.8](p = 1) and [29;
cor.2.35](p = 2). As for the upper bound on the approximation order, it was shown in [20]

that there exists f 2 dC1c n0 such that

dist
�
f;Shp (�h);Lp

�
6= o(h
) as h! 0;

where Sp(�h) is de�ned in [20]. As mentioned in the discussion prior to (3.3), Sp(�h) �
Sp(�h) for all 1 � p � 1 (as (3.3) holds in case p = 1). Hence the Lp-approximation
order of (Shp (�h))h cannot exceed 
.

The task of showing that (Shp (�h))h provides Lp-approximation of order 
 is simpli�ed
by making use of the tensor product nature of �h and by employing the following:

Lemma 4.2. Let fi 2 L1(R), i = 1; 2; : : : ; d, be continuous and de�ne
f(x) := f1(x1)f2(x2) � � � fd(xd), x 2 Rd. Then

kfkL1(Rd ) �
dY
i=1

kfikL1(R) :

Proof. The lemma is clear when d = 1. Proceeding by induction, assume the lemma to be
true for d0 = d� 1 and consider d. Let x 2 Rd. ThenX
j2Zd

jf(x + j)j =
X

k2Zd�1

jf1(x1 + k1)f2(x2 + k2) � � � fd�1(xd�1 + kd�1)j
X
n2Z

jfd(xd + n)j

�

 
d�1Y
i=1

kfikL1(R)

!X
n2Z

jfd(xd + n)j ; by induction hypothesis

�

 
dY
i=1

kfikL1(R)

!
which proves the lemma. �

Let � 2 C1(R) be supported in (�1 : : 1) and be such that � = 1 on [�1=2 : : 1=2]. De�neb�(x) := � (x1)� (x2) � � � � (xd), x 2 Rd. Note that � 2 dC1c , supp b� � 2C, and b� = 1 on C.
Now for j 2Zd,

(4.3)
b�(x)b�r(hx+ 2�j)b�r(hx) =

dY
i=1

� (xi)e
��(r)(hxiji=�+j

2
i ):
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De�ne

a(k) :=





��e��(r)(k2+hk�=�)�_




L1(R)

; k 2Z:

Then

(4.4)

�(r; h) :=
X

j2Zd n0







 b�b�r(h �+2�j)b�r(h �)

!_





L1

�
X

j2Zd n0

dY
i=1

a(ji) by Lemma 4.2 and (4.3)

� d
X
k2Zn0

a(k)
X

j2Zd�1

d�1Y
i=1

a(ji) = d

 X
k2Z

a(k)

!d�1 X
k2Zn0

a(k):

By Lemma 5.2,

(�g)_


L1(R)

� const k�gkW2
1 (R)

� const(� ) kgkW2
1 ([�1::1])

; 8 g 2W 2
1 ([�1 : : 1]):

In particular, for k 2Zn0,

a(k)

const(� )
�



e��(r)(k2+hk�=�)




W2
1 ([�1::1])

=



(1 + �(r)h jkj =� + (�(r)hk=�)2)e��(r)(k

2+hk�=�)




L1([�1:: 1])

� (2 + 1 + �(r)h jkj =�)e��(r)(k
2�hjkj=�):

Hence,

X
k2Zn0

a(k) � const(� )(1 + �(r)h)

1X
k=1

ke��(r)(k
2�hk=�)

= const(� )(1 + �(r)h)e��(r)(1�h=�)
1X
k=1

ke��(r)(k
2�1�h(k�1)=�)

� const(� )(1 + �(r)h)e��(r)(1�h=�)(1 +

1X
k=2

ke��(r)k)

� const(� )(1 + �(r)h)e��(r)(1�h=�); since �(r) � 1:

Combining this with (4.4) yields

�(r; h) � d
�
k�_kL1 + const(� )(1 + �(r)h)e��(r)(1�h=�)

�d�1
const(� )(1+�(r)h)e��(r)(1�h=�) :
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Noting that �(r)e��(r)(1�1=�) is bounded independently of r, we conclude that

(4.5) �(r; h) � const(d; � )(1 + �(r)h)e��(r)(1�h=�) :

Applying elementary di�erential calculus to (4.5), it can be shown that

sup
0<r�h

�(r; h) � const(d; �; 
)h
 ; 8 0 < h � 1:

Therefore, by Theorem 2.3 in conjunction with Proposition 2.8 (2), (Shp (�h))h provides
Lp-approximation of order 
 for all 1 � p �1.

5. Some useful lemmata

In this section we march out a few results which will be useful in proving our main
results. At the outset of the introduction, we mentioned a result of [19]. It can be stated
in slightly more generality as follows:

Lemma 5.1. Let 1 � p � 1 and let � 2 Lp. Then

k� �0h fkLp � k�kLp h
d=p kfk`p(hZd ) ; 8 f 2 `p(hZ

d):

Proof. See [19; th.2.1] for the case h = 1. The general case h > 0 can now be derived from
the fact that kg( �=h)kLp = hd=p kgkLp . �

The following lemma gives an estimate of the Lp norm of a function g in terms of bg for
2 � p � 1.

Lemma 5.2. Let 2 � p � 1 and let q be the exponent conjugate to p (i.e. satisfying
1
p +

1
q = 1). Let m be the least integer satisfying m > d=q. Then

kgkLp � const(d; p) kbgkWm
q (Rd ) ; 8 bg 2Wm

q (Rd):

Proof. Let bg 2Wm
q (Rd). Then

(5.3)

kgkLp �
X
j2Zd

kgkLp(j+C) =
X
j2Zd

(1 + jjj)�m(1 + jjj)m kgkLp(j+C)

�

0@X
j2Zd

(1 + jjj)�mq

1A1=q 



�(1 + jjj)m kgkLp(j+C)

�
j






`p(Zd )

; by H�older's inequality,

� const(d; p)





�k(1 + j�j)mgkLp(j+C)

�
j






`p(Zd )

= const(d; p) k(1 + j�j)mgkLp :

By the Hausdor�-Young theorem (cf. [23; p.142]),

(5.4) kfkLp � const(d)



 bf




Lq
; 8 bf 2 Lq:
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Since (�ix)�f(x) =
�
D� bf�_ (x) it is easy to extend (5.4) to obtain

(5.5) k(1 + j�j)mfkLp � const(d; p)



 bf




Wm
q (Rd )

; 8 bf 2Wm
q (Rd):

The lemma now follows by (5.3) and (5.5). �

The following lemma shows that the `p norm of band-limited functions is dominated by
their Lp norm. Actually, they are equivalent, but we need only this direction here.

