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On multivariate polynomial interpolation
Carl de Boor & Amos Ron

1. Introduction

The generalization of univariate polynomial interpolation to the multivariate context is made
difficult by the fact that one has to decide just which of the many of its nice properties to preserve,
as it is impossible to preserve them all. Particularly annoying is the fact that the dimensions of
standard multivariate polynomial spaces, such as Πk, make up only a small subset of ZZ, hence
we cannot hope to interpolate uniquely at an arbitrary pointset Θ ⊂ Cs from an appropriate
Πk. Further, even when we have dim Πk points at hand, they may fail to be total for Πk, hence
interpolation at these points from Πk may still not be possible.

For these reasons, generalizations have stressed some aspects of polynomial interpolation and
ignored others. For example, there are various efforts (see, e.g., [CY], [GM]) to identify finite
sets Θ for which it is easy to construct polynomial Lagrange functions, i.e., polynomials pθ with
pθ(τ) = δθ,τ . Except for special circumstances, it is usually hard to ascertain the degree of the
resulting interpolant or the maximal k for which Πk lies in the range of this interpolant. A totally
different effort, associated with the name Kergin (see [K], [M]), retains the fact that, with an
arbitrary set Θ of cardinality k + 1, we interpolate from Πk. The additional degrees of freedom
available in a multivariate context Kergin disposes of in such a way that ‘natural’ meanvalue
theorems continue to hold.

In this paper, we take a different tack. Given any finite set Θ, we determine a corresponding
polynomial space ΠΘ from which interpolation at Θ is ‘correct’, i.e., is possible and uniquely so.
We show that ΠΘ is translation- and scale-invariant, and that it is a polynomial space of least
degree from which interpolation at Θ is correct. We also show that the resulting map Θ 7→ ΠΘ

is monotone (as a map from sets to sets), making it natural to introduce a Newton form for the
resulting interpolant. Further, we show that the map can be extended in a natural way to Hermite
interpolation, where we allow some of the θ to coalesce.

In fact, given arbitrary finite-dimensional polynomial spaces Pθ, we provide such a polynomial
space of least degree from which “generalized Birkhoff-Hermite” interpolation is correct, i.e., over
which the linear space spanned by the linear functionals of the form [θ]p(D), with p ∈ Pθ and
θ ∈ Θ, is minimally total. Here, [θ]f := f(θ), and, to recall, a space Λ of linear functionals is total
for H if the only h ∈ H for which λh = 0 for all λ ∈ Λ is h = 0.

The following notation and terminology will be used throughout. The collection of all poly-
nomials on Cs (or whatever other space the context might indicate) is denoted by Π; Πk denotes
the collection of all those polynomials of (total) degree ≤ k, i.e., Πk := span

(
()α

)
|α|≤k

, with
()α : x 7→ xα. We also find it convenient to use Π<k for the space of polynomials of degree < k.
For any p ∈ Π, we denote by p(D) the corresponding constant coefficient differential operator; in
particular, Dα :=

∏
j(Dj)α(j), with Dj differentiation with respect to the jth argument. We make

good use of the representation of the linear functional [θ]p(D) on Π as q 7→ p∗Eθq = q∗(eθp), with

q∗p := (q(D)p)(0) =
∑
α

Dαq(0)Dαp(0)/α!,

with eθ : x 7→ exp(〈θ, x〉), and with E the shift, i.e, Eθf := f(·+ θ). We also use the “least term”
of a function f analytic at the origin, i.e., the homogeneous polynomial f↓ of largest degree j for
which f(x) = f↓(x) + o(‖x‖j) as x → 0. This notion makes (formal) sense on the larger space of
formal power series, as does the notion of a D-invariant subspace, i.e., a subspace invariant under
differentiation.
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The paper is laid out as follows. After a short discussion of basic properties of the “leading
term” f↑ and the “least term” f↓ of f , we show in Section 3 that, for any finite-dimensional space
H of sufficiently smooth functions, H↓ := span{f↓ : f ∈ H} is a scale-invariant polynomial space
of the same dimension as H which determines the “local approximation order” from H. We also
establish other properties of H↓, such as the fact that p↑(D)H↓ ⊂ (p(D)H)↓, of use later, and
explore H↓ for the space H = expΘ spanned by the exponentials eθ, θ ∈ Θ. Section 4 is devoted
to the important observation that, among all polynomial spaces P for which the corresponding
space P

∗
:= {p∗ : p ∈ P} of linear functionals is minimally total for H, H↓ is of least degree in the

sense that, for all j, dim(P ∩ Πj) ≤ dim(H↓ ∩ Πj). The resulting linear projector given by H and
H

∗
↓ is exploited in Section 5 in the derivation of an algorithm for the construction of H↓ from any

basis for H. The dependence of H↓ on H is explored in Section 6; the main result is that the map
H 7→ H↓ is continuous at H if and only if, for some m, Π<m ⊆ H↓ ⊂ Πm, a property of H which
we term “regular”, for want of a better word.

