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1. Introduction

This article was supposed to be on `multivariate splines'. An informal sur-
vey, taken recently by asking various people in Approximation Theory what
they consider to be a `multivariate spline', resulted in the answer that a
multivariate spline is a possibly smooth, piecewise polynomial function of
several arguments. In particular, the potentially very useful thin-plate spline
was thought to belong more to the subject of radial basis functions than in
the present article. This is all the more surprising to me since I am con-
vinced that the variational approach to splines will play a much greater role
in multivariate spline theory than it did or should have in the univariate
theory. Still, as there is more than enough material for a survey of mul-
tivariate piecewise polynomials, this article is restricted to this topic, as is
indicated by the (changed) title.

� Supported by the United States Army, the National Science Foundation, and the
Alexander von Humboldt Stiftung.
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The available material concerning the space

�
�
k;� = �

�
k;�(R

d)

of all pp (:= piecewise polynomial) functions in C(�)(Rd) of degree � k
with some partition � is quite vast, as is evidenced by the bibliography
Franke and Schumaker (1987) (which contains over 1100 items, yet, e.g.,
only skims the available engineering literature on �nite elements) and the
supplementary bibliographies in Schumaker (1988, 1991). This means that,
in an article such as this, it is only possible to sketch some of the ideas
underlying some of the recent developments in this area.
After a short section on notation, the major topics addressed here are:

(i) the BB-form;
(ii) the dimension of ��

k;�;
(iii) polyhedral splines;
(iv) the Strang-Fix condition;
(v) upper bounds for the approximation power of ��

k;�.

Of these, the BB- (:= Bernstein-B�ezier-) form is perhaps the most im-
mediately useful. Although approximation theorists became aware of it
(through the work of Farin and others in CAGD) in the early 1980's, it
should be much better known. For example, people in Finite Elements
could bene�t greatly from its use. For this reason, I am giving a rather
leisurely introduction to it, in the generality of functions of several (rather
than just one or two) variables.
The second topic, the dimension of ��

k;�, has been a major topic since
Strang published some conjectures concerning the bivariate case. It turned
out to be a hard problem, perhaps solvable only for `generic' partitions if at
all. However, it gives me the opportunity to illustrate further the use of the
BB-form in the process of indicating the di�culty of the problem.
Much e�ort has been expended in the last 15 years to understand and

make use of polyhedral splines, especially simplex splines and box splines.
These are multivariate generalizations of Schoenberg's highly successful uni-
variate B-spline. Although some beautiful mathematics has been, and is still
being, generated in pursuit of a better understanding, these multivariate B-
splines have not yet become standard tools for approximation. However (or,
perhaps, because of this), it is important to be aware of the basic idea un-
derlying them, if only because it is the only general principle available at
present for the construction of compactly supported pp functions of two or
more arguments of degree � k and in C(�) for � `near' k. Also, the recent
introduction, by Dahmen, Micchelli and Seidel, of what looks in hindsight
to be the `right' construction principle for a basis of simplex splines suitable
for a given triangulation, awakens new hope for the ultimate usefulness of
polyhedral splines.
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The Strang-Fix condition (as it is called in Approximation Theory) relates
the approximation power of the space spanned by the integer translates of
some compactly supported function ' to the behavior of its Fourier trans-
form b' `at' the discrete set 2�Zdn0. Since its formulation in the early 1970's
as the result of a mathematical analysis of the Finite Element Method, it has
been the main tool for the determination of approximation orders for shift-
invariant pp spaces (such as those generated from box splines, or those on
regular partitions). Recent understanding of the structure of shift-invariant
spaces has led to a better understanding of what underlies the Strang-Fix
condition.
The last section provides a simple discussion of the basic technique for

determining upper bounds for the approximation power of a pp space.

The omission of any discussion of parametric pp functions, such as curves
and surfaces, is likely to be remedied by an entire article on this topic,
perhaps in the next volume of this journal. It is to be hoped that another
major omission in the context of splines, the discussion of thin-plate splines
and other radial functions, will be similarly remedied. Finally, the discussion
of numerical methods for approximation by multivariate pp functions is
better postponed to a time when these are better understood.
Incidentally, with the exception of numerical methods and, perhaps, the

dimension question, none of the topics mentioned (as being discussed or
omitted here) appears in the early survey Birkho� and de Boor (1965) on
piecewise polynomial interpolation and approximation.
Finally, a comment concerning the term `multivariate'. To the annoyance

and confusion of statisticians, the term `multivariate' has become standard
in Approximation Theory for what statisticians (and, perhaps, others) would
call `multivariable'. It is too late to change this.

