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Abstract. In [BV93], Bezhaev and Vasilenko characterize the \mixed interpolating-smoothing
spline" in the abstract setting of a Hilbert space. In this paper, we derive a characterization under
slightly more general conditions. This is specialized to the �nite-dimensional case, where, in particu-
lar, we show that the �-spline (a piecewise polynomial alternative to splines in \tension", see [N74])
is a special case of the mixed interpolating-smoothing spline, a limiting case of smoothing splines
as certain weights increase to in�nity, and a limiting case of near-interpolants ([K99a]) as certain
tolerances decrease to zero.
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1. Introduction

Let X, Y , Z1 and Z2 be Hilbert spaces with inner products h ; i
X
, h ; i

Y
, h ; i

Z1
and h ; i

Z2
,

respectively, and let T : X �! Y , �1 : X �! Z1, �2 : X �! Z2 and � : Z2 �! Z2 be bounded
linear maps. For z1 2 Z1, z2 2 Z2 and � > 0, the mixed interpolating-smoothing spline is a
solution to the problem

(1:1) minimize
f2��1

1 fz1g
kTfk2

Y
+ � k�(�2f � z2)k2

Z2
;

as de�ned in [BV93] but when � is the identity map on Z2 and � is replaced by 1=�. In particular,
(1.1) reduces to spline interpolation when Z2 = ;, and to smoothing when Z1 = ;.

The solutions to (1.1) (when � is the identity map) are characterized in [BV93] by the method
of Lagrange multipliers. For this, it is observed that the solutions to (1.1) correspond to stationary
points of the \Lagrangian" functional

L(f; v) := 1

2
kTfk2

Y
+

1

2
� k�(�2f � z2)k2

Z2
+ hv;�1f � z1iZ1

for some \Lagrange multiplier" v 2 Z2, and are identi�ed by setting the partial derivatives of L with
respect to f and v to zero. In the present paper, the solutions to (1.1) are characterized by the theory
of best approximation in a Hilbert space, an application of the projection theorem, as done for the
separate problems of pure smoothing and pure interpolation in [A92] (following his earlier work in the
1960's), [AL68], [BV93] and [dB98]. This abstract characterization is re�ned by specializing (1.1) to
the case that Z1 and Z2 are �nite-dimensional, and further re�ned when the splines are represented
in a certain \dual" basis.

We then apply the abstract results to problems of the form

(1:2) minimize
f(j�1)(ti)=zij

(i;j)2�

Z 1

0

jf (m)(s)j2 d s +
X

(i;j)62�

wij jf (j�1)(ti)� zij j2

for some subset � of n � m and for non-negative weights wij . The solutions here are polynomial
splines. Problem (1.2) reduces to the problem of best interpolation when � = n � m, and to the
problem of smoothing when � = ;. This generalizes the standard problem of smoothing studied in
[So64], [R67], [R71], [dB78], [W90], [D93] and [dB98], for example, to include the \Hermite-type"
functionals f 7�! f (j�1)(ti) and possibly zero weights (the reciprocal of the weights appear in the
characterizations given in those papers that include the weights).

A third instance of (1.2) is when � = f(i; 1)g and zij = 0 for j > 1, in which case the solutions to
(1.2) are �-splines, as de�ned in [N74] (when m = 2). In this case, the weights wij for j > 1 are the
so-called \tension" parameters. Moreover, by letting some of the weights go to 1 in the problem of
pure smoothing, we show that �-splines are a special limiting case of smoothing splines. As shown
in [K99b], the problem

(1:3) minimize
� Z 1

0

jf (m)(s)j2 d s : jf (j�1)(ti)� zij j � "ij ; i=1:n; j=1:m
	

2



of \near-interpolation" ([K99a]) yields the same solutions as the problem of smoothing for certain
weights wij that depend on the tolerances "ij , and vice-versa (here, zero weights correspond to
inactive constraints). As a consequence, we also verify here that the �-spline is a limiting case of
near-interpolation when "ij �! 0 for some ij.