The remainder of the paper is devoted to the specific choice H =
∑

θ∈Θ eθPθ of exponentials.
The fact that its least part H↓ supplies correct conditions for interpolation from H is used in
Section 7 to conclude by duality, as in [DR], that it is possible to interpolate, and uniquely so, from
the polynomial space H↓ using the interpolation conditions [θ]p(D), p ∈ Pθ, θ ∈ Θ. The special
case Pθ = Π0, all θ, leads in Section 8 to Lagrange interpolation from ΠΘ := (expΘ)↓, with the
algorithm from Section 5 providing information needed for the Newton form for the interpolant.
The connection between coalescence of such interpolation points and osculatory interpolation is
explored in the final section.

In a subsequent paper, we verify that various forms of multivariate Lagrange interpolation now
in the literature are special cases of the scheme proposed here. In a different paper, we use H↓ to
simplify and extend results from box spline and exponential box spline theory.

2. The least term of an analytic function

We denote by p↑ the leading term of the polynomial p. For p 6= 0, this is the (unique)
homogeneous polynomial for which

deg(p− p↑) < deg p.

For completeness, we take the zero polynomial to be its own leading term. We note that (pq)↑ =
p↑q↑.

We also single out the least term f↓ (read ‘f least’) of a polynomial or, more generally, a
function f analytic at the origin, and mean by this

f↓ := Tjf,

with j the smallest integer for which Tjf 6= 0, with Tjf the Taylor polynomial of degree < j for f
at the origin, i.e.,

(2.1) Tjf :=
∑
|α|<j

[[]]αDαf(0),

and with [[]]α : x 7→ xα/α! the normalized power function. For completeness, we take the zero
function to be its own least term. We note that

(2.2) (fg)↓ = f↓g↓
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and that, for any invertible matrix A,

(2.3) (f ◦A)↓ = f↓ ◦ A.

We are interested in f↓ because it describes the behavior of f near the origin. Precisely, f↓ is
the homogeneous polynomial of largest degree j for which

(2.4) f(x) = f↓(x) + o(‖x‖j) as x→ 0.

Consequently, with j := deg f↓,

(2.5) f↓ = lim
t→0

f(t·)/tj,

in the pointwise sense, as follows readily from L’Hôpital’s rule. In fact, (2.5) remains true if we
take the limit in the sense of formal power series, i.e., in the sense that, for all α,

[0]Dαf↓ = lim
t→0

[0](Dαf)(t·)/tj.

3. The limit at the origin of a space of functions analytic there

In this section, we consider subspaces of the space

A0

of all functions analytic at the origin, with the topology of formal power series. For any subspace
H of A0, we consider its “limit at the origin”, i.e. (with (2.5)), the polynomial space

(3.1) H↓ := span{f↓ : f ∈ H}.

We note that H↓ is scale-invariant since it is spanned by homogeneous polynomials.
We were led to H↓ in the analysis of the local approximation order from H. By definition,

this is the largest integer d for which, for every f ∈ C∞(IRs), there exists h ∈ H so that

(f − h)(x) = O(‖x‖d) as x→ 0.

The following lemma is of use in the discussion of approximation order.

(3.2) Lemma. If Π<k ⊂ H↓, then there exists a continuous linear projector Tk,H on A0 into H
for which TkTk,H = Tk.

Proof: If Π<k ⊂ H↓, then, for each |α| < k, there exists fα ∈ H with (fα)↓ = [[]]α. It follows
that the matrix (Dαfβ(0))|α|,|β|<k is unit triangular, hence invertible. This implies that we can
find (gα)|α|<k in H dual to

(
f 7→ Dαf(0)

)
|α|<k

(i.e., satisfying Dαgβ(0) = δαβ), and this implies
that, for each f ∈ A0, h := Tk,Hf :=

∑
α gαDαf(0) is in H and satisfies Tkh = Tkf .

3



(3.3) Corollary. The local approximation order of a finite-dimensional subspace H of A0 equals
the largest integer d for which Π<d ⊂ H↓.

Proof: Let d be the local approximation order from H.
Having (f−h)(x) = O(‖x‖d) as x→ 0 is the same as having deg(f−h)↓ ≥ d. If, in particular,

f ∈ Π<d, then this can only happen if h↓ = f↓. Since Π<d = (Π<d)↓, this shows that Π<d ⊂ H↓.
Conversely, if Π<k ⊂ H↓, then, by the lemma, there is a linear map Tk,H into H with Tk(1−

Tk,H) = 0. This implies that, for any f ∈ A0, h := Tk,Hf is in H and satisfies (f−h)(x) = O(‖x‖k),
hence d ≥ k.

Further study of H↓ led us to the results on polynomial interpolation to be detailed in subse-
quent sections. In preparation, we now discuss various properties of H↓.

Let H be a finite-dimensional subspace of A0. We observe that, for f ∈ H, deg f↓ = j if and
only if f ∈ (kerH Tj)\(kerH Tj+1), i.e., if and only if f↓ ∈ Tj+1(kerH Tj)\0, with

(3.4) kerH Tj := ker(Tj|H).