2. Polynomials

The collection of all polynomials in d arguments is denoted here by

� = �(Rd):

For multivariate polynomials, multi-index notation is standard. A multi-
index is, by de�nition, any vector with nonnegative integer entries. The
length of such a multi-index � is the sum of its entries,

j�j :=
X
i

�(i):

Further, � � � i� �(i) � �(i) for all i, and � < � i� � � � yet � 6= �.



4 C. de Boor

With x(i) the ith component of x 2 R
d, one uses the abbreviation

x� :=
dY

i=1

x(i)�(i); x 2 R
d; � 2 Z

d
+:

The notation

(�)� : Rd ! R : x 7! x�

for the monomial of degree � is convenient (though nonstandard). With
� 2 Z

d
+,

�� := ��� := spanf(�)� : � � �g

is the space of all polynomials of degree � �. For any integer k,

�k := ��k := spanf(�)� : j�j � kg

is the space of all polynomials of total degree � k. The spaces �<� and
�<k are de�ned analogously.
Many expressions simplify if one uses the normalized power function

[[�]]� : x 7! x�=�!;

with

�! :=
Y
i

�(i)!;

with the understanding that [[�]]� = 0 if � 2 Z
dnZd+. For example, with

�; �; �; � 2 Zd+, the Multinomial Theorem takes the simple form

[[x + y + � � �+ z]]� =
X

�+�+���+�=�

[[x]]�[[y]]� � � � [[z]]� : (2:1)

The multinomial theorem is immediate (by induction on the number of
summands in the sum on the left-hand side) once one knows it for two
summands. For two summands, though, it is just the special case p = [[�]]�

of the Taylor expansion

p(x+ y) =
X
�

[[x]]�D�p(y);

in which

D� := D
�(1)
1 � � �D

�(d)
d ;

(with Di di�erentiation with respect to the ith argument), hence

D�[[�]]�(y) = [[y]]���:

A more sophisticated example is provided by the Leibniz-H�ormander
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formula

p(sD)(fg) =
X
�

��
[[D]]�p

�
(sD)f

�
[[sD]]�g

concerning the di�erentiation of the product fg of two functions, in which s
is an arbitrary scalar, and p an arbitrary polynomial, p =

P
� [[�]]

�c(�) say,
therefore

p(D) :=
X

D�=�! c(�)

the corresponding constant-coe�cient di�erential operator.
Since D�[[�]]�(0) = ���, �k has dimension

dim�k = #f� 2 Z
d
+ : j�j � kg =

 
k + d

d

!
;

the last equality can be veri�ed, e.g., with the aid of the invertible map

f� 2 Z
d
+ : j�j � kg !

 
f1; : : : ; d+ kg

d

!
: � 7!

�X
i�j

(�(i)+1) : j = 1; : : : ; d

�
;

with
�X
d

�
the collection of all d-sets, i.e., all subsets of cardinality d, in X .

While there are various univariate polynomial forms available, there is,
aside from the (possibly shifted and/or normalized) power form, only one
multivariate polynomial form in general use, namely the BB-form, to be
discussed next. In particular, the equivalent of a Chebyshev form (or similar
form of good condition with respect to the max-norm on some domain) is,
as yet, not readily available. The BB-form illustrates that it is often good to
give up on the power form altogether in favor of forms which employ more
general homogeneous polynomials of the form x 7!

Q
y2Y y

Tx, with

yTx :=
X
i

y(i)x(i)

the standard inner product.