Lemma 5.6. For all h > 0 and 1 � p � 1,

hd=p kfk`p(hZd ) � const(d) kfkLp(Rd ) ;

whenever f 2 Lp and supp bf � h�12�C.

Here, we employ the slightly abusive notation

kfk`p(hZd ) :=



fj

hZd





`p(hZd )

:

Proof. It su�ces to prove the lemma for the special case h = 1 since the general case h > 0
can then be obtained by scaling. For a proof when h = 1, see [14; lemma 1]. �

The following lemmata show how the semi-discrete convolution acts in the Fourier trans-
formed domain.

Lemma 5.7. Let � 2 dC1c , and let f be a tempered distribution such that supp bf is com-
pact. Then for all h > 0,

(� �0h f )b= b� (h�) X
j2Zd

bf ( � � 2�j=h):

Proof. It su�ces to prove the lemma for the case h = 1 since the general case h > 0 can

then be obtained by scaling. We prove the lemma �rst for the special case f 2 dC1c . So

assume temporarily that f 2 dC1c . We then have by Poisson's summation formula (cf. [35;
ch.7])
(5.8)X

j2Zd

bf (x � 2�j) =
X
j2Zd

(e�xf)b(2�j) = X
j2Zd

e�x(j)f(j) =
X
j2Zd

f(j)e�j (x); 8 x 2 Rd:

Since � 2 dC1c � L1 and
P

j2Zd jf(j)j <1,

(� �0 f )b(x) = X
j2Zd

f(j) (�( � � j))b(x) = X
j2Zd

f(j)b�(x)e�j (x)
= b�(x)X

j2Zd

bf(x � 2�j); by (5.8),
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and thus proving the Lemma for the special case f 2 dC1c . For the general case, let �n
be a delta-sequence in C1c (e.g. �n := nd�(n�) with � 2 C1c , � � 0 and

R
� = 1). Put

fn := b�nf , n 2 N. Then since fn 2 dC1c , we have that

(� �0 fn)b= b�X
j2Zd

bfn( � � 2�j); n 2 N:

Since supp bf is compact, it follows (cf. [32; th.6.32]) that bfn ! bf in the space of tempered
distributions. Therefore, b�X

j2Zd

bfn( � � 2�j)! b�X
j2Zd

bf ( � � 2�j)

in the space of tempered distributions (as b� 2 C1c implies that sums can be taken over
some �nite subset of Zd). Thus, the lemma will be proved as soon as we show that

(5.9) (� �0 fn)b! (� �0 f)b
in the space of tempered distributions. For that, note that since supp bf is compact, there

exists N 2 Z+ such that jf(x)j = O(jxjN ) as jxj ! 1 (cf. [32; th.6.8, th.7.23]). Hence,

sup
j2Zd

jf(j) � fn(j)j (1 + jjj)�(N+1) ! 0 as n!1:

It now follows from the rapid decay of � 2 dC1c that � �0 fn ! � �0 f in the space of
tempered distributions. Therefore, (5.9) holds (cf. [32; th.7.15]). �

The assumption that � 2 dC1c above is too strong for most purposes. It can be relaxed
provided we further restrict f .

Lemma 5.10. Let � 2 L1. If f 2 L1 and supp bf is compact, then for all h > 0,

kfk`1(hZd ) <1;

(� �0h f )b= b� (h�) X
j2Zd

bf( � � 2�j=h):

Proof. It su�ces to prove the lemma for the case h = 1 since the general case h > 0 can

then be obtained by scaling. Let f 2 L1 be such that bf is of compact support. There

exists a su�ciently large n 2 N such that supp bf � n�2C. Hence, by Lemma 5.6,

n�d kfk`1(n�1Zd ) �M0 kfkL1(Rd ) :

Since Zd � n�1Zd, it follows that kfk`1(Zd ) <1. Hence � �0 f 2 L1 and

(� �0 f )b= b�X
j2Zd

f(j)e�j = b�X
j2Zd

f(�j)ej :

It is now a straight forward matter to complete the proof by verifying that f(�j) is in fact

the jth Fourier coe�cient of the 2�Zd-periodic function
P

j2Zd
bf ( � � 2�j). �
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Lemma 5.11 (Wiener's Lemma). Let f; g 2 L1 be such that supp bf is compact andbg(x) 6= 0 for all x 2 supp bf . Then

 bfbg
!_

2 L1:

Proof. cf. [32; th.11.6].

In the following lemma, a description is given for a multi-level approximation scheme
employing the dilated shifts of a function �. In subsequent theorems, this approximation
scheme will be used except that � will be replaced by a suitable approximation of � drawn
from dilates of S1(�h).

Lemma 5.12. Let 1 � p �1, and let � 2 dC1c and � 2 (0 : : 2�) be such that supp b� � �C
and b� = 1 on 1

2�C. For h 2 (0 : : 1], let n := n(h) be the largest integer for which 2nh � 1.

Let 
 > 0. For f 2 B
;1
p , let ffkgk2Z+ be as in (2.1). Then for all h 2 (0 : : 1]

(1) fk = � �0h2n�k fk; 8 k 2Z+;

(2) (h2n�k)d=p kfkk`p(h2n�kZd ) � const(d) kfkkLp ; 8 k 2Z+;

(3)






f �
nX

k=0

fk







Lp

� h
 kfkB
;1
p (�) :

Proof. Note that supp bfk is compact. Hence, by Lemma 5.7,

(� �0h2n�k fk)b= b��h2n�k�� X
j2Zd

bfk�� � 2�j=(h2n�k)
�
:

By (2.1), supp bfk � supp b��21�k�� � 2k�1"C, 8 k 2 Z+. It is now a straightforward

matter to verify that b��h2n�k�� and bfk�� � 2�j=(h2n�k)
�
have disjoint supports whenever

j 2 Zdn0 and that b��h2n�k�� = 1 on the support of bfk. Therefore,
�
� �0h2n�k fk

�b= bfk
which proves (1). Now,

supp
�
fk
�
h2n�k�

��b� h2n�k2k�1"C � 2�C:

Hence, by Lemma 5.6,

kfkk`p(h2n�kZd )

=


fk�h2n�k��

`p(Zd ) � const(d)



fk�h2n�k��

Lp = const(d)
�
h2n�k

��d=p
kfkkLp :
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Hence (2). In order to verify (3), note that

bf � nX
k=0

bfk
=

 b�(2�) + 1X
k=1

�b��21�k��� b��22�k���! bf � b�(2�) + nX
k=1

�b��21�k��� b��22�k���! bf
= bf 1X

k=n+1

�b��21�k��� b��22�k��� :
Therefore,




f �

nX
k=0

fk







Lp

�
1X

k=n+1

kfkkLp � 2�(n+1)

