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Abstract This is an extension and emendation of recent results on the use of Gauss elimination in
multivariate polynomial interpolation and, in particular, ideal interpolation.

Let Π ⊂ (IFd → IF) be the space of all polynomials in d real (IF = IR) or complex (IF = C) variables.
Let Q be an n-row map on Π, i.e., a linear map from Π to IFn, and consider the task of solving

Q? = a

for given a ∈ IFn. We assume that this problem has a solution for arbitrary a ∈ IFn, i.e., that Q is onto.
Then there is a standard recipe for finding all solutions, namely Gauss elimination applied to the Gram
matrix

QV = (ηivj : i = 1:n, j ∈ J),

with the linear functionals ηi the rows of the row map Q, i.e., Qf =: (ηif : i = 1:n), and the polynomials
vj the columns of the invertible column map

V = [vj : j ∈ J ] : IFJ
0 → Π : a 7→

∑

j

vja(j)

or basis for Π (indexed by some set J). Here,

IFJ
0 := {a : J → IF : # supp a < ∞},

hence V is well-defined.
Take for V a monomial basis, i.e., the column map

V = [()α : α ∈ ZZd
+] : IF

ZZd
+

0 → Π : p̂ 7→ p :=
∑

α

()αp̂(α),

with its columns the monomials

()α : IFd → IF : x 7→ xα := x(1)α(1) · · ·x(d)α(d)

arranged in some order in which each collection of columns has a left-most one (i.e., the order must be a
well-ordering). Since Q is onto, QV is of full rank, hence has exactly n bound columns, i.e., columns that
are not weighted sums of columns to the left of it. This is a standard result of basic linear algebra in case
V has finitely many columns but needs, perhaps, a proof in the present setting, of a V with infinitely many
columns.

For this, let �, ≺, etc, indicate the order on ZZd
+ corresponding to the order in which the monomials

appear as columns in V . Further, let

βj := min Γj , Γj := {γ : rankQ[()α : α � γ] ≥ j}, j = 1:n.

There is, in fact, such a minimum since Γj must be nonempty (due to the fact that rankQV = n), hence,
by our assumption on the columns’ ordering, must have a left-most element. Further, with βj that left-most
element, column βj is necessarily bound (since its adjunction to Q[()α : α ≺ βj ] raises the rank). It follows
that all the columns of the square matrix QVβ , with

Vβ := [()βj : j = 1:n],
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are bound, hence QVβ is invertible. This makes

F := ranVβ

a monomial subspace (i.e., a space spanned by monomials) that is correct for Q in the sense that Q maps
it 1-1 onto IFn, i.e., F contains, for every a ∈ IFn, exactly one f that matches the information a in the sense
that Qf = a. Put differently, F contains, for each p ∈ Π, exactly one f that agrees with p at Q in the
sense that Qf = Qp. We can write this f in the form

f = Pp,

with
P := Vβ(QVβ)−1Q

the linear projector on Π with ranP = F and kerP = kerQ.
The subspace F is minimal , among all monomial subspaces correct for Q, in the following sense.
Define the ≺-degree of p =

∑
α()αp̂(α) ∈ Π to be the multiindex

δ(p) := max supp p̂ = max{α : p̂(α) 6= 0},

with δ(0), offhand, undefined. Define, correspondingly, for any finite-dimensional subset F1 of Π,

δ(F1) := max
p∈F1

δ(p).

Also, follow [S] in using the handy abbreviation

p ≺ q := δ(p) ≺ δ(q), p, q ∈ Π.

Now, among all subspaces F1 correct for Q, our F is ≺-minimal in the sense that δ(F ) � δ(F1)
for all such F1. This follows immediately from the fact that any subspace F1 with δ(F1) ≺ δ(F ) lies in
ran[()α : α ≺ βn] and, by the very choice of βn, the rank of Q[()α : α ≺ βn] is less than n, hence Q cannot
map F1 onto IFn.

Actually, F is minimal in the more subtle way that it, or its corresponding linear projector P , is
≺-reducing in the sense that

(1) δ(Pp) � δ(p), ∀p ∈ Π.

Indeed, since P is linear and
δ(p) = max

α
{δ(()α) : p̂(α) 6= 0},

it is sufficient to check (1) for monomials only. In the discussion, call a monomial bound or free according
to whether the corresponding column of QV is bound or free (with a column free exactly when it is not
bound, i.e., when it is the weighted sum of columns to the left of it). There are two cases. If ()α is bound,
then (1) holds trivially for p = ()α since then p ∈ F , hence Pp = p. In the contrary case, ()α is free. But this
means that Q()α is writable as a linear combination of columns to the left of it, hence of the bound columns
to the left of it, and the corresponding linear combination of bound monomials is an interpolant from F to
p = ()α, hence must be Pp, and that verifies (1) for this case, too.