As a �nal example, we will apply the theory to the problem

minimize
f(j�1)(ti)=zij

(i;j)2�

Z 1

0

jf 00(s) + �f 0(s)j2 d s +
X

(i;j)62�

wij jf (j�1)(ti)� zij j2;

the solutions of which are \splines in tension" (with smoothing), generalized here to include the
Hermite-type functionals. The solutions here are piecewise exponentials, in contrast to the previous
examples where the solutions are piecewise polynomial. Although not discussed in this paper, thin
plate splines and thin plate splines in tension are also special cases of (1.1).

2. Hilbert space structure and additional notation

To characterize the mixed interpolating-smoothing spline, (1.1) is reformulated as a problem of
best approximation in the Hilbert space

H := Y � Z2

with inner product

h ; i
H
:= h ; i

Y
+ � h ; i

Z2
:

With

e : X �! H : f 7�! (Tf; ��2f);

problem (1.1) can be restated

(2:1) minimize
f2��1

1 fz1g
ke(f)� (0; �z2)k2

H
:

The setup is illustrated in Figure 2.2.

��11 fz1g � X

�2

Z2

Y

H = Y � Z2

T

e

Figure 2.2. Hilbert space structure.
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In addition to the notation above, let Z := Z1 � Z2 and � : X �! Z : f 7�! (�1f ; �2f) (with
\;" indicating a column vector, i.e., a row map). Let T � : Y �! X and �� : Z �! X denote the
usual adjoint maps (with identi�cations Z � Z� and X � X�). To keep the notation below precise,
let Iii be the identity map on Zi, 0i the zero element of Zi, and 0ij the zero map from Zi to Zj ,
i = 1; 2 and j = 1; 2, and let 0X be the zero element of X, 0Y the zero element of Y , and 0 2 IR.

3. Characterizations

The characterizations (and existence) of solutions to (1.1), as stated below, are based on the
observation that � is a solution i� e(�) is a best approximation to (0Y ; �z2) from e(��11 fz1g). In
the Hilbert space H, and assuming that e(��11 fz1g) is closed, this is the case i� e(�) � (0Y ; �z2)
is orthogonal to e(��11 fz1g) (a consequence of the \projection theorem" for closed convex sets in
Hilbert spaces).

Theorem 3.1. Solutions to (1.1) exist when z1 2 ran�1, and they are unique if kerT \ ker �1 \
ker(��2) = f0Xg.

Proof: Since z1 2 ran�1 and �1 is bounded, ��11 fz1g is a nonempty closed and aÆne
subspace of X, which, under the bounded linear map e, e(��11 fz1g) becomes a closed and aÆne
subset of H. Indeed, ��11 fz1g is closed since �1 is bounded, and e is bounded since T and ��2

are bounded. Therefore, there exists a unique element (y; z) 2 e(��11 fz1g) of minimal distance to
(0Y ; �z2) 2 H, and any � 2 ��11 fz1g such that e(�) = (y; z) solves (1.1). This establishes existence.

Assume that �1 and �2 are solutions to (1.1). Then e(�1)=e(�2)=(y; z) and �1�1=�1�2, imply-
ing that (�1��2) 2 kerT \ker �1\ker(��2), and so �1 = �2 when kerT \ker �1\ker(��2) = f0Xg.

Proposition 3.2. Let � 2 X. Then � is a solution to (1.1) i�

(3:3)

�
�1 011

(T �T + � (��2)
���2) ��1

� �
�
v

�
=

�
z1

� (��2)
��z2

�

for some v 2 Z1.