1X

k=n+1

2k
 kfkkLp � h
 kfkB
;1
p (�) :

�

6. The Proofs of the Main Results

In this section, we prove Theorem 2.3, Proposition 2.8, Theorem 2.10, and Theoerm
2.11. The technique used in proving Theorem 2.3 might well be called approximation
by replacement. In order to approximate f 2 Lp from Shp (�h), we start with a very good
approximation to f written using various dilates of the shifts of a certain function � (i.e. the
scheme described in Lemma 5.12). By replacing each instance of � with an approximation
to � from an appropriate dilate of S1(�h), we then obtain an approximation to f from
Shp (�h) whose closeness to f can be estimated in terms of how well each replacement
actually approximates �. It turns out that these replacements need to approximate � not
in Lp, but rather in Lp. This is because � appears in expressions like � �0 a, a 2 `p,
where the smallness of k � �kLp does not ensure the smallness (relative to kak`p) of

k( � �) �0 akLp . Whereas the smallness of k � �kLp does. Ultimately, the Lp-distance

between � and various dilates of S1(�h) becomes the issue as re
ected in the hypothesis
of the theorem.

Proof of Theorem 2.3. By (2.4) there exists A 2 (0 : :1) such that

(6.1) sup
0<r�h

dist
�
�; Sh1 (�r);Lp

�
< Ah
 8 h 2 (0 : : h0]:

Let 1 � p � p. Since k�kLp � k�kLp , we may assume WLOG that p = p. Also, there is

no loss of generality in assuming that h0 = 1. Let h 2 (0 : : 1] and let n := n(h) be the
largest integer for which h2n � 1. Let 
 > 0 and let f 2 B
;1

p . Let ffkgk2Z+ be as in

(2.1). We proceed now to de�ne our approximation to f from Shp (�h). By (6.1), there
exist gk 2 S1(�h) such that

(6.2)


� � gk(2

n�k�)



Lp

� A 2�
(n�k); 0 � k � n:
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(Note: 2�(n�k) is playing the role of h in (6.1), while h is playing the role of r in (6.1).
(6.2) is a valid application of (6.1) because 0 < h � 2�(n�k) � 1.) Since gk 2 S1(�h), it
follows from the fact that Lp is a Banach space that gk 2 Lp. Note that, by Lemma 5.12,
kfkk`p(h2n�kZd ) <1 and hence

gk(2
n�k�) �0h2n�k fk =

X
j2Zd

fk(h2
n�kj)gk( �=h� 2n�kj) 2 Shp (gk); 0 � k � n:

Since gk 2 S1(�h), it follows that Sp(gk) � Sp(�h). Hence,

sh :=
nX

k=0

gk(2
n�k�) �0h2n�k fk 2 S

h
p (�h):

Now,

(6.3)







nX

k=0

fk � sh







Lp

=







nX
k=0

�
� � gk(2

n�k�)
�
�0h2n�k fk







Lp

; by Lemma 5.12 (1);

�
nX

k=0



� � gk(2
n�k�)




Lp

�
h2n�k

�d=p
kfkk`p(h2n�kZd ) ; by Lemma 5.1;

�
nX

k=0

A 2�
(n�k)const(d) kfkkLp ; by (6.2) and Lemma 5.12 (2);

� const(d)A2�
n
1X
k=0

2k
 kfkkLp � const(d; 
)Ah
 kfkB
;1
p (�) :

Therefore, by (6.3) and Lemma 5.12 (3), we conclude that

dist
�
f; Shp (�h);Lp

�
� kf � shkLp �






f �
nX

k=0

fk







Lp

+







nX

k=0

fk � sh







Lp

� const(d;A; 
)h
 kfkB
;1
p (�) :

�

Proof of Proposition 2.8. Let 0 < r � h � h0. Put bf :=
b�b�r(h�) . Then by Wiener's Lemma

(Lemma 5.11), f 2 L1. Since bf is compactly supported, we have by Lemma 5.10 that
kfk`1(hZd ) <1. Hence �r �0h f 2 S

h
1 (�r) and

(�r �
0
h f)b= b�r(h�)X

j2Zd

b�( � � 2�j=h)b�r(h � �2�j) ; by Lemma 5.10;

= b� + b�r(h�) X
j2Zdn0

b�( � � 2�j=h)b�r(h � �2�j) :
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Thus,

dist
�
�; Sh1 (�r);Lp

�
� k�r �

0
h f � �kLp =








0@b�r(h�) X

j2Zdn0

b�( �+ 2�j=h)b�r(h �+2�j)
1A_







Lp

:

Hence (1). For the sake of proving (2), we may assume WLOG that

(6.4)
X

j2Zd n0







 b�b�r(h �+2�j)b�r(h �)

!_





Lp

<1:

Hence,

X
j2Zdn0







 b�b�r(h �+2�j)b�r(h �)

!_





Lp

=
X

j2Zdn0







 b�r(h�)b�( � � 2�j=h)b�r(h � �2�j)

!_





Lp

�








X

j2Zdn0

 b�r(h�)b�( � � 2�j=h)b�r(h � �2�j)
!_







Lp

=








0@b�r(h�) X

j2Zdn0

b�( � + 2�j=h)b�r(h �+2�j)
1A_







Lp

;

where the �rst inequality and the last equality follow from the �niteness of the second
expression which follows from (6.4) and the �rst equality. Thus (2) follows from (1).