Since also
H = kerH T0 ⊇ kerH T1 ⊇ kerH T2 ⊇ · · · ,

hence
dimTj+1(kerH Tj) = dim kerH Tj − dimkerH Tj+1,

we conclude that

H↓ =
∞∑

j=0

Tj+1(kerH Tj) =
∞⊕

j=0

Tj+1(kerH Tj)

and

dim(H↓ ∩Πk) =
k∑

j=0

dim kerH Tj − dimkerH Tj+1 = dimkerH T0 − dim kerH Tk+1 = dimTk+1(H).

We have proved:

(3.5) Proposition. H↓ is a scale-invariant space of polynomials of the same dimension as H. In
fact, for every j,

(3.6) dim(H↓ ∩Π<j) = dimTj(H).

Also, (H↓)↓ = H↓, and (TjH)↓ = H↓ for all sufficiently large j, and H = H↓ in case H is a
scale-invariant polynomial space.

For the particular space H := span
(
1 + ()1,0, ()0,1

)
, one computes that H↓ = span

(
1, ()0,1

) 6=
H = T2(H), thus illustrating that Tj(H) and H↓ ∩Π<j need not be equal in general (even though
they are always of the same dimension).

Next, consider the effect of multiplying all the elements of H by some f ∈ A0, i.e., the
relationship between H and

fH := {fg| g ∈ H}.
We deduce from (2.2) the following observation.
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(3.7) Proposition. For any f ∈ A0 satisfying f(0) 6= 0,

(fH)↓ = H↓.

The interaction of differentiation with the map H 7→ H↓ is determined by the fact that, for
any p ∈ Π and any f ∈ A0,

(3.8) p(D)f = p↑(D)f↓ + terms of higher degree.

This implies that (p(D)f)↓ = p↑(D)f↓ in case p↑(D)f↓ 6= 0 and so proves the following.

(3.9) Proposition. For every p ∈ Π,

(3.10) p↑(D)H↓ ⊂ (p(D)H)↓.

(3.11) Corollary. If p(D) annihilates H, then p↑(D) annihilates H↓.

(3.12) Corollary. If H is D-invariant, then so is H↓.

Proof: For every y ∈ IRs, we have Dy(H↓) ⊂ (DyH)↓ by (3.9)Proposition, while (DyH)↓ ⊂ H↓
since DyH ⊂ H by assumption.

If H consists of functions analytic on some domain G, then it makes sense to consider the
“limit of H at z” for any z ∈ G. If H is D-invariant, hence translation-invariant, we expect all
these limits to coincide. The Corollary confirms this expectation.

As an example, consider the space

(3.13) expΘ := span{eθ : θ ∈ Θ}

of simple exponentials with frequencies Θ. Here and below,

eθ : x 7→ exp(〈θ, x〉).

Since expΘ is D-invariant, its limit at any point is just (expΘ)↓. For its construction, we can
proceed as follows. Define

pa,j :=
∑
θ∈Θ

(θ·)ja(θ),

with
(θ·)j : x 7→ 〈θ, x〉j/j!.

Then

(3.14) ΠΘ := (expΘ)↓ =
⊕

j

{pa,j : pa,i = 0 for i < j}.

The D-invariance of ΠΘ can also be seen directly, as follows: For y ∈ IRs, Dypa,j = pay,j−1, with
ay :=

(
a(θ)〈θ, y〉)

θ∈Θ
. Hence if pa,i = 0 for all i < j, then pay,i−1 = Dypa,i = 0 for all i−1 < j−1,

therefore Dypa,j ∈ ΠΘ if pa,j ∈ ΠΘ.
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4. The dual of H

As it turns out, the construction of H↓ can be carried out by a bootstrap procedure which
uses interpolation from H. For this reason (and others), we now show that the dual of H can be
represented by H↓.

Abstractly, interpolation from H can be described as the task of finding, for given f ∈ A0, an
h ∈ H for which λh = λf for all λ in some linear space Λ of linear functionals on A0. We call Λ the
(space of) interpolation conditions for this particular interpolation problem. We call the problem
correct if there is, for each f , exactly one solution h.

For completeness, we recall (without proof) the following well known characterizations of
correctness.

(4.1) Lemma. Let H and Λ be finite-dimensional linear subspaces of a linear space X (over C)
and its dual, respectively. Then the following are equivalent.

(i) The interpolation problem given by H and Λ is correct.

(ii) With (λj)n
1 any basis for Λ, the linear map H → Cn : h 7→ (

λjh
)n

1
is one-one and onto.

(iii) Λ is minimally total for H.

(iv) Λ can be used to represent the dual H ′ of H in the sense that the map Λ → H ′ : λ 7→ λ|H is
one-one and onto.