Proof: Note �rst that �1� = z1 when (3.3) holds, implying that z1 2 ran�1, which, by
Theorem 3.1, implies existence. As stated above, � solves (1.1) i� e(�) is a best approximation to
(0Y ; �z2) from e(��11 fz1g), which holds i�

e(�)� (0Y ; �z2) ? e(��11 fz1g);

i�
he(�)� (0Y ; �z2); e(�)� e(f)i

H
= 0

for all f 2 ��11 fz1g; and, since ��11 fz1g is parallel to ker�1, i�

he(�)� (0Y ; �z2); e(f)iH = 0
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for all f 2 ker �1, i.e.,
hT�; Tfi

Y
+ � h�(�2� � z2); ��2fiZ2

= 0:

On passing to the adjoint maps,

hT �T�; fi
X
+ � h(��2)

��(�2� � z2); fiX = 0

for all f 2 ker �1. Therefore,

T �T� + � (��2)
��(�2� � z2) 2 (ker�1)

? = ran ��1

(the last equality since X and Z are Banach spaces and �1 is bounded, by [R91: Theorem 4.12]),
and so

T �T� + � (��2)
��(�2� � z2) + ��1v = 0X

for some v 2 Z1. This, along with the interpolatory condition �1� = z1, establishes (3.3).

Equation (3.3) is identical to Equation (1.10) in [BV93] when � = I2.

Corollary 3.4. If � solves (1.1), then T �T� 2 ran��. If also

h ; i
X
: (f; g) 7�! hTf; Tgi

Y
+ hf; gikerT

with h ; ikerT the inner product on kerT , then � 2 kerT + ran��.

Proof: For the �rst result, it follows by (3.3) that

T �T� = ����2���(�2� � z2)� ��1v;

implying that T �T� is in the range of ��.

For the second result, let � =: p+ h in the orthogonal sum decomposition (kerT )� (kerT )? of
X. Then,

hT �Th; �i
X
= hTh; T �i

Y
= hh; �ikerT + hTh; T �i

Y
= hh; �i

X
;

and so T �T is the identity map on (kerT )?. Therefore,

ran�� 3 T �T� = T �T (h+ p) = T �Th = h;

and so � = p+ h 2 kerT + ran��.

We will now assume that the map � is onto with a �nite dimensional range Z. In this case, ��

is 1-1 (as stated in the proof below), and the map

(3:5) 	 := (���)�1�T �T : X �! Z

is well-de�ned. We decompose this map as follows:

	 =: (	1; 	2) : X �! Z1 � Z2 : f 7�! (	1f ; 	2f):

(the map ��(���)�1� is the projector for spline interpolation restricted to (kerT )?, as shown in
[BV93: equation (1.47)].)
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Proposition 3.6. Let � 2 X. Assume that � : X �! Z is onto, and that Z is �nite-dimensional.
Then, � solves (1.1) i� �1� = z1 and

(3:7) (	2 + � ����2)� = � ���z2;

with 	 as de�ned in (3.5). Moreover, v = �	1� (with v as in (3.3)).

Proof: Since � : X �! Z is onto and Z is �nite-dimensional, the map �� : Z �! X is 1-1.
Therefore, the map ��� is invertible. By (3.3),

T �T� + � (��2)
���2� + ��1v = � (��2)

��z2:

Equivalently,

T �T� + ���
�

01
����2�

�
+ ��

�
v
02

�
= ���

�
01

���z2

�
:

On multiplying through by (���)�1�, and with 	 = (	1; 	2) as de�ned in (3.5), this reduces to

�
	1�
	2�

�
+ �

�
01

����2�

�
+

�
v
02

�
= �

�
01

���z2

�
:

This equation, along with the interpolation condition �1� = z1, establish (3.7).

Proposition 3.8. Assume the hypotheses of Corollary 3.4 and Proposition 3.6, and that kerT �
ran��. Let V = (V1; V2) be the basis(-map) for ran�� that is dual to �. Then, � solves (1.1) i�
� = V � = V1�1 + V2�2 for some � 2 Z such that �1 = z1 and

(3:9) (	2V2 + ����)�2 = ����z2 �	2V1z1:

In this case, v = �	1V � (with v as in (3.3)).