We consider now (3) where it is assumed that 2 � p �1. By Lemma 5.2,






0@b�r(h�) X

j2Zdn0

b�( � + 2�j=h)b�r(h �+2�j)
1A_







Lp

� const(d; p)







b�r(h�)
X

j2Zdn0

b�( �+ 2�j=h)b�r(h �+2�j)







Wm

q
(Rd )

= const(d; p)

0@ X
j2Zd n0






b�r(h�)b�( � + 2�j=h)b�r(h �+2�j)






q

Wm
q
(�C+2�j=h)

1A1=q

; since supp b� � �C;

� const(d; p; �)

0@ X
j2Zdn0






 b�r(h �+2�j)b�r(h �)






q

Wm
q
(�C)

1A1=q

; since b� 2 C1c :

Hence (3) follows from (1). �

Proof of Theorem 2.10. First note that S1( h) � S1(�h) because  h 2 S1(�h). Hence,
 r �0h � 2 S

h
1 (�r), 0 < r � h � h0. Let � 2 C1c be such thatX

j2Zd

�( � + j) = 1:
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Fix 0 < r � h � h0. Then
(6.5)

dist
�
�; Sh1 (�r);Lp

�
� k� �  r �

0
h �kLp

=








X
j2Zd

�( � + j)� �  r �
0
h

0@X
j2Zd

�( � + j)�

1A






Lp

; since � =
X
j2Zd

�( � + j)�;

=








X
j2Zd

(�( � + j)� �  r �
0
h (�( � + j)�))








Lp

�
X
j2Zd

k�( � + j)� �  r �
0
h (�( � + j)�)kLp

�
X
j2Zd

X
k2Zd

k�( �+ j)� �  r �
0
h (�( � + j)�)kLp(k�j+C) :

Let m > 2 be so large that supp� � mC and supp� \ (k + C) = ; whenever jkj � md.
Now,

(6.6)

X
j2Zd

X
jkj<md

k�( �+ j)� �  r �
0
h (�( � + j)�)kLp(k�j+C)

�
X
j2Zd

#fjkj < mdg k�( � + j)� �  r �
0
h (�( � + j)�)kLp

�
X
j2Zd

(2md)dc2 k�( � + j)�kN h
 = const(d; �; �; c2;N)h
 ; by (ii).

And,

(6.7)

X
j2Zd

X
jkj�md

k r �
0
h (�( �+ j)�)kLp(k�j+C)

�
X
j2Zd

X
jkj�md

X
`2Zd

k�(h`+ j)�(h`) r( �=h� `)kL1(k�j+C)

�
X
j2Zd

X
jkj�md

const(d; �)h�d k�(h �+j)�(h�)kL1 k rkL1(h�1(k+(m+1)C)) ;

since �(h`+ j) 6= 0 only if ` 2 h�1(mC � j);

�
X

jkj�md

const(d; �; 
)h�dc1 (1 + jkj=h)�(d+
)
X
j2Zd

k�( � + j)�kL1 ; by (i),

� const(d; �; �; c1; 
)h

:

Therefore, by (6.5), (6.6), and (6.7),

dist
�
�; Sh1 (�r);Lp

�
� const(d; �; �; c1; c2; 
;N)h
 :

�

We make use of the following lemma in the proof of Theorem 2.11.
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Lemma 6.8. Let �h 2 L1, h 2 (0 : : h0]. Assume that there exists 
 2 (0 : :1) such that
for some c; " 2 (0 : :1),

(i) j�h(x)j � c(1 + jxj)�(d+d
e+") ;8 x 2 Rd; h 2 (0 : : h0];

(ii) m := inf
h2(0:: h0]

���b�h(0)��� > 0:

Put N := fj 2 Zd+ : jjj1 < 
g. Then there exists ch 2 `1(Zd) with supp ch � N such that
with  h := �h �0 ch,

(1) kchk`1 � const(d; 
; c; ";m) 8 h 2 (0 : : h0];

(2) (D� b h)(0) = �0� 8 j�j < 
; h 2 (0 : : h0]:

Proof. Put k := d
e and for functions f which are Ck�1 in a neighborhood of 0, let Pk�1f
be the unique polynomial of total degree < k which satis�es (D�Pk�1f)(0) = (D�f)(0)
for all j�j < k. In other words,

Pk�1f :=
X
j�j<k

(D�f)(0)

�!
()�:

Fix h 2 (0 : : h0]. It follows from (i) that b�h 2 Ck(Rd). Put ph := Pk�1b�h and gh :=
Pk�1

�
1
b�h
�
, say ph =

P
j�j<k a�()

� and gh =
P

j�j<k b�()
�. Note that

Pk�1(phgh) = Pk�1

�b�hb�h
�
= 1:

Hence,
P

��� b�a��� = �0�, which allows the b�'s to be solved recursively by:

(6.9) b� = a�10 (�0� �
X
�<�

b�a���):

Now, a�10 = b�h(0)�1 � m�1 by (ii), and it follows from (i) that

ja�j � const(d; 
; c; ") 8 j�j < k:

Hence, by (6.9),

(6.10) jb�j � const(d; 
; c; ";m) 8 j�j < k:

Claim 6.11. The mapping

q 7! Pk�1
X
j2N

q(j)e�j
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is a linear bijection of CN onto �k�1. In particular, it is invertible.

proof. It was shown in [9; cor.3.36] that the mapping

q 7! Pk�1
X
j2N

q(j)e�ij

is a linear bijection of CN onto �k�1. So for each � 2 N , there exists q� 2 CN such that
Pk�1

P
j2N q�(j)e�ij = ()�. Hence,

X
j2N

q�(j)
(j�)n

n!
=

�
0; if 0 � n < k; n 6= j�j ;

()�; if n = j�j :

Therefore, X
j2N

q�(j)
(�ij�)n

n!
=

�
0; if 0 � n < k; n 6= j�j ;

(�i)n()�; if n = j�j :

Or, in other words, Pk�1
P

j2N q(j)e�j = (�i)j�j()� for all � 2 N . Since f()� : � 2 Ng is

a basis of �k�1 (and since dim CN = dim�k�1), the claim is proved.

As a consequence of Claim 6.11, it follows that there exists ch 2 `1(Zd) with supp ch � N
such that

gh = Pk�1
X
�2N

ch(�)e��; and

kchk`1 � const(d; 
) max
j�j<k

jb�j :

Thus, by (6.10), (1) is established. Put  h := � �0 ch. Then, since (�h( � � �))b= b�he��,
it follows that b h = b�hP�2N ch(�)e��. Hence

Pk�1 b h = Pk�1(b�hgh) = Pk�1(phgh) = 1:

Therefore, (2) holds. �

Proof of Theorem 2.11. We will be employing Theorem 2.10. Put k := d
e. Let N , m, ch
and  h be as in Lemma 6.8. Since supp ch � N and in view of Lemma 6.8 (1), it follows
that

(6.12) j h(x)j � const(d; 
; c; ";m)(1 + jxj)�(d+k+"); 8 x 2 Rd; h 2 (0 : : h0]:

In particular, condition (i) of Theorem 2.10 is satis�ed. We now turn toward the task of
showing that condition (ii) of Theorem 2.10 holds. Let N be the least positive integer for
which

sup
f2C1c




j�j2k bf



Wd+1
1 (Rd )

+



(1 + j�jk) bf




Lq

kfkN
<1:



24 MICHAEL J. JOHNSON

Let f 2 C1c , h 2 (0 : : h0] and r 2 (0 : : h]. De�ne fh by bfh := b�(h�) bf . Note that
(6.13) k r �

0
h f � fkLp � k r �

0
h (f � fh)kLp + kfh � fkLp + k r �

0
h fh � fhkLp :

Claim 6.14.

k r �
0
h (f � fh)kLp + kfh � fkLp � const(d; 
; c; ";m; �)h
 kfkN :

proof. By Lemma 5.1,

k r �
0
h (f � fh)kLp � k rkLp h

d=p kf � fhk`p(hZd )

� const(d; 
; c; ";m)hd=p kf � fhk`p(hZd ) ; by (6.12)

� const(d; 
; c; ";m)


(1 + jxj)d+1(f � fh)




L1

:

Since it is also true that kfh � fkLp � const(d)


(1 + jxj)d+1(f � fh)




L1

, in order to prove

the claim, it su�ces to show that

(1 + jxj)d+1(f � fh)



L1

� const(d; 
; �)h
 kfkN :

Now, 

(1 + jxj)d+1(f � fh)



L1

� const(d)



(1 � b�(h�)) bf




Wd+1
1 (Rd )

� const(d; 
)h2k



(1 � b�(h�)) jh�j�2k




Wd+1
1 (Rd )




j�j2k bf



Wd+1
1 (Rd )

� const(d; 
; �)h




j�j2k bf




Wd+1
1 (Rd )

; since b� = 1 on
1

2
�C;

� const(d; 
; �)h
 kfkN :

Hence the claim.

In view of (6.13) and Claim 6.14, condition (ii) of Theorem 2.10 will be satis�ed if we
show that there exists N 2 N such that

(6.15) k r �
0
h fh � fhkLp � const(d; 
; c; ";m; �)h
 kfkN :

By the Hausdor�-Young theorem (cf. [23; p.142])

(6.16)

k r �
0
h fh � fhkLp � const(d) k( r �

0
h fh � fh)bkLq

= const(d)







 b r(h�)
X
j2Zd

bfh( � � 2�j=h)� bfh







Lq

; by Lemma 5.10;

� const(d)



( b r(h�) � 1) bfh




Lq
+ const(d)

0@ X
j2Zdn0




b r(h �+2�j) bfh


q
Lq

1A1=q

;
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since supp bfh � h�1�C. By Lemma 6.8 (2),��� b r(x) � 1
��� � const(d; 
) jxjk




 b r



Wk
1
(�C)

8 x 2 �C:

By (6.12),



b r




Wk
1
(�C)

� const(d; 
; c; ";m). Hence






 b r � 1

j�jk







L1(�C)

� const(d; 
; c; ";m):

Therefore,

(6.17)




( b r(h�) � 1) bfh



Lq

= hk






 b r(h�) � 1

jh�jk
j�jk b�(h�) bf






Lq

� hk






 b r � 1

j�jk







L1(�C)




j�jk bf



Lq
; since supp b� � �C;

� const(d; 
; c; ";m)hk kfkN :

Now, for j 2Zdn0,




 b r(h �+2�j)bfh



Lq

= h







 b r(h �+2�j)h
 + jh�j

(1 + j�j
)b�(h�) bf






Lq(h�1�C)

� h







 b r( � + 2�j)

h
 + j�j








L1(�C)




(1 + j�j
) bf



Lq

� const(d; 
)h







 b r( � + 2�j)

r
 + j�j








L1(�C)

kfkN ; since 0 < r � h;

� const(d; 
; c; ";m)h







 b�r( � + 2�j)

r
 + j�j








L1(�C)

kfkN ;

since b r = b�rP�2N cr(�)e�� and


P

�2N cr(�)e��



L1

� kcrk`1 � const(d; 
; c;m) by

Lemma 6.8 (1). Therefore

(6.18)

0@ X
j2Zdn0




 b r(h �+2�j) bfh


q
Lq

1A1=q

� const(d; 
; c; ";m)h
 kfkN A(�; 
; q):

Hence, by (6.15), (6.16), (6.17), and (6.18), we conclude that condition (ii) of Theorem
2.10 is satis�ed. The proof is now completed by applying Theorem 2.10. �
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7. The Strang-Fix conditions

In this section we address the task of �nding reasonable side conditions under which

it can be proven that if � satis�es the Strang-Fix conditions of order k and b�(0) 6= 0,
then (Sh(�))h provides Lp-approximation of order k. For example, in Theorem 1.4 (by
Jia and Lei) it is proven that under conditions (i) and (ii) of Theorem 1.4, the Strang-Fix
conditions guarantee \controlled" Lp-approximation of order k for all 1 � p � 1. The

problem with the strong decay assumption of condition (i) is that it implies that b� is

globally smooth; whereas in some applications, b� is only smooth away from the origin.

It is thus desirable to �nd side conditions which do not require b� to be smooth near the
origin. This was achieved for p = 2 by de Boor, DeVore, and Ron in [4]. In order to state
their result we introduce the potential spaces

W �
2 := ff 2 L2 : kfkW�

2
:=



(1 + j�j

2
)�=2 bf




L2
<1g; � � 0:

We also need local versions of these spaces. If � is an integer and 
 � R
d is open, then

W �
2 (
) is simply the Sobolev space de�ned in x1. It is fairly easy to see by the Plancherel

Theorem (cf. [32; th.7.9]) that W �
2 (R

d) =W �
2 and that their norms are equivalent. In this

case (� 2Z+), if f
�g� is a collection of disjoint open sets, then with 
 := [�
�X
�

kfk2W�
2 (
�)

= kfk2W�
2 (
)

:

For non-integer �, there are several equivalent ways of de�ningW �
2 (
) (cf. [1; ch.7]) so that

W �
2 (R

d) =W �
2 (with equivalent norms). In this case we have the subadditive property:

(7.1)
X
�

kfk2W�
2 (
�)

� const(d; �; f
�g�) kfk
2
W�
2 (
)

;

whenever, say, f
�g� is a disjoint collection of cubes and 
 := [�
�. We can now state
the relevent result of [4].

Theorem 7.2. Let � 2 L2 and k 2 N. Assume that b� 2 W �
2 (�C + 2�Zdn0) and b� > "

a.e. on �C for some �; " > 0 and � > k + d=2. If � satis�es the Strang-Fix conditions of
order k, then the stationary ladder (Sh(�))h provides L2-approximation of order k.

Proof. cf. [4; th.5.14].