If the interpolation problem given by H and Λ is correct, then it defines a linear projector,
P := PH,Λ say, by the rule that, for any f , Pf ∈ H and λPf = λf for all λ ∈ Λ. We will be
interested later in the dependence of PH,Λ on H and Λ. For this, we remark that P can be written
in the form

P = V (MV )−1M,

with V any coordinate map for H (i.e., V : Cn → H : a 7→∑
j vja(j) for some basis

(
vj

)
for H),

and M the dual of any coordinate map for Λ (i.e., M : X → Cn : f 7→ (
λjf

)
for some basis

(
λj

)
for Λ). This implies that PH,Λ is close to PH′,Λ′ in case H ′ and Λ′ have bases close to bases of H
and Λ respectively.

Concretely, we are interested in using linear functionals of the form

(4.2) p∗ : f 7→ (
p(D)f

)
(0) =

∑
α

Dαp(0)Dαf(0)/α!

with p ∈ Π. These are continuous linear functionals on A0 and even on Ck(0) (over the complex
scalars). The map p 7→ p∗ is skew-linear and one-one, hence provides a skew-linear embedding of
Π in the dual of A0.

(4.3) Proposition. For any finite-dimensional linear subspace H of A0, the linear space H
∗
↓ is

minimally total for H.

Proof: For any f ∈ H\0, p := f↓ ∈ H↓ and p∗f = p∗p > 0. This implies that the only
f ∈ H with p∗f = 0 for all p ∈ H↓ is f = 0, i.e., H

∗
↓ is total for H. On the other hand, since

dimH
∗
↓ = dim H↓ = dimH, no proper subspace of H

∗
↓ could be total for H.
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We conclude that H
∗
↓ can be used to represent the dual of H.

Of course, there exist polynomial spaces other than H↓ that provide correct interpolation
conditions for H. The next result shows that, compared to all these spaces P , H↓ is of least
degree in the sense that

(4.4) dim(H↓ ∩Πj) ≥ dim(P ∩Πj) all j.

(4.5) Theorem. Among all polynomial spaces P for which P
∗

is minimally total for H, H↓ is of
least degree.

Proof: Let B be a basis for P ∩ Πj . Since P
∗

is minimally total for H, the sequence B
∗

must
be linearly independent over H. On the other hand, for any p ∈ Πj , p∗ = p∗Tj+1. Hence, B

∗
must

already be linearly independent over Tj+1(H). Therefore, with (3.6),

dim(H↓ ∩Πj) = dimTj+1(H) ≥ #B = dim(P ∩Πj).

5. The construction of H↓

Denote by TH the linear projector given by H and H
∗
↓, i.e., the linear map characterized by the

fact that its range is H and that p∗THf = p∗f for all p ∈ H↓. The following strong monotonicity
property will be of use in the construction of H↓ for specific choices of H.

(5.1) Proposition. If K = H + span{h}, then K↓ = H↓ + span{(h− THh)↓}.

Proof: There is nothing to prove in case h ∈ H, so assume that h 6∈ H, hence k := h−THh 6= 0,
therefore also k↓ 6= 0, while k↓ ∈ K↓. Since H↓ ⊂ K↓ and dimK↓ = dim K = dimH + 1 =
dimH↓ + 1, we therefore need only show that k↓ 6∈ H↓.

For this, observe that, by construction, p∗k = 0 for all p ∈ H↓. Hence, from (3.8), p∗k↓ = 0
for all homogeneous p ∈ H↓. If now k↓ ∈ H↓, then, in particular, k

∗
↓k↓ = 0, i.e., k↓ = 0, a

contradiction.

This proposition suggests a simple Gram-Schmidt-like algorithm for the conversion of a basis(
pj

)
for H into a basis

(
qj

)
for H to which

(
rj

)
:=

(
qj↓

)
is bi-orthogonal with respect to the

(complex) pairing
〈, 〉 : Π×A0 → C : (p, q) 7→ p∗q,

hence provides the homogeneous orthogonal basis
(
rj

)
for H↓. The idea is simple. Assume that we

have already determined such a basis (qj)j<k for Hk := span
(
pj

)
j<k

. Then we compute

qk := (1− THk
)pk = pk −

∑
j<k

qj
〈rj , pk〉
〈rj , qj〉

and note that qk 6= 0 since pk 6∈ Hk = ranTHk
. Consequently,

rk := qk↓
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is not zero, and 〈rk, qk〉 6= 0. By (5.1)Proposition, we know that (Hk+1)↓ = span
(
rj

)
j≤k

. Also, by
construction,

(5.2) 〈rj , qk〉 = 0 j < k.

But there is, off-hand, no reason to expect that 〈rk, qj〉 = 0 for j < k. Of course, if deg rk < deg rj ,
then we have 〈rk, qj〉 = 0 trivially. If deg rk = deg rj , then 〈rk, qj〉 = 〈rj , qk〉 = 0. But for
deg rk > deg rj , we may well have 〈rk, qj〉 6= 0. In that case, we simply modify qj appropriately,
setting

(5.3) qj := qj − qk
〈rk, qj〉
〈rk, qk〉 if deg rk > deg rj .