Proof: By Corollary 3.4, � 2 kerT + ran��, and since kerT � ran��, then � 2 ran��.
Since V is dual to �,

�1� = �1V � = �1(V1�1 + V2�2) = �1;

and likewise �2� = �2. By Proposition 3.6 it follows that �1� = z1 = �1, v = �	1� = �	1V �, and

	2(V1z1 + V2�2) + �����2 = ����z2;

which is equivalent to (3.9).

Note that the smoothing and interpolating parts of the characterizations in Propositions 3.6 and
3.8 are disjoint. As a consequence, v does not need to be calculated.
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4. Piecewise polynomial splines and splines in tension

Let m; n 2 ZZ+, and let � be a subset of n�m with complement �c. Let

X := L
(m)
2 ([0: :1]�! IR);

Y := L2([0: :1]�! IR);

Z = Z1 � Z2 := IR�� IR�c = IRm�n;

T : X �! Y : f 7�! Dmf := f (m);

with X the Sobolev space of functions f : [0: :1] �! IR such that f (m) is in the Lebesgue space Y ,
and with inner products

(4:1) hf; gi
X
:=

mX
j=1

f (j�1)(0) � g(j�1)(0)
| {z }

hf; gi
kerT

+

Z 1

0

Tf(s) � Tg(s) d s
| {z }

hTf; Tgi
Y

and
h�; �i

Z2
:=

X
(i;j)2�c

�ij�ij :

In particular, h ; i
Y
is a semi-norm on X, and the map T is bounded. Let t = (ti) be a sequence of

data sites such that 0=t1<t2< � � �<tn=1, and let

(4:2)
�1 : X �! Z1 : f 7�! (f (j�1)(ti) : (i; j) 2 �);

�2 : X �! Z2 : f 7�! (f (j�1)(ti) : (i; j) 2 �c):

Since ti < ti+1 for i=1:n�1, the map � : X �! Z is onto. Finally, let

� : Z2 �! Z2 : a 7�! (
p
wij aij : (i; j) 2 �c)

for weights wij � 0. Then, the map � corresponds to a diagonal matrix, and so �� = �. Let
W2 := ��� = �2. Problem (1.1) then reduces to the problem

(4:3) minimize
f(j�1)(ti)=zij

(i;j)2�

Z 1

0

jf (m)(s)j2 d s +
X

(i;j) 62�

wij jf (j�1)(ti)� zij j2:

It is a standard result that ran�� = $2m;t, the space of piecewise polynomials on [0: :1] of
order 2m and with m� 1 continuous derivatives at the \breakpoints" ti (as discussed in [K99a], for
example). In particular, kerT � ran��, and so by Corollary 3.4 solutions are in ran��. Let

jmpti : f 7�! lim
u#ti

f(u)� lim
u"ti

f(u);

with f (j�1)(0�) := 0 =: f (j�1)(1+) for j=1:m.
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Lemma 4.4 ([K99a: Lemma 5.3]). Let f 2 ran��. Then

	f = (���)�1�T �Tf = ((�1)m+j�1jmptif
(2m�j) : i=1:n; j=1:m):

Proof: In [K99a] it was shown by integration by parts that

hTf; Tgi
Z2

=
nX
i=1

mX
j=1

(�1)m�j+1 (jmptif
(2m�j)) � g(j�1)(ti) =: hjmptf;�giZ2

for all g 2 X. On passing to the adjoints, T �Tf = ��jmptf . Since � maps X onto the �nite-
dimensional space Z, then �� is 1-1, and so ��� is invertible. Hence, on multiplying through by
(���)�1�, we have that (���)�1�T �Tf = jmptf . That is, jmpt is the map 	 de�ned in (3.5).