Note that the side condition, b� 2 W �
2 (�C + 2�Zdn0), does not impose any smoothness

on b� near the origin and is implied by a strong decay of � (e.g. condition (i) of Theorem
1.4).

There have been other attempts to give side conditions under which the Strang-Fix

conditions of order k and b�(0) 6= 0 imply Lp-approximation of order k (say, in the sense
of (1.1)). Namely, [8; th.3.5](p =1) and [21; th.3.9(2 � p <1) and th.4.8(1 < p <1)].
When 2 < p � 1, the above mentioned results are successful in that their side conditions
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require no smoothness of b� near the origin, but fall short of the standard established by [4]
in that their side conditions are not implied by a strong decay of �. The side conditions

of [21; th.4.8] require a smoothness (increasing with k) of b� near the origin and are not
implied by a strong decay of �.

We state now the present contributions which derive from Theorem 2.3 in conjunction
with Proposition 2.8 (1).

Theorem 7.3. Let p 2 f1; 2g. Let � 2 Lp and k 2 N be such that b� 2W �
2 ("C + 2�Zdn0)

for some " 2 (0 : : 2�) and � > k+d=2. In case p = 2 assume additionally that b� 2 Cm("C)

where m is the least integer satisfying m > d=2. If b�(0) 6= 0 and � satis�es the Strang-Fix
conditions of order k (1.3), then the stationary ladder (Shp (�))h provides Lp-approximation
of order k for all 1 � p � p.

Note that the case p = 1 is very satisfactory in that the side conditions impose no

smoothness assumption on b� near the origin and they are implied by a strong decay of �
(e.g. condition (i) of Theorem 1.4). However, for the case p = 2, we do impose a (�xed)

smoothness assumption on b� near the origin. Nonetheless, the side conditions are implied
by a su�ciently strong decay of � (e.g. if k > d=2, then condition (i) of Theorem 1.4
su�ces).

Our result for the case 2 < p �1 is as follows.

Theorem 7.4. Let 2 < p � 1 and let q be the exponent conjugate to p (i.e. satisfying
1=p+ 1=q = 1). Let m be the least integer greater than d=q. Let k 2 N and de�ne

� :=

�
k + d; if p =1;

minN \ (k + d=q : :1); if 2 < p <1:

Let � 2 Lp satisfy b� 2 Cm("C) and b� 2W �
q ("C+2�Zdn0) for some " > 0. If b�(0) 6= 0 and

� satis�es the Strang-Fix conditions of order k (1.3), then the stationary ladder (Shp (�))h
provides Lp-approximation of order k for all 1 � p � p.

Note that the side conditions impose a (�xed) smoothness assumption of b� near the
origin, and they are not implied by a strong decay of �.

Proof of Theorem 7.3 and Theorem 7.4. In case p 2 f1; 2g, put q := 2. Assume that �

satis�es the Strang-Fix conditions of order k and b�(0) 6= 0. Then there exists � 2 (0 : : ")

such that b� 6= 0 on all of �C. Let � 2 dC1c satisfy supp b� � �C and b� = 1 on 1
2�C. Then

the hypothesis of Proposition 2.8 is satis�ed and the estimate (1) reduces to

dist
�
�; Sh1 (�);Lp

�
�








0@b�(h�) X

j2Zdn0

b�( �+ 2�j=h)b�(h �+2�j)
1A_







Lp

=: �(h):

In view of Theorem 2.3, in order to prove Theorems 7.3 and 7.4, it su�ces to show that

(7.5) �(h) = O(hk) as h! 0:
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Let � 2 C1c satisfy supp� � �C and � = 1 on supp b�.
Claim 7.6. If p = 1 then

�(h) � const(d; �; �)








0@b�(h�) X

j2Zdn0

�( � + 2�j=h)

1A_






L1

8 h 2 (0 : : 1=2):

proof. Fix h 2 (0 : : 1=2), and de�ne

� :=

 b�b�(h�)
!_

 :=

0@b� X
j2Zdn0

�(h�1( �+ 2�j))

1A_

:

For the purpose of proving this claim, there is no loss of generality in assuming that  2 L1.
Now,

�(h) =








0@b�(h�) X

j2Zdn0

b�( � + 2�j=h)b�(h �+2�j)
1A_







L1

=








0@b�(h�) X

k2Zd n0

�( �+ 2�k=h)
X
j2Zd

b�( �+ 2�j=h)b�(h �+2�j)
1A_







L1

= k �0h �kL1 ; by Lemma 5.10;

� k kL1 h
d k�k`1(hZd ) ; by Lemma 5.1,

� const(d) k kL1 k�kL1 ; by Lemma 5.6;

= const(d)


h�d ( �=h)



L1
k�kL1

= const(d)








0@b�(h�) X

j2Zdn0

�( � + 2�j=h)

1A_






L1







 b�b�(h�)

!_





L1

:

Note that since h 2 (0 : : 1=2),





 b�b�(h�)

!_





L1

=







 b�(h�)b�b�(h�)

!_





L1

� k�kL1







 b�(h�)b�(h�)

!_





L1

= k�kL1







� b�b�
�_






L1

<1 by Wiener's Lemma:
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Therefore,

�(h) � const(d; �) k�kL1







�b�b�

�_





L1








0@b�(h�) X

j2Zdn0

�( � + 2�j=h)

1A_






L1

= const(d; �; �)








0@b�(h�) X

j2Zdn0

�( � + 2�j=h)

1A_






L1

:

Thus proving the claim.

Claim 7.7.

�(h) � const(d; p; �; �; �)



b�(h�)




Wm
q
(�C+h�12�Zdn0)

8 h 2 (0 : : 1=2):

proof. Fix h 2 (0 : : 1=2).

Case 1. p = 1.

By Claim 7.6,

�(h) � const(d; �; �)








0@b�(h�) X

j2Zdn0

�( � + 2�j=h)

1A_






L1

� const(d; �; �)







b�(h�)
X

j2Zd n0

�( �+ 2�j=h)








Wm
2

; by Lemma 5.2;

� const(d; �; �)








X

j2Zdn0

�( � + 2�j=h)








Wm
1




b�(h�)



Wm
2 (�C+h�12�Zdn0)

; since supp� � �C;

= const(d; �; �; �)



b�(h�)




Wm
2 (�C+h�12�Zdn0)

; since � 2 C1c :

Case 2. 2 � p �1.