By (5.2), this does not change the bi-orthogonality of (rj)j<k and (qj)j<k. Also, since it modifies
qj at terms of order deg rk and higher, it does not change qj↓, i.e., it does not change the fact that
rj = qj↓ for j < k. In this way, we have now at hand a basis of the promised sort for Hk+1.

For easy reference, we collect the result of the last paragraph in the following.

(5.4) Algorithm. Given the basis
(
pj

)
of the finite-dimensional subspace H of A0.

For k = 1, 2, . . ., carry out the following three steps:

Step 1. qk ← pk −
∑
j<k

qj
〈rj , pk〉
〈rj, qj〉

Step 2. rk ← qk↓

Step 3. qj ← qj − qk
〈rk, qj〉
〈rk, qk〉 if deg rk > deg rj .

Then
(
rj

)
is bi-orthogonal to

(
qj

)
and provides a homogeneous orthogonal basis for H↓.

For the calculations, it is useful to observe that only inner products with the homogeneous
polynomials rj are required. This means, in particular, that the calculation could be carried out
with Tmpk rather than pk, for some m which is determinable a priori in case H is D-invariant.

Numerically, the calculation is challenging only because it requires the determination of the
least part rk of qk. When using finite-precision arithmetic, it may be necessary to replace ‘least
part’ by ‘significant least part’ in order to avoid use of a least part that turned out not to be zero
only because of the noise in the calculation. Concretely, this means that one takes rk to be the
homogeneous part of qk of lowest degree which is not significantly smaller than the corresponding
part of pk. Considerations of this kind could be used to establish under what circumstances H↓
depends continuously on H. In the next section, we choose to settle this question by a more direct
route.

6. Continuity of the map H 7→ H↓

In the discussion later of Hermite interpolation as the limit of Lagrange interpolation, it will
be important to understand to what an extent H↓ depends continuously on H. Precisely, we wish
to know under what circumstances limt→0

(
H(t)↓

)
=

(
limt→0 H(t)

)
↓. Since A0 is a metric linear

space, we use the gap between subspaces as a means of defining the statement H = limt→0 H(t).
For this, recall the standard definition of the gap

gap(H, K) := max{dist (H ∩B, K), dist (K ∩B, H)}
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between subspaces H, K of the metric linear space X. Here, dist (Y, Z) := supy∈Y infz∈Z dist (y, z),
and B := B1(0) := {x ∈ X : dist (x, 0) < 1}.

If H is, in particular, a finite-dimensional subspace, then H = limH(t) iff, for some (every)
basis

(
hj

)
of H and all small enough t, there is a corresponding basis

(
hj(t)

)
for H(t) for which

hj = limt→0 hj(t) for all j. For example, by (2.5),

(6.1) lim
t→0
{h(t·) : h ∈ H} = H↓.

As an illustration of the possible lack of continuity in the map H 7→ H↓, consider H(t) =
expΘ(t) with s = 2 and Θ(t) := {(−1, 0), (0, t), (1, 0)}. Then H(0) = limt→0 H(t) and, for t 6= 0,
H(t)↓ = Π1, while H(0)↓ = Π2(IR) ◦ ()1,0. We will show that this example of a discontinuity is
prototypical.

For want of a better word, we call the linear subspace H of A0 regular in case H↓ is of
least degree, i.e., dimH↓ ∩ Πm = max{dimH↓, dimΠm} for all m. Equivalently, H is regular iff
H↓ ∩ Πm = H↓ or Πm, for all m. Thus, H is regular iff, for some m, Π<m ⊆ H↓ ⊂ Πm. We note
in passing that this m provides the local approximation order of H.

The importance of this notion of regularity for the continuity of the map H 7→ H↓ is illustrated
by the following.

(6.2) Lemma. If each H(t) is regular and P = limH(t)↓ exists, then P is regular.

Proof: Since H(t)↓ converges, its dimension is eventually constant, and, since each is regular, this
implies the existence of some m so that, for all small t, each H(t)↓ is scale-invariant and satisfies
Π<m ⊆ H(t)↓ ⊂ Πm, hence their limit P satisfies the same conditions.

(6.3) Lemma. The finite-dimensional subspace H is regular if and only if, for some regular,

scale-invariant polynomial space P , P
∗

is minimally total for H.

Proof: Since (H↓)↓ = H↓, H is regular iff H↓ is regular, hence (4.3)Theorem proves the “only
if”.

For the converse, let P be a regular scale-invariant polynomial space. Then, with m such that
dimΠ<m ≤ dimP < dimΠm, we must have Π<m ⊆ P↓ = P ⊂ Πm. Assume that P

∗
is minimally

total for H. Then H contains a dual set
(
hα

)
|α|<m

for
(
p∗α

)
|α|<m

, with pα := ()α. Consequently,
for all |α|, |β| < m, Dβhα(0) = cαδαβ for some cα 6= 0, hence hα↓ = cα()α. This implies that
Π<m ⊂ H↓. To see that H↓ ⊂ Πm, observe that, since P

∗
is total for H, we can find, for any

h ∈ H\0, some p ∈ P so that p∗h 6= 0, and, since P ⊂ Πm, this implies that h↓ ∈ Πm.