3. BB-form

The BB-form is, at present, the most e�ective polynomial form for work
with pp functions on a simplicial partition (or, more generally, a simploidal
partition). For, the BB-form of a polynomial, with respect to a given simplex

hV i := conv(V )

spanned by some (d+1)-set V � R
d, is symmetric with respect to the vertices

of that simplex, and readily provides information about the behavior of the
polynomial on all the faces hW i,W � V , of that simplex. This facilitates the
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smooth matching of two polynomial pieces across the intersection of their
respective simplicial cells. For more details than are (or can be) o�ered
here, see Farin (1986) (which concentrates on the bivariate case) as well as
de Boor (1987). The presentation here is based on the latter, albeit with
certain changes in notation. For the use of the BB-form in the treatment of
�nite elements, see, e.g., Luscher (1987).
The BB-form can be viewed as a generalization of the standard represen-

tation

p =
X
v2V

�vp(v)

of the linear interpolant to data given at a (d+1)-point set V � R
d in general

position, with �v = �v;V the unique linear polynomial which takes the value
1 at v and vanishes on

V nv := fw 2 V : w 6= vg:

In this connection, `general position' is tautological since it means nothing
more than that such a representation exists for every p 2 �1(R

d), hence is
necessarily unique since dim�1(R

d) = d+ 1 = #V .
The (d+ 1)-vector

�V (x) := (�v(x))v2V

provides the barycentric coordinates of x with respect to the point set
V . Equivalently, �V (x) is the unique solution of the linear systemX

v2V

�v(x) (v; 1) = (x; 1) 2 R
d+1; (3:1)

and this provides the opportunity to write out a formula for its components
�v(x) as a ratio of determinants and so explains the alternative name areal
coordinates.
The BB-form for p 2 �k employs all possible products of k of the linear

polynomials �v , v 2 V , with repetitions permitted, i.e., all the functions

��V : x 7! �V (x)
�

with � any multi-index (indexed by V , i.e., in ZV+) of length k. However, it
turns out to be very convenient to use the particular normalization

B� := B�;V :=

 
j�j

�

!
��V = j�j! [[�V ]]

�;

which arises when we apply the multinomial theorem (2.1) to obtain

1 = k![[
X
v2V

�v(x)]]
k =

X
j�j=k

B�(x): (3:3)
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Fig. 3.2. A cubic patch and its control net.

The fact that

#f� 2 ZV+ : j�j = kg = #f� 2 Z
d : j�j � kg = dim�k

implies that the collection (B�)j�j=k is a basis for �k since (i) any p 2 �k

can be written as a linear combination of products of k linear polynomials
(e.g., the linear polynomials x 7! x(i); i = 1; : : : ; d and x 7! 1); and (ii) any
linear polynomial can be written as a linear combination of the �v, v 2 V ,
hence �k � spanfB� : j�j = kg. The resulting representation

p =
X
j�j=k

B� bp;V (�)

for p 2 �k constitutes the BB-form (a form associated with the names of
Bernstein (Lorentz (1953; p. 51)), de Casteljau (1963, 1985), B�ezier (1970,
1977), Farin (1977, 1986, 1988), and perhaps others).
Since �v vanishes at all the points in V nv and is linear, it vanishes on

the simplex hV nvi spanned by these points. It follows that, for any subset
U of V , the restriction of B� to hUi is not the zero function if and only if
supp� � U . In particular, the only B� not zero on fvg = hfvgi is the one
with � = kiv , where

iv(u) := �vu; v 2 V:

With (3.3), this implies that Bkiv(v) = 1, hence further that

p(v) = bp;V (kiv); v 2 V:
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This fact and others have made it customary to associate, more generally,
the coe�cient bp;V (�) with the corresponding domain point

V� :=
X
v2V

v �(v)=j�j;

thereby obtaining the (B�ezier) control net

Cp := Cp;V;k := (V�; bp;V (�))j�j=k

for p. Note that supp � � U for some U � V if and only if V� 2 hUi.
Hence, on hUi, p is entirely determined by bp;V (�) with V� 2 hUi. To put
it di�erently, the restriction of p to hUi has the control net

Cp;U;k = (V�; bp;V (�))j�j=k;V�2hUi:

In particular, if

f =

�
p on hV i,
q on hW i,

(3:4)

for some p; q 2 �k, then f is continuous on hV i [ hW i if and only if

8f� 2 Z
V [W
+ : j�j = k; supp� � V \Wg bp;V (�jV ) = bq;W (�jW ):