Recall that in this case we assume that b� 2 Cm(�C). Hence,








X

j2Zdn0

b�( � + 2�j=h)b�(h �+2�j)







Wm
1

=






 b�b�(h�)






Wm
1

� const(d; �; �):
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Thus,

�(h) =








0@b�(h�) X

j2Zdn0

b�( � + 2�j=h)b�(h �+2�j)
1A_







Lp

� const(d; p)







b�(h�)
X

j2Zdn0

b�( �+ 2�j=h)b�(h �+2�j)







Wm

q

; by Lemma 5.2;

� const(d; p)








X

j2Zdn0

b�( � + 2�j=h)b�(h �+2�j)







Wm
1




b�(h�)



Wm

q
(�C+h�12�Zdn0)

� const(d; p; �; �)



b�(h�)




Wm
q
(�C+h�12�Zdn0)

:

Thus completing the proof of the claim.

Therefore, with (7.5) and Claim 7.7 in view, in order to prove the theorems, it su�ces
to show that

(7.8)



b�(h�)




Wm
q
(�C+h�12�Zdn0)

= O(hk) as h! 0:

Following [4], note that since � � k + d=q, with equality only if q = 1, it follows by the
Sobolev imbedding theorem (cf. [1; p.97,217]) that W �

q (�C) is continuously imbedded in

Ck(�C) (the latter being taken as a closed subspace ofW k
1(�C)). Hence, since b�( �+2�j) 2

W �
q (�C) we have

b�( �+ 2�j) 2 Ck(�C), 8 j 2Zdn0, and
(7.9)

max
j�j�k




(D� b�)( � + 2�j)




L1(�C)

� const(d; �; k; �)



b�( �+ 2�j)





W�

q
(�C)

; 8 j 2Zdn0:

Thus the Strang-Fix conditions of order k are meaningful and as a consequence of their
being satis�ed we have

(7.10)

���(D� b�)(x + 2�j)
��� � const(d; k) jxjk�j�j max

j�j=k




(D� b�)( � + 2�j)




L1(�C)

� const(d; �; k; �) jxjk�j�j



b�( � + 2�j)





W�

q
(�C)

8 x 2 �C; j 2Zdn0; j�j � k;

where the last inequality follows from (7.9).

Claim 7.11.


b�(h�)



Wm

q
(�C+h�12�j)

� const(d; p; �; k; �)hk



b�




W�

q
(�C+2�j)

8 h 2 (0 : : 1=2); j 2Zdn0:
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proof. Let j 2Zdn0, h 2 (0 : : 1=2). Then


b�(h�)



Wm

q
(�C+h�12�j)

=



b�(h �+2�j)




Wm
q
(�C)

=

0@ X
j�j�m




D�(b�(h �+2�j))


q
Lq(�C)

1A1=q

=

0@ X
j�j�m

hj�jq



(D�b�)(h �+2�j)


q

Lq(�C)

1A1=q

:

Hence, in order to prove the claim, it su�ces to show that

(7.12) hj�j



(D�b�)(h �+2�j)




Lq(�C)
� const(d; p; �; k; �)hk




b�



W�

q
(�C+2�j)

;

for all j�j � m. For that, let j�j � m.

Case 1. j�j � k.
Applying (7.10) to the left side of (7.12) yields

hj�j



(D�b�)(h �+2�j)




Lq (�C)
� hj�jconst(d; �; k; �)hk�j�j




b�( � + 2�j)




W�

q
(�C)




j�jk�j�j



Lq(�C)

� const(d; p; �; k; �)hk



b�




W�

q
(�C+2�j)

:

Therefore, (7.12) holds.

Case 2. j�j > k.

Assume without loss of generality that � < k + d=q + 1. Put q :=
d

j�j � k
. Note that

1 >q �
d

m� k
�

d

d=q + 1� k
�

d

d=q
= q;

q =
d

j�j � k
�

d

j�j � (�� d=q)
=

dq

d� (�� j�j)q
;

�� d=q + d=q = �� d=q + j�j � k � j�j ;

� � j�j with equality only if q = q:

Hence, by the Sobolev imbedding theorem (cf. [1; p.97,218]), W �
q (�C) is continuously

imbedded in W
j�j
q (�C). In particular,

(7.13) kD�gkLq(�C) � const(d; p; �; k; �) kgkW�

q
(�C) ; 8 g 2W �

q (�C):
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Put r = q=q and let r0 denote the conjugate exponent of r (i.e. satisfying 1
r +

1
r0 = 1).

Then, �
hj�j




(D� b�)(h �+2�j)



Lq(�C)

�q
= hj�jq

Z
�C

���(D� b�)(hx + 2�j)
���q dx

= hj�jq�d
Z
h�C

���(D� b�)(x + 2�j)
���q dx

� hj�jq�d




���(D�b�)( � + 2�j)

���q




Lr(h�C)

k1kLr0 (h�C) ; by H�older's ineq.,

= hj�jq�d



(D� b�)( � + 2�j)




q
Lq(h�C)

(h�)d=r
0

� const(d; p; �; k; �)hj�jq�d+d=r
0




(D� b�)( � + 2�j)



q
Lq(�C)

� const(d; p; �; k; �)hj�jq�d+d=r
0




b�( �+ 2�j)



q
W�

q
(�C)

by (7.13);

= const(d; p; �; k; �)hkq



b�


q

W�

q
(�C+2�j)

:

Therefore, (7.12) holds. Hence the claim.

Now, 


b�(h�)


q
Wm

q
(�C+h�12�Zdn0)

=
X

j2Zdn0




b�(h�)


q
Wm

q
(�C+h�12�j)

� const(d; p; �; k; �)hkq
X

j2Zdn0




b�


q
W�

q
(�C+2�j)

; by Claim 7.11;

� const(d; p; �; k; �)hkq



b�


q

W�

q
(�C+2�Zdn0)

;

which, in view of (7.8), proves the theorems. �

8. Proof of Proposition 3.7

The notation used in the following lemma is of course a silly abstraction of the hypothesis
of Theorem 3.7; it serves simply to disarm the usual d-tuple representation of Rd which,
in the present situation, only gets in the way.

Lemma 8.1. Let X be a d dimensional Hilbert Space over R. Let � be a �nite multiset
of linear functionals de�ned on X, and suppose that

(8.2) #f� 2 � : � � x 6= 0g � 2; 8x 2 Xn0:

Then there exists " 2 (0 : : 1) such thatZ
X

Y
�2�

1

1 + j� � xj1�"
dmd(x) <1;
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where md is d dimensional Lesbegue measure on X.