(6.4) Theorem. The set of regular (finite-dimensional) subspaces of A0 is open and dense (in the
space of all finite-dimensional subspaces, and in the “gap topology”).

Proof: Assume that H is regular. We have to prove that all K in some neighborhood of H are
also regular. But this follows from (6.3)Lemma and from the fact that if Λ is minimally total for
H, then it is minimally total for all nearby K. This proves that the set of regular H is open.

To prove that the set of regular subspaces is dense, let H be an arbitrary finite-dimensional
subspace and let P be an arbitrary regular scale-invariant polynomial space of the same dimension
as H. Consider the map R : P → H ′ : p 7→ p∗|H . If R is 1-1, H itself is regular, by (6.3)Lemma.
Otherwise, choose an orthonormal basis

(
rj

)n

1
for P whose first m terms span ker R. Then H

contains a dual set
(
hj

)n

m+1
for

(
rj

)n

m+1
, and this can be extended to a basis

(
hj

)n

1
for H. Define

kj := hj + εrj , all j. Then

〈ri, kj〉 =



εδij , i, j ≤ m;
0, i ≤ m < j;
(1 + ε)δij , i, j > m,
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i.e., the matrix
(〈ri, kj〉

)n

i,j=1
is lower block triangular with diagonal blocks εIm and (1 + ε)Im−n,

hence invertible for all positive ε. Consequently, P
∗

is minimally total for K := span
(
hj + εrj

)n

1
,

for all positive ε. This shows, with (6.3)Lemma, that every neighborhood of H contains regular
subspaces.

Remark. The proof actually shows that, in the set of all n-dimensional subspaces of A0, those for
which a fixed regular polynomial space is minimally total form an open and dense set.

(6.5) Corollary. The map H 7→ H↓ is continuous at H if and only if H is regular.

Proof: Assume that H 7→ H↓ is continuous at H. By (6.4)Theorem, we can find regular H(t)
with limt→0 H(t) = H, hence, by the assumed continuity, H↓ = limt→0 H(t)↓, thus H is regular by
(6.2)Lemma.

For the proof of the converse, assume, more precisely, that Π<k ⊂ H↓ ⊂ Πk. By (3.2)Lemma,
this implies the existence of a continuous linear projector Tk,H on A0 onto H which preserves
Taylor polynomials of degree < k, i.e., which satisfies TkTk,H = Tk. Since Tk,H is a continuous
linear projector, it carries any subspace K sufficiently close to H 1-1 onto H. Consequently, for
every f ∈ H, we can find in every such K an element g close to f which satisfies Tkg = Tkf . In
particular, g↓ = f↓ in case deg f↓ < k, hence Π<k ⊂ K↓ for any such K. Further, if deg f↓ = k, then
Tkg = 0, i.e., deg g↓ ≥ k, hence, since g is close to f , deg g↓ = k and g↓ is close to f↓. This shows
that, for such K and every p ∈ H↓, there is some q ∈ K↓ close to it, and, since dimK↓ = dimH↓
for such K, it follows that K↓ and H↓ are also close.

7. Hermite-Birkhoff interpolation

In this section, we consider interpolation by polynomials using interpolation conditions of the
form [θ]p(D), with [θ] the linear functional of point evaluation at θ and p a polynomial. More
precisely, we want to interpolate from some polynomial space Q, using the interpolation conditions

(7.1) Λ := Λ(Θ; (Pθ)) :=
∑

θ

[θ]Pθ(D) :=
∑

θ

{[θ]p(D) : p ∈ Pθ}.

For the analysis of this problem, observe that, in terms of (4.2),

(7.2) [θ]p(D)q = p∗Eθq = q∗(eθp), ∀p, q ∈ Π.

This implies that our interpolation problem, as specified by Q and Λ = Λ(Θ; (Pθ)), is correct if
and only if the dual problem of interpolation from H :=

∑
θ∈Θ eθPθ with interpolation conditions

Q∗ is correct. Therefore, (4.5)Theorem provides the following conclusions.

(7.3) Theorem. Given any finite set Θ ⊂ Cs and corresponding finite-dimensional polyno-
mial spaces Pθ for θ ∈ Θ, let H :=

∑
θ eθPθ. Then H↓ is a polynomial space of least degree

among all polynomial spaces from which interpolation with interpolation conditions Λ(Θ; (Pθ)) :=
span{[θ]p(D) : p ∈ Pθ; θ ∈ Θ} is correct.

In univariate Hermite-Birkhoff interpolation [LJR], one matches certain derivatives rather than
linear combinations of derivatives. Correspondingly, we will use the term Hermite-Birkhoff in-
terpolation in the multivariate context of (7.3)Theorem in case all the spaces Pθ have a homo-
geneous basis, i.e., are scale-invariant. If all the spaces Pθ are, in addition, D-invariant, then we
speak of Hermite interpolation.
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If each Pθ is D-invariant, then so is H :=
∑

θ eθPθ, therefore, by (3.12), so is H↓. In the
univariate case, it follows that H↓ = Πk for some k, since Πk is the only D-invariant polynomial
space of dimension k +1. Thus we obtain the wellknown fact that univariate Hermite interpolation
from Πk with k + 1 conditions is always correct.