Thus, if f is a continuous pp function of degree � k on some complex
(:= partition of some domain G � R

d into simplices) �, in formul�:

f 2 �0
k;�;

then it is uniquely describable in terms of its BB-net, bf . This is, by
de�nition, the mesh-function, de�ned on the union of all the domain points
V�, j�j = k, hV i 2 �, which, for each hV i 2 �, agrees with bp;V on the
points in hV i.
It is well worth stressing that, as d increases, the ratio of domain points

in the boundary of a hV i over the total number of domain points in hV i
increases for �xed k, reaching the limiting value 1 as soon as d > k. In
e�ect, with increasing d, the polynomial pieces in a pp function of �xed
degree � k become increasingly `super�cial', with more and more of their
degrees of freedom needed just to maintain continuity.

3.1. The BB-form as a k-fold di�erence

For a discussion of a smoother join as well as for its own sake, we need
to know how to di�erentiate the BB-form. For this, and for various other
properties, we observe the following striking

Fact 3.5 For ! 2 R
V , let !E denote the `di�erence operator' which acts on

the mesh-function c : ZV ! R by the rule

(!E)c :=
X
v2V

!(v)c(�+ iv):
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Then X
j�j=k

B�(x)c(�) = (�V (x)E)
kc(0):

Indeed,

(�V (x)E)
kc(0) =

X
u2V

X
v2V

� � �
X
w2V

�u(x)�v(x) � � ��w(x) c(iu + iv + � � �+ iw)

with exactly k summations, hence all summands are of the form �V (x)
�c(�)

for some � 2 Z
V
+ with j�j = k, and this particular summand occurs exactly�k

�

�
times. See Figure 3.13 for an illustration.

With this,X
j�j=k

B� bp;V (�) = p = (�VE)
kbp;V (0); p 2 �k :

With this formula in hand, di�erentiation of the BB-form requires nothing
more than the chain rule, as follows. If y 2 R

dn0, then

Dyp = Dy(�VE)
kc(0) = k(�VE)

k�1(Dy�VE)c(0):

We obtain the vector Dy�V by the observation that, by (3.1), �V (x+ ty) �
�V (x) = t�V (y), with �V (y) 2 R

V the unique solution ofX
v2V

�v(y) (v; 1) = (y; 0):

Hence, altogether,

Dyp = k
X

j�j=k�1

B�(�V (y)E)bp;V (�)

(3:6)

for p 2 �k and
X
v2V

�v(y) (v; 1) := (y; 0) 2 R
d+1n0:

For example, for two distinct points v; u 2 V ,

�V (v � u) = iv � iu;

hence

bDv�up;V (�) =
bp;V (�+ iv)� bp;V (�+ iu)

1=k
:

Repeated application of (3.6) provides the BB-form for any derivative of
p of the form DY p with Y any �nite subset of Rdn0 and

DY :=
Y
y2Y

Dy:

3.2. Smooth matching of polynomial pieces
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Since we now know how to obtain the BB-form of any derivative of a poly-
nomial p from the BB-form of p, we can describe the matching of derivatives
across the common interface hV \W i of two simplicial cells hV i and hW i.
Simply put, the derivative in question of the polynomial p on hV i and the
polynomial q on hW imust agree on hV \W i, i.e., their corresponding control
points with domain point in hV \W i must agree.
It is not hard to write speci�c smoothness conditions in the form of an

equality between the expressions, obtained by application of (3.6), for the
relevant control points (see, e.g., Chui and Lai (1987) and Chui (1988, The-
orem 5.1) or Farin (1986)) of the relevant derivatives. However, if the goal
is a C(�)-match, i.e., a matching of all derivatives of order � �, then the
uniformity of the BB-form permits a more unexpected formulation of the
corresponding smoothness conditions, as follows.
For p 2 �k and � 2 Z

V
+ with j�j � k, let

p� :=
X

j
j=k�j�j

bp;V (� + 
)B
:

These are the subpolynomials introduced in de Boor (1987); see also Farin
(1986; (2.5)). For example, if j�j = k, then p� is the constant polynomial
with value bp;V (�). Consequently, (3.4) is continuous if and only if p� = q�
for all � with supp � � V \W and j�j = k. As another example, if j�j = k�1,
then p� is the linear polynomial whose value at v 2 V is bp;V (�+iv), and, for
any y, its derivative Dyp� is the constant bDyp;V (�). Consequently, (3.4) is

in C(1) if and only if p� = q� for all � with supp � � V \W and j�j = k� 1.
Here is the general theorem.