Next, consider uniqueness of such ≺-minimal or ≺-reducing monomial spaces F . If there is some free
column to the left of the nth bound column, say column α, then, as we already observed, Q()α is writable
as a weighted sum of the bound columns to the left of it. This implies that the space

F1 := ran[()β1 , . . . , ()βn−1 , ()βn + ()α]

is also correct for Q and δ(F1) = δ(F ), hence F1 is also ≺-minimal. It is also ≺-reducing since the interpolant
P1p it provides for any p := ()γ with γ ≺ βn is still Pp while, for γ � βn,

δ(P1p) � δ(F1) = βn � δ(p).

Thus, unless the bound columns of QV are its first n columns, there are many ≺-reducing spaces F1 other
than F . But any such F1 fails to be monomial, and this is as it should be because of the following
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Proposition 2. F is the unique monomial ≺-reducing space for Q.

Proof: If
F1 := ran[()γ1 , . . . , ()γn ]

is a monomial ≺-reducing space correct for Q and γ1 ≺ · · · ≺ γn, then, for any α, Q()α must be in
ran[Q()γj : γj � α]. This implies, for any α not equal to one of the γj , that Q()α is a free column of QV ,
hence the only columns that can be bound are those n columns Q()α with α ∈ {γ1, . . . , γn}, and these must
all be bound since we know there to be n bound columns. In other words, F1 = F .

For the special case that ≺ is a monomial ordering (see below for the definition) and kerQ is an ideal,
this proposition is Theorem 4 of [S], and the earlier assertion concerning the existence of other ≺-reducing
spaces is, essentially, Proposition 2 of [S] in that setting.

It is also possible to prove the following emended and extended version of Theorem 3 of [S], in which

Λ(p) := ()δ(p)p̂(δ(p))

denotes the leading term of p ∈ Π.

Proposition 3. The n-dimensional linear subspace F1 of Π is ≺-reducing for Q if and only if it has a
spanning sequence p1 ≺ · · · ≺ pn so that (a)

ηipj = δij , 1 ≤ i ≤ j ≤ n,

for some suitable ordering η1, . . . , ηn of the rows of Q; and, (b) for some elements q1, . . . of kerQ,

(4) [Λ(p1), . . . , Λ(pn), Λ(q1), . . .]

is a basis for Π�δ(pn), with
Π�γ := ran[()α : α � γ].

Proof: Assume that F1 is ≺-reducing and let P1 be the corresponding linear projector. As before,
let β1 ≺ · · · ≺ βn be the indices of the bound columns of QV and set

rj := P1()
βj , j = 1:n.

Then, necessarily, δ(rj) = βj , all j, since, otherwise, δ(rj) ≺ βj and, since Qrj = Q()βj , this would imply
that column βj were free. Since the rj are in F1 and satisfy δ(r1) ≺ · · · ≺ δ(rn), it follows that [r1, . . . , rn]
is a basis for F1. Then, for some ordering η1, . . . , ηn (determinable by applying Gauss elimination with row
interchanges to the invertible matrix Q[r1, . . . , rn]), there is an upper triangular matrix U such that, for that
ordering of the rows of Q, Q[r1, . . . , rn]U−1 is unit lower triangular, hence [p1, . . . , pn] := [r1, . . . , rn]U−1 is
a basis for F1 with p1 ≺ · · · ≺ pn that satisfies (a). Now, for any α ∈ {γ � βn}\{β1, . . . , βn}, set

qα := ()α − P1()
α.

Then qα ∈ kerQ, and δ(qα) = α since the fact that F1 is ≺-reducing implies that δ(P1()
α) � α, hence

P1()
α ∈ ran[pj : δ(pj) = βj � α] ⊂ Π≺α. Thus this choice of the qα satisfies (b).
Conversely, assume that we have in hand a spanning sequence p1 ≺ · · · ≺ pn for F1 satisfying (a) and

(b). Then, by (a), the matrix Q[p1, . . . , pn] is unit lower triangular for some ordering of the rows of Q,
hence, since (p1, . . . , pn) spans F1, it must be a basis for F1. Also, by (b), all columns α � δ(pn) with
α 6∈ {δ(p1), . . . , δ(pn)} are free (since each such ()α is the leading term of an element of kerQ). Therefore,
necessarily, (δ(p1), . . . , δ(pn)) = (β1, . . . , βn), the indices of the bound columns of QV . We will continue to
use the notation

F = ran[()βj : j = 1:n]

for the space spanned by the corresponding monomials, i.e., by the leading terms of the pj , and use P for
the corresponding projector. Since each of the monomials not in F corresponds to a free column of QV , we
can write each pj as

pj =: fj + qj ,
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with
fj ∈ F, δ(fj) = βj , qj ∈ kerQ, δ(qj) ≺ βj .

Then
Q[p1, . . . , pn] = Q[f1, . . . , fn],

hence, for any p ∈ Π,

P1p =
∑

j

pja(j) ⇐⇒ Pp =
∑

j

fja(j),

and therefore, in particular,

δ(P1p) = max{βj : a(j) 6= 0} = δ(Pp) � δ(p),

the inequality since, as we saw earlier, F is ≺-reducing. In other words, F1 is ≺-reducing.