8. Lagrange interpolation

The special case
Θ ⊂ IRs, Pθ = Π0, all θ

in (7.3)Theorem is particularly striking. The claim here is that, with

expΘ := span(eθ)θ∈Θ,

the polynomial space
ΠΘ := (expΘ)↓

is of least degree among all those from which interpolation at Θ is uniquely possible. (We are using
the fact that, for this case, H = H.) See (3.14) for a recipe for generating ΠΘ.
(8.1) Example. As a simple illustration, consider s = 2.

For #Θ = 1, ΠΘ = Π0.
For #Θ = 2, ΠΘ = Π1(IR) ◦ (λ·), with λ any nonzero vector parallel to the affine hull of Θ.
For #Θ = 3, ΠΘ = Π2(IR) ◦ (λ·), with λ any nonzero vector parallel to the affine hull of Θ, in

case that hull is a line. Otherwise, ΠΘ = Π1.
For #Θ = 4, ΠΘ = Π3(IR) ◦ (λ·), with λ any nonzero vector parallel to the affine hull of Θ, in

case that hull is a line. Otherwise, Π1 ⊂ ΠΘ ⊂ Π2. In that case, we can compute the barycentric
coordinates of one point with respect to the other three, say θ4 =

∑3
1 a(j)θj with

∑3
1 a(j) = 1.

On setting a(4) = −1, we thereby obtain the (essentially unique) quadratic homogeneous element∑4
1 a(j)(θj ·)2 of ΠΘ. Note that its span is a continuous function of Θ except when the four points

become collinear, since expΘ fails to be regular only in that case.
For the particular choice Θ = {0, θ, τ, θ+τ} with θ = e1, τ = αe2, the quadratic term becomes

((e1·)2 + (αe2·)2 − ((e1 + αe2)·)2) = −α()1,1,

hence ΠΘ = Π1,1, the space of bilinear polynomials. Correspondingly, the interpolation at Θ from
ΠΘ is, in this case, the tensor product of linear interpolation, as one would hope.

We now consider how ΠΘ changes with Θ. Since eθ+a = eθea, we conclude from (3.7)Propo-
sition that

(8.2) ΠΘ+a = ΠΘ, all a ∈ IR.

Further, since the limit at 0 of any H ⊂ A0 does not change under scaling,

(8.3) ΠaΘ = ΠΘ, all a ∈ IR\0.

Both of these facts could also be deduced directly from (3.14). More generally, if A is any matrix,
then eAθ = eθ ◦AT , hence, by (2.3),

ΠAΘ = ΠΘ ◦AT

for any invertible matrix A.
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More substantial changes in Θ may change ΠΘ substantially. In fact, the map Θ 7→ ΠΘ has
jumps, as can be expected from (6.5)Corollary. The simplest possible example occurs with s = 2
and #Θ = 3 (cf. (8.1)). Here ΠΘ = Π1 except when Θ is collinear, in which case ΠΘ = Π2(IR)◦(λ·)
for any λ not zero and parallel to the affine hull of Θ. In terms of the Gram-Schmidt algorithm
(5.4) for the construction of ΠΘ = (expΘ)↓, these jumps are due to the fact that, as Θ changes,
the degree of some qk↓ may jump even if we arrange the starting basis (pj) for ΠΘ in such a fashion
that the degree of each qk↓ is as small as possible.

Connected with this is the fact that, near a Θ at which the map jumps, our interpolation
scheme is badly behaved. Put positively, in that case, it is a much stabler thing to use ΠΘ when
matching data at some Θ′ near such Θ, rather than using ΠΘ′ . Thus in our simple example, it
would be better to interpolate at Θ from Π2(IR)◦ (λ·) in case the points in Θ are ‘nearly collinear’,
rather than from ΠΘ itself. In terms of the Gram-Schmidt algorithm (5.4), one would reject a
‘near-zero’ least term in favor of the next non-zero homogeneous term.

It seems natural to use (eθ)θ∈Θ in the role of the initial basis
(
pj

)
in the Gram-Schmidt

algorithm (5.4), making use of the fact that only the first few terms in the Taylor expansion of pk

are needed.
We can also use induction to construct the unique IΘf ∈ ΠΘ which agrees with f at Θ,

thereby obtaining its Newton form. For τ 6∈ Θ, this gives

IΘ∪τf = IΘf +
(1− IΘ)f(τ)
(1− IΘ)rτ (τ)

(1− IΘ)rτ ,

with rτ :=
(
eτ − TΘeτ

)
↓ the least term of the error when interpolating eτ from expΘ with respect

to (ΠΘ)∗. For, rτ ∈ ΠΘ∪τ\ΠΘ by (5.1)Proposition.