Theorem 3.7 The pp function f , de�ned in (3.4), is in C(r) for some r � k
if and only if

8f� 2 Z
V
+ : supp � � V \W; j�j = k � rg p� = q�: (3:8)

In particular, since q�(w) = bq;W (�+riw) for each such � and each w 2 W ,

C(r)-continuity requires that

8f� 2 Z
V
+ : supp � � V \W; j�j = k�r; w 2 WnV g bq;W (�+riw) = p�(w):

(3:9)
Conversely, if our f is already in C(r�1), hence p� = q� for all � with
supp � � V \W and j�j = k � r + 1, then the conditions (3.8) are equiv-
alent to the conditions (3.9). In particular, (3.9) supplies a complete and
independent set of conditions for C(r)-continuity across hV \ W i in the
presence of C(r�1)-continuity. Consequently, the union over r = 0; : : : ; � of
these conditions constitutes a complete and independent set of conditions
for C(�)-continuity across hV \W i.
Note the remarkable uniformity of the conditions (3.9): The weights in

the right-hand side p�(w), considered as a linear combination of the BB-
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coe�cients bp;V (�) for p, depend only on w and r (and V ) and not on � or
k.
Note also that the smoothness conditions of order r, i.e., the conditions

(3.9), involve only control points of f in the �rst r `layers' along hV \W i.
Note �nally, that we might have, equally well, used the complementary
conditions

8f� 2 Z
V
+ : supp � � V \W; j�j = k � r; v 2 V nWg bp;V (� + riv) = q�(v):

(3:10)
In e�ect, the subpolynomials p� = q� with supp � � V \W and j�j = k� r
give a complete description of the behavior of all derivatives of f of order
� r on hV \W i, and enforcement of (3.9) and (3.10) makes certain that the
corresponding derivatives of p and q agree with these of f on hV \W i.
It is this remarkably explicit geometric connection between the control

points and the behavior `near' any particular face of hV i that makes the
BB-form so attractive for work with pp functions.
The simplest nontrivial case, r = 1, is of particular practical interest. It

requires that, for each � 2 Z
V
+ with supp � � V \ W and j�j = k � 1,

q�(w) = p�(w), i.e., that the control point (W�+iw
; bq;W (� + iw)) lie on the

(hyper)plane spanned by the control points (V�+iv
; bp;V (� + iv)), v 2 V , a

particularly nice geometric interpretation rightfully stressed in the CAGD
literature (see, e.g., Boehm, Farin and Kahmann (1984), Farin (1988) and
Hoschek and Lasser (1989)).

3.3. Simple examples

As an illustration of the strength and e�ciency of the BB-form, here is a
discussion of three standard topics concerning bivariate pp functions.

Quintic Hermite interpolant In bivariate quintic Hermite interpola-
tion, one matches value and �rst and second derivatives at three points,
thus using up eighteen of the available 21 =

�7
2

�
=
�k+d

d

�
degrees of freedom,

and then uses the remaining three degrees of freedom for a possible C(1)-
join with neighboring quintic patches. Here are the details, well known, but
particularly evident when discussed in terms of the BB-form.
Let d = 2, V = fu; v; wg, k = 5, and p 2 �k.
Then p(u) = bp(5iu).
Further, for � 2 V nu,

D��up(u) = bD��up(4iu) = 5(bp(4iu + i�)� bp(4iu + iu));

showing that the coe�cients bp(4iu + i�), � 2 V nu, are determined by
D��up(u), � 2 V nu and vice versa (once p(u) = bp(5iu) is known). More
than that, it shows that the tangent plane to p at u is the plane spanned
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Fig. 3.11. The quintic Hermite interpolant.

by the control points at and next to u. (This discussion actually applies for
arbitrary d and k.)
Finally, with �; � 2 V nu, all second derivatives are linear combinations of

the second derivatives of the form D�;� , of which there are exactly as many
as there are distinct points of the form 3iu+ i�+ i� , i.e., control points in the
second layer of control points near u, and, correspondingly, with the tangent
plane at u already determined, the speci�cation of all second derivatives of p
at u is equivalent to the speci�cation of all the control points in that second
layer. (Again, this discussion applies for arbitrary d and arbitrary k.)
In other words, the behavior of all derivatives of p at u of order � 2 is

determined by the subpolynomial

p3iu =
X
j
j=2

bp(3iu + 
)B
;

and it involves the control points in the zeroth, �rst and second layer for u.
Since d = 2 and k = 5, this `triangle' of control points associated with u
has no intersection with the corresponding coe�cient `triangles' associated
with the other vertices. This implies that one can freely specify value, �rst
and second derivatives of p 2 �5 at each of these three vertices, and this
speci�es the 18 control points in those `triangles', and leaves free exactly
one control point per edge. This control point is in the �rst layer for that
edge, hence determines the middle control point for that edge for any par-
ticular �rst derivative of p. Equivalently, for the control point associated
in this way with the edge hu; vi, it is the only piece of information for the
(linear) subpolynomial p2iu+2iv not yet speci�ed (and this is the only lin-
ear subpolynomial p� with supp � � hfu; vgi not yet completely speci�ed).
Consequently, if the control point is determined in such a way that it equals
the corresponding control point of the same derivative of a quintic Hermite
interpolant (to the same vertex data) in the triangle sharing this edge, then
the two quintic polynomials form a C(1) pp function. This can be achieved,
e.g., by specifying the normal derivative at the midpoint of that edge (or
any other particular, transversal, derivative).
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Fig. 3.12. The Clough-Tocher split and the Powell-Sabin split.

To re-iterate, the point of this example (and the two to follow) is not to
derive a new result, but to show how easily these known results are derivable
in the language of the BB-form.

Clough-Tocher Here, one subdivides a given triangle arbitrarily into
three, by connecting its vertices to an arbitrarily chosen point in the in-
terior. Prescribing the tangent plane at each vertex determines the vertex
control points and the next-to-vertex control points (see the points marked
� in Figure 3.12).
That leaves the points marked x still undetermined, hence allows match-

ing of some transversal derivative at some point. Traditionally, this has
been the normal derivative at the midpoint, with the value either given,
or else estimated from the vertex information. In this way, value and �rst
derivatives along an edge are entirely determined by information speci�ed
on that edge. Hence C(1) matching across that edge is ensured provided the
abutting triangle is handled in the same way.
That leaves the control points marked o . These must be determined

so that the C(1) conditions hold across the interior edges. At this point,
the uniformity of the BB-form comes into play, as follows. One determines
the unknown control points to be the control points (with respect to the
triangle(s) to which they are assigned) of the unique quadratic polynomial
for which the six points on the dot-dashed triangle are the control points
(with respect to the triangle to which they are assigned, i.e., the dot-dashed
triangle). This can be done by one application of the de Casteljau algorithm
to evaluate the given BB-form of this quadratic polynomial at the `dividing'
point chosen in the interior; see the next subsection for details. The resulting
control points will satisfy the C(1)-conditions since they represent a piecewise
quadratic which is even in C(2). In particular, the resulting piecewise cubic
is C(2) at the interior vertex (in addition to being C(1) everywhere).

Powell{Sabin There is a corresponding construction of a piecewise quad-
ratic C(1) element, the Powell-Sabin macro-element. Here, one subdivides
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the triangle into six pieces, starting with some interior point as an additional
vertex, but connecting it not only to the vertices, but also to a point on each
edge. But, as we shall see, this has to be done just right, to ensure a C(1)

match between such macro-elements.
As before, prescription of the tangent plane at each (exterior) vertex pins

down vertex and next-to-vertex control points (marked � in Figure 3.12),
leaving a `Y' of control points (marked o). The C(1)-conditions across the
interior edges determine all but the interior vertex one, and that will nec-
essarily have to lie in the plane spanned by the three control points next to
it.
With this, the element is C(1), and any �rst derivative is piecewise linear

along an (exterior) edge, with its extreme values determined explicitly by
the given tangent planes at the two vertices of interest. The middle corner of
this piecewise linear function is also determined by this information, but in
ways that depend strongly on the choice of that the interior vertex and the
additional vertex on the edge, as well as on the particular derivative direc-
tion. Since only one particular transversal derivative needs to be matched in
order to achieve C(1) across the edge, choose a particular direction and then
make certain that the interior and the additional edge vertices are so cho-
sen that this particular transversal derivative is actually linear (i.e., has no
active interior vertex). Powell and Sabin do this by choosing the midpoint
of the edge as the edge vertex and, correspondingly, the interior vertex as
the intersection of midpoint normals, i.e., as the center of the circumscribed
circle. This makes the derivative in the direction normal to the edge linear.
More generally, pick, in each macro-triangle to be, the interior vertex in

such a way (e.g., as the center of the inscribed circle) that the line from
it to the corresponding point in any neighboring triangle cuts the common
edge at some point strictly between the two common vertices, and use this
intersection point as the additional vertex on that edge. Then the three new
control points along that midline, as the average of two triples of points with
each triple on a straight line, lie themselves on a straight line, thus ensuring
C(1).

3.4. Evaluation of the BB-form

As a �nal advertisement for the BB-form, I discuss the de Casteljau algo-
rithm (de Casteljau (1963)) for its evaluation. This algorithm obtains the
value p(x) by carrying out the k-fold application of the di�erence operator
�V (x)E to the mesh-function bp, as described in Fact 3.5. Since only the
value of (�V (x)E)

kbp at 0 is wanted, we only require (�V (x)E)
k�1bp at �

with j�j = 1, (�V (x)E)
k�2bp at � with j�j = 2, : : :, bp at � with j�j = k. It

is instructive to visualize the entire discrete (d+ 1)-simplex of mesh points
� involved here, as is done in Figure 3.13. For j = k � 1; k � 2; : : : ; 0, the
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Fig. 3.13. The mesh-point simplex for evaluation.

algorithm derives the `layer' of values associated with j�j = j from the layer
associated with j�j = j + 1, with each value computed as exactly the same
averave of the corresponding d-simplex of values in the next layer.
As a remarkable bonus, the calculations provide (Goldman (1983)), si-

multaneously, the BB-form for p with respect to W := (V nv) [ x for any
particular v 2 V : If we denote by c the mesh-function whose values at
�, j�j � k, are being generated during the algorithm from the numbers
c(�) := bp;V (�), j�j = k, then

bp;W (�+ (k � j�j)iv) = c(�); �(v) = 0:

This is another e�ect of the uniformity of the BB-form. As we evaluate the
BB-form of some polynomial at some point, we are simultaneously evaluating
all associated subpolynomials at the same point. On the other hand, the
coe�cient bp;V (�) is the value at v of the subpolynomial p���(v)iv. See the
discussion of the Clough-Tocher element in the preceding section for a ready
application of this.
The evaluation at x of a particular derivative, of the form DY with the

entries of the sequence Y taken from V , proceeds similarly, except that,
during the �rst #Y steps, one applies the di�erence operators �V (y)E cor-
responding to the entries y of Y , and uses the `evaluation' di�erence operator
�V (x)E only for the remaining k�#Y steps. Of course, since any two such
di�erence operators commute, one is entitled to apply the relevant di�erence
operators in any order. In particular, it might be most e�cient and stable to
apply the k�#Y `evaluation' operators �rst, leaving the application of the
`di�erentiation' operators for the remaining #Y layers, which are smaller.
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Finally, the de Casteljau algorithm in no way relies on the fact (except,
perhaps in the argument for its stability) that the weights ! in the di�erence
operator !E sum to one. If we employ it with some arbitrary weight vector
! instead of with �V (x), we obtain the number

Hp(!) :=
X
j�j=k

bp(�)k![[!]]
�;

i.e., the value at ! of the unique homogeneous polynomial Hp on R
d+1 for

which Hp(�V (x)) = p(x) for all x 2 R
d. In conjunction with (3.6), this leads

to the formul�

k!

(k� �)!

X
j�j=k��

Hp�(�V (y))B� = D�
yp =

k!

(k � �)!

X
j�j=k��

p�HB�
(�V (y))

of Farin (1986; Thm. 2.4, Cor. 2.5), sometimes stated with somewhat less
care.