By (3.7)

(4:5) 	2� = ��W2(�2� � z2);

or, with � = V � with V the basis(-map) for ran�� that is dual to �, it follows by (3.9) that

(4:6) (	2V2 + �W2)�2 = �W2z2 �	2V1z1:

In particular,

(4:7) jmpti�
(2m�j) = (�1)m+j�wij(�

(j�1)(ti)� zij)

when (i; j) 62 �. Here, this dual basis V is the \piecewise Hermite" basis for $2m;t.

Example 4.8 (best interpolation). wij = 0 for (i; j) 2 �c.

In this case, (1.1) reduces to the problem

minimize
f2��1

1 fz1g

Z 1

0

jf (m)(s)j2 d s;

and � = V � solves (1.1) i� �1 = �1� = z1 and 	2V � = 	2� = 0: That is, � is characterized by the
equations �(j�1)(ti) = zij if (i; j) 2 � and jmpti�

(2m�j) = 0 if (i; j) 2 �c.

Example 4.9 (smoothing). Z2 = Z.

Problem (1.1) reduces to

minimize
f2X

Z 1

0

jf (m)(s)j2 d s + �
nX
i=1

mX
j=1

wij jf (j�1)(ti)� zij j2:

By (3.9),
(	V + �W2)� = �W2z:

This reduces to the standard problem of smoothing (as in [R71], for example) when wij = 0 for
j > 1 and wij > 0 for j = 1. In particular, there is no diÆculty with zero weights in this formu-
lation, unlike the standard characterizations given in the literature that involve the inverse of the
weights. Moreover, with the derivative functionals, this generalizes the usual problem of smoothing
to \Hermite smoothing".
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Example 4.10 (the �-spline). Z1 = (zij : j = 1) and Z2 = (zij = 0 : j > 1), and � = 1.

Problem (1.1) reduces to

minimize
f(ti)=zi1

Z 1

0

jf (m)(s)j2 d s +
nX
i=1

mX
j=2

wij jf (j�1)(ti)j2:

The solutions to this problem are �-splines (see [N74]), generalized here to m > 2. The weights wij

for j > 1 are termed \tension parameters". In particular, by (4.7),

jmpti�
(2m�j) = (�1)m+j�wij(�

(j�1)(ti)� zij)

for j > 1, which generalizes the property

�00(t+i )� �00(t�i ) = �i �
0(ti)

for �-splines given in [N74] for m = 2, where here �i = wi2. Hence, �-splines are a special case of
mixed splines.

Example 4.11 (limits of smoothing splines and the �-spline). Z2 = Z and wij �! 1 for
some ij.

As in Example 4.9,
(	V + �W2)� = �W2z:

Assume that W1 consists of those wij such that wij �! 1, and that �i, Zi, Wi, etc., are de�ned
similarly. Then,

	1V �+ �W1�1 = �W1z1;

	2V �+ �W2�2 = �W2z2:

On replacing the �rst of these equations by

W�1
1 (	1V �) + ��1 = � z1;

and passing to the limit wij �!1 for wij in W1, the limiting case of the �rst equation is

��1 = � z1;

i.e., �1 = z1 when � > 0. Indeed, since � := V � solves (4.3) for �xed w, then

wij j�ij � zij j2 � kT�k2
Y
+
X
i;j

wij j�ij � zij j2 � kTfk2
Y

with f the interpolating spline, and so wij j�ij � zij j2 is bounded, and j�ij � zij j �! 0 as wij �!1.
Hence, smoothing splines converge to mixed interpolating-smoothing splines when wij �! 1 for
some ij. In particular, when wij �!1 for j = 1 and zij = 0 for j > 1, the corresponding smoothing
splines converge to a �-spline.