9. Osculation and coalescence

Our interpolation scheme IΘ depends on Θ nicely enough to allow for the existence of a limit
when some or all of the points in Θ coalesce in a nice enough manner. In that case, the limiting
situation often is Hermite interpolation, in the sense defined in Section 7.

Given that IΘ is characterized by ΠΘ and expΘ, it is natural, in light of the remarks following
(4.1)Lemma, to study the limiting situation by considering the limits (if any) of these two spaces,
as Θ approaches some limiting set T.

In the univariate case, ΠΘ = Π<#Θ, hence it does not change (assuming that Θ converges).
Further, expΘ converges to

expT,#T :=
∑
τ∈T

eτΠ<#τ

with #τ the multiplicity of τ , i.e., the number of points from Θ which coalesce at τ . In particular,
the limit always exists and does not at all depend on just how Θ approaches T.

The multivariate situation is much more complicated. Neither ΠΘ nor expΘ need to converge.
If, for example, s = 2 and Θ = {0, θ} and θ alternates between the two axes as it approaches 0, then
ΠΘ alternates between the span of ()0, ()1,0 and the span of ()0, ()0,1, hence does not converge. Even
if ΠΘ and expΘ converge, their limits strongly depend on the manner in which Θ approaches T. If,
for example, θ = θ′t + o(t) in the earlier example, then limt→0 ΠΘ = Π1(IR) ◦ (θ′·) = limt→0 expΘ.

Here is a more striking example. We take again s = 2, but take Θ = Θ(t) = {0, (t, 0), (t2, t3)}.
Then Θ is in general position, hence ΠΘ = Π1, therefore also limt→0 ΠΘ(t) = Π1. Further, each
expΘ contains ()0. In addition, expΘ contains t−1(e(t,0) − 1) t→0−−−−→ ()1,0. Finally, expΘ contains

t−3
(
e(t2,t3) − te(t,0) − (1− t)

)
t→0−−−−→ ()0,1 − ()2,0/2.
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Since expΘ is three-dimensional, this shows that

lim
t→0

expΘ = span
(
()0, ()1,0, ()0,1 − ()2,0/2

) 6= Π1 = limΠΘ.

In particular, lim expΘ is not even scale-invariant, hence the resulting limiting interpolation scheme
is not Hermite or Hermite-Birkhoff interpolation by our earlier definition. But lim expΘ is D-
invariant (as it has to be since each expΘ is D-invariant). After changing the point (t2, t3) in Θ to
(t2, t4), we still have ΠΘ = Π1, but now

lim
t→0

expΘ = span
(
()0, ()1,0, ()2,0/2

)
= (lim expΘ)↓ 6= Π1 = lim(expΘ)↓.

This shows that formation of the ‘least’ does not, in general, commute with limit formation, even
if both limits exist and are scale-invariant.

We postpone a full discussion of the general situation to a future paper and content ourselves
here with the following very simple case.

We assume that, more precisely, Θ = Θ(t) consists of the points θ(t), with θ(t) = θ(0)+θ′(0)t.
Consider first the special situation that Θ(0) consists of one point only. Then, in considering
limt→0 expΘ(t), we may as well assume that Θ(0) = {0} (see (8.2)), hence Θ(t) = Ξt, with Ξ :=
{θ′(0) : θ ∈ Θ}. Consequently, from (6.1), ΠΞ =

(
expΞ

)
↓ = limt→0 expΞt, while ΠΞt = ΠΞ. This

implies

(9.1) limΠΘ(t) = ΠΞ = lim expΘ(t)

in this simple situation.
The same argument handles the slightly more general situation described in the following

proposition.

(9.2) Proposition. Assume that each θ ∈ Θ = Θ(t) is of the form θ0 + θ1t. Then, for each
τ ∈ T := {θ0 : θ ∈ Θ}, the set Ξτ := {θ1 : θ0 = τ} has as many elements as there are θ ∈ Θ with
θ0 = τ , and lim expΘ =

∑
τ∈T eτΠΞτ .

Proof: The exponential space expΘ is the direct sum of the spaces eτ expΞτ t and these converge
to eτΠΞτ , by the earlier argument.

(9.3) Corollary. If, in addition, lim expΘ is regular, then IΘ converges (e.g., pointwise on Π) to
Hermite interpolation from P := (lim expΘ)↓ with interpolation conditions

∑
τ∈T[τ ]ΠΞτ (D).

Proof: From (6.5)Corollary, we conclude that the assumed regularity of lim expΘ ensures the
convergence of ΠΘ to P , and the rest follows from the remarks following (4.1)Lemma.

We have concluded from (6.1) that the exponential space exptΘ approaches the polynomial
space ΠΘ as t → 0. This polynomial space is finite-dimensional, scale-invariant, and D-invariant.
It would be very nice to know whether every finite-dimensional scale- and D-invariant polynomial
space arises in this way. For it would then be possible to view all (regular) osculation as coalescence.
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