4. The space �
�
k;�

While automotive and aerospace engineers have been working with tensor
product spline functions since the early 1960's and structural engineers have
been working with pp �nite elements just as long, mathematicians in Ap-
proximation Theory began to study spaces of multivariate pp functions of
non-tensor product type seriously only in the 1970's.
The initial focus was the `spline' space

��
k;�

(also denoted by S�k(�)) of all pp functions of degree � k in C(�) with
partition �. Here, in full generality, � is a collection of `cells', i.e., closed
convex sets �, with pairwise disjoint, nonempty interiors, whose union is
some domain G � R

d of interest, and ��
k;� consists of exactly all those

f 2 C(�)(G) for which fj� 2 �k(�) for all � 2 �. Any such space is contained
in the space

�k;� =: ��1
k;�

of all pp functions of degree � k with partition �. However, as soon as we
impose some smoothness condition, i.e., as soon as � � 0, the `cells' of � are
chosen to be polytopes, i.e., the convex hull of a �nite set (the vertex set
for the cell), since the task of matching polynomial pieces across the common
boundary of two such cells becomes too di�cult otherwise. Further, the
partition � is taken to be regular in the sense that the intersection of two
cells is the convex hull of the intersection of their vertex sets. In the simplest
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case, � is a complex, i.e., a regular partition consisting of simplices. Such
a partition is often called a triangulation even when d > 2.
Initially, there were high hopes that it would be possible to generate a the-

ory of these spaces to parallel the theory of univariate splines (as recorded,
e.g., in Schoenberg (1969), de Boor (1976, 1978), Schumaker (1981) and
Powell (1981)). For example, here is a list of desirable goals, from Schu-
maker (1988, 1991):
1. Explicit formul� for the dimension of spline spaces;
2. Explicit bases consisting of locally-supported elements;
3. Convenient algorithms for storing and evaluating the splines, their

derivatives, and integrals;
4. Estimates of the approximation power of spline spaces;
5. Conditions under which interpolation is well-de�ned;
6. Algorithms for interpolation and approximation.

However, the experience gained so far has led to some doubt as to whether
these goals are likely to be achieved fully even in the bivariate case.
It is also not clear whether the restriction to polynomials of total degree

� k is reasonable a priori. On a cell which is the cartesian product �1��2 of
lower-dimensional cells �1 and �2, it seems, o�hand, more reasonable to use
elements from the tensor product �k(�1) 
 �k(�2) of polynomials of total
degree � k on those lower-dimensional sets. For example, in a bivariate
context, a typical practical partition involves triangles and quadrilaterals,
and, in such a setting, the restriction to polynomials of total degree � k
seems reasonable only if one �rst re�nes the partition, by subdividing each
quadrilateral into triangles. This does have the advantage of uniformity and,
if properly done, may produce partitions which support locally supported
smooth pp functions of smaller degree than did the original partition. In
fact, for a general partition, this is certain to be so if even the triangles
are subdivided appropriately. On the other hand, as of this writing and
as a consequence of the early dominance of tensor product methods, most
commercially used software packages for surface design and manufacturing
can only handle partitions with quadrilateral cells and, correspondingly,
bicubic, or biquintic, polynomial pieces.

4.1. The dimension of ��
k;�

When � = �1, then dim��
k;� = dim�k(R

d) � #�. However, already for

� = 0, there is no hope for a formula for dim��
k;�, except in the simplest

case, when � is a triangulation. In this case, the BB-nets for the polynomial
pieces of f 2 �0

k;� associated with two neighboring cells, hV i and hW i,
necessarily agree at all domain points in the intersection hV i \ hW i = hV \
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W i. Consequently, the map

f 7! bf

from f to its BB-net sets up a 1-1 correspondence between �0
k;� and all

scalar-valued functions on the mesh

Ak;� := fV� : j�j = k; hV i 2 �g:

In particular,

dim�0
k;� = #Ak;�:

For � > 1, one would think of ��
k;� as the linear subspace of �0

k;� singled

out by the C(�)-conditions across facets, hence could, in principle, deter-
mine its dimension as the di�erence between dim�0

k;� and the rank of the

collection of C(�)-conditions. While, as we