Proof. For " 2 (0 : : 1) de�ne

f"(x; �) :=
Y
�2�

1

1 + j� � xj1�"
; x 2 X:

The lemma is true when d = 1 because in that case,Z
X

f1=4(x; �)dm1(x) � const(�)

Z 1

0

dt

1 + t3=2
<1:

Prodeeding by induction, assume the lemma is true whenever 1 � d � d0. Consider
d = d0 + 1. WLOG we may assume that 0 62 �. We de�ne the following two sets

H := f� ?: � 2 �g;

X0 := fx 2 X : � � x 6= 0 for all � 2 �g:

Note that H is a �nite collection of hyperplanes and X0 = Xn
S
H . Hence md(XnX0) = 0.

Now X0 can be partitioned into �nitely many open cells via the equivalence relation:

(8.3) x � y if (� � x)(� � y) > 0 8� 2 �:

Let 
 be the collection of these cells. Since #
 < 1, in order to prove the lemma, it
su�ces to show that for all 
 2 
 there exists " 2 (0 : : 1) such that

(8.4)

Z



f"(x; �) dmd(x) <1:

So let 
 2 
. Fix � 2 
.

Claim 8.5.

 �

[
H2H

[
t>0

(t� + (@
 \H)) :

proof. Let x 2 
. Since � 2 
 and with (8.3) in view, it follows that for each � 2 �, there
exists t� > 0 such that � � (x � t�� ) = 0. Letting t := min�2� t�, it is easy to see that
x � t� 2 @
 \H for some H 2 H . Thus proving the claim.

Since #H < 1 and with (8.4) and Claim 8.5 in view, in order to prove the lemma, it
su�ces to show that for all H 2 H there exists " 2 (0 : : 1) such that

(8.6)

Z
S
t>0 t�+(@
\H)

f"(x; �) dmd(x) <1:

Let H 2 H . Note that H is a d� 1 dimensional Hilbert space and that

#f� 2 � : � � x 6= 0g � 2; 8x 2 Hn0:
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Therefore by the induction hypothesis, there exists " 2 (0 : : 1=3) such that

(8.7)

Z
H

f3"(x; �) dmd�1(x) <1:

Since X = H
L

spanf�g, it follows by Fubini's Theorem that
(8.8)Z

S
t>0 t�+(@
\H)

f"(x; �) dmd(x) � const(H; � )

Z 1

0

Z
t�+(@
\H)

f"(x; �) dmd�1(x) dt

= const(H; � )

Z 1

0

Z
@
\H

f"(x + t� ; �) dmd�1(x) dt:

Note that if x 2 @
, then (� � x)(� � � ) � 0 for all � 2 �. Hence,

(8.9) j� � (x + t� )j = j� � xj+ j� � t� j ; 8x 2 @
; t � 0; � 2 �:

By (8.2) and the de�nition of H , there exist �0; �1 2 �, distinct in the multiset sense, such
that �0 ?= H and �1 � � 6= 0.

We wish now to use the following inequality which can be derived simply by considering
separately the cases s+ t � 1 and s+ t < 1. If �; � � 0, then

(8.10)
1

1 + (s+ t)�+�
�

3

(1 + s�)(1 + t�)
; 8 s; t � 0:

We will apply this inequality with � = 2" and � = 1�3" which is valid since " 2 (0 : : 1=3).
Now, for t > 0 and x 2 @
 \H,

f"(t� + x; �) =
Y
�2�

1

1 + (j� � t� j+ j� � xj)1�"
; by (8.9);

=
1

1 + j�0 � t� j
1�"

Y
�2�n�0

1

1 + (j� � t� j+ j� � xj)1�"
; since �0 � x = 0;

�
1

1 + j�0 � t� j
1�"

Y
�2�n�0

3

(1 + j� � t� j2")(1 + j� � xj1�3")
; by (8.10);

�
1

(1 + j�0 � t� j
1�")(1 + j�1 � t� j

2")

Y
�2�n�0

3

1 + j� � xj1�3"

=
1=3

(1 + j�0 � t� j
1�")(1 + j�1 � t� j

2")

Y
�2�

3

1 + j� � xj1�3"
; since �0 � x = 0;

� const(�; �; �0; �1)
1

1 + t1+"
f3"(x; �):

Therefore,Z 1

0

Z
@
\H

f"(t� + x; �) dmd�1(x) dt

� const(�; �; �0; �1)

Z 1

0

1

1 + t1+"

Z
@
\H

f3"(x; �) dmd�1(x) dt <1; by (8.7):

Thus, in view of (8.8) and (8.6), the lemma is proved. �
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Lemma 8.11. For all x 2 Rd,

inffjnx� jj : n 2 N and j 2Zdg = 0:

Proof. For x 2 Rd, let C(x) be the unique element of [�1=2 : : 1=2)d such that x�C(x) 2Zd.
Note that

jC(x)j = inffjx � jj : j 2Zdg; 8x 2 Rd:

Fix x 2 R
d and let " > 0. Since C(nx) 2 [�1=2 : : 1=2]d for all n 2 N, there exists

y 2 [�1=2 : : 1=2]d and m;n 2 N with m < n such that

jC(mx)� yj+ jC(nx) � yj < ":

Hence,

jC((n�m)x)j � jC(mx)� C(nx)j � jC(mx)� yj+ jC(nx)� yj < ":

�

Proof of Proposition 3.7. Assume k0(�) � 2. Put R := max�2� j�j and � := 1
2R

. We will
show �rst of all that

(8.12) #f� 2 � : � � x 6= 0g � 2; 8x 2 Rdn0:

Let x 2 Rdn0. By Lemma 8.11, there exists n 2 N and j 2 Zdn0 such that jnx� jj < �.
Now if � 2 Kj , then j� � jj � 1. Hence,

j� � nxj � j� � jj � j� � (nx � j)j

� 1� j�j jnx � jj � 1=2:

Therefore,
#f� 2 � : � � x 6= 0g � #Kj � 2:

Hence, (8.12). Therefore by Lemma 8.1,

(8.13)

Z
Rd

Y
�2�

dx

1 + j� � xj
<1:

Now, if j 2Zdn0 and x 2 j + �B, thenY
�2�

1

1 + j� � jj
�
Y
�2�

1

1 + j� � xj � j� � (x � j)j

�
Y
�2�

1

1=2 + j� � xj
�
Y
�2�

2

1 + j� � xj
:

Therefore, X
j2Zdn0

Y
�2�

1

1 + j� � jj
�

1

md(�B)

X
j2Zdn0

Z
j+�B

Y
�2�

2

1 + j� � xj
dx

� const(d; �;�)

Z
Rd

Y
�2�

1

1 + j� � xj
dx <1 by (8.13):

�
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