We note that Theorem 3 of [S] has, in the equation corresponding to (4) here, the polynomials pj and
qj rather than their leading terms. Also, with the assumption that p1 ≺ · · · ≺ pn spans F1, the assumption
(a) really plays no role in the above proof other than to ensure that Q[p1, . . . , pn] is invertible, hence there
is a linear projector P1 with ranP1 = F1 and kerP1 = kerQ. This is not surprising in view of the fact that
every n-dimensional subspace of Π has a graded basis, i.e., a basis [r1, . . . , rn] with δ(r1) ≺ · · · ≺ δ(rn), and
that, as we saw in the first part of the above proof, Gauss elimination derives from this a basis [p1, . . . , pn] =
[r1, . . . , rn]U−1 with U some upper triangular matrix, hence δ(pj) = δ(rj), all j, for which Q[p1, . . . , pn] is
unit lower triangular with respect to some ordering of the rows of Q. In fact, the proof of Proposition 3 also
establishes the following simpler characterization.

Corollary. A linear subspace of Π is ≺-reducing for Q if and only if it has a basis whose leading terms
correspond to the bound columns of QV .

Now we raise the stakes by assuming, in addition, that P is an ideal projector in the sense of [B], i.e.,
that kerQ is a (polynomial) ideal. This means that kerQ contains, for any q ∈ Q and any p ∈ Π, also their
(pointwise) product

qp : x 7→ q(x)p(x),

and the ordering of the columns of V should be sensitive to that. Specifically, we assume from now on that
the ordering is also monomial, meaning that it is consistent with addition on ZZd

+, i.e.,

α � β =⇒ α + γ � β + γ, all α, β, γ ∈ ZZd
+,

and
0 � α, all α ∈ ZZd

+.

Any such ordering refines the partial order given by divisibility, i.e., ()α dividing ()β implies that α � β since
it implies that β − α ∈ ZZd

+, hence 0 � β − α and therefore α � β.

Proposition 5. Under the given assumptions, F is D-invariant, i.e., closed under differentiation.

Proof: ()α is free iff
Q()α = Qp

for some
p ∈ Π≺α.

Hence, if ()α is free, and therefore ()α−p ∈ kerQ for some p ∈ Π≺α, then also, for any γ ∈ ZZd
+, ()γ(()α−p) ∈

kerQ, i.e.,
Q()γ+α = Q(()γp),

with ()γp ∈ Π≺γ+α, hence also ()γ+α is free. In other words, any monomial that divides a bound monomial
must itself be bound, i.e., must lie in F .
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More than that and as pointed out in [S] and certainly already used in [MB], we also get immediately
a reduced Gröbner basis for the ideal kerQ, namely the set

G := {()α − P ()α : α ∈ A},

with A the indices of all the free monomials not divisible by some other free monomial.
Indeed, G is reduced, i.e., no term of an element of G is divisible by the leading term of any other

element of G, as is clear from the definition of A and from the fact that any monomial having a free monomial
as a factor must be free while ranP is spanned by bound monomials. To show that every p ∈ kerQ\0 is
in ideal(G) (the ideal generated by G), proceed by induction on δ(p), assuming without loss of generality
that p ∈ ()δ(p) + Π≺δ(p). If p ∈ kerQ, then, necessarily, ()δ(p) is free. If it is not divisible by any other free
monomial, then, for some g ∈ G, p − g ∈ Π≺δ(p) and in kerQ, hence in ideal(G) by induction. Otherwise,

δ(p) = γ + β for some some free ()β , hence, by induction, p − ()γq ∈ Π≺δ(p) for some q ∈ ideal(G) ⊆ kerQ,
hence that difference is in kerQ and so, by induction, in ideal(G). Hence, either way, p ∈ ideal(G). More
than that, it shows that p is writable as

∑
g∈G gqg with δ(gqg) ≤ δ(p) for all g ∈ G, hence G is a Gröbner

basis for kerQ.
Finally, both [MB] and [S] provide an algorithm for the construction of F and G, and both choose to do,

in effect, Gauss elimination by columns, but working with polynomials rather than with the Gram matrix
QV . But there seems to be no reason to deviate from the standard approach, of applying Gauss elimination
by rows to QV , since it is just as easy there to introduce columns one at a time, hence to ignore any column
known a priori to be free since its monomial is divisible by some monomial known to be free. In particular,
as already pointed out in [S], it is sufficient to consider only columns α with |α| :=

∑
j α(j) ≤ n, i.e., to

consider the finite matrix QVn with Vn := [()α : |α| ≤ n]. The resulting factorization of QVn, as CLU with
C a permutation matrix, L unit lower triangular, and U in row echelon form, provides just as readily the
set G and even a Newton basis for F , as follows.

Assume without loss that the rows of Q are so ordered that no row interchanges were necessary, hence
C = id, and that, as before, the bound columns are β1 ≺ · · · ≺ βn. Then, as already used in the proof of
Proposition 3,

[pj : j = 1:n] := [()βj : j = 1:n]U(:, (β1, . . . , βn))−1

is a Newton basis for F in the sense that Q[p1, . . . , pn] is unit lower triangular. Also, for each free ()α not
divisible by some other free monomial,

qα := ()α − [p1, . . . , pn]U(:, α)

is an element of G, and G has no other elements than these.
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