This convergence is illustrated in Figure 4.12 (a) and (b). Since the e�ect of the tension pa-
rameter in the �-spline is particularly striking for curves, we prescribe the data zij in IR2, and solve
the above linear systems with 2 right hand sides. In this case, the functions f are vector-valued
maps f : [0: :1] �! IR2. In each of the sequences in Figure 4.12, the weights wi1 range from 50 to
31; 250 (� 1), while wi2 is set to 20 and 400, respectively. Moreover, zi2 = 0 for all i, and so for
large wi1, the weights wi2 are close to the tension parameters of the corresponding �-splines. The
sharper corners (smaller tangent vectors) in (b) correspond to the larger tension parameters. To
obtain the C1 periodic curves, we let �1 : f 7�! (f(tn)� f(t1); f

0(tn)� f 0(t1)), zn1=zn2=(0; 0), and
�2 : f 7�! (f (j�1)(ti) : i=1:n�1; j = 1; 2).
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(a) wi2 = 20 (b) wi2 = 400

Figure 4.12. Convergence of smoothing splines to a �-spline.

Example 4.13 (limits of near-interpolants and the �-spline). Z2 = Z and "ij �! 0 for some
ij.

As stated in (1.3), near-interpolants solve the problem

minimize
� Z 1

0

jf (m)(s)j2 d s : jf (j�1)(ti)� zij j � "ij ; i=1:n; j=1:m
	
:

As shown in [K99b], solutions to this problem solve the problem of smoothing for weights wij that
correspond to the Lagrange multipliers associated to the constraints, hence these weights depend
on "ij . In particular, jf (j�1)(ti) � zij j �! 0 when "ij �! 0, in which case either wij �! 1 or
jf (j�1)(ti) � zij j = 0 for small "ij . Hence, when "ij �! 0 for j = 1 and zij = 0 for j > 1, the
corresponding near-interpolants converge to a �-spline. This is illustrated in Figure 4.14. Here, the
data points zi1 2 IR2 are at the corners of the unit cube, and the prescribed tangents zi2 are set to
zero. In both of the curve sequences in (a) and (b), the tolerances "i1 range from 0:4 to 0:025 at the
upper corners, and they are �xed at 0:025 at the end points. Since "i2 is larger in (a) than in (b),
the weights wi2 of the corresponding smoothing splines are larger in (b) than in (a). These weights
are close to the tension parameters of a �-spline when "i1 are small.

(a) "i2 = 5 (b) "i2 = 0:5

Figure 4.14. Convergence of near-interpolants to a �-spline.

Example 4.15 (Splines in tension (with smoothing)).

Schweikert's spline in tension ([Se66]) is the solution to (1.1) when T : f 7�! D2f + �Df and
�1 : f 7�! f(ti), and with no smoothing term, as was shown by Nielson in [N74]. Here, we include

10



the smoothing term in (1.1) to obtain

(4:16) minimize
f(j�1)(ti)=zij

(i;j)2�

Z 1

0

jf 00(s) + � f 0(s)j2 d s +
X

(i;j)62�

wij jf (j�1)(ti)� zij j2:

(In [P78], Pruess studied splines in tension with smoothing, but for functionals of the form f 7�! f(ti)
only). The maps �1 and �2 are as de�ned in (4.2), and � is a subset of n� 2. The inner product on
X is taken as in (4.1) with m = 2 and with

kerT = fa+ b e��(�) : a; b 2 IRg;

the space of those f 2 X that satisfy the homogeneous di�erential equation f 00 + �f 0 = 0. Solutions
to (4.16) have the form

(4:17) ai + bi(� � ti) + cie
�(��ti) + die

��(��ti)

on each interval (ti : : ti+1). In particular, kerT � ran��, and so it follows by Corollary 3.4 that
solutions � are in ran��. The dual basis V described in Proposition 3.8 is the \piecewise exponential
Hermite basis" (see [NF84], equations (2.2) and (2.3)). Here, with the Hermite-type functionals, the
curves are generally C1, rather than C2. In particular, the characterization given in Proposition 3.8
applies. Finally,

	� = (���)�1�T �T� = (jmpti(�
000 � �2�0); �jmpti(�

00 + ��0) : i=1:n);

as can be derived by integration by parts (as in [N74]), and kT�k2
Y
= h	�;��i

Z2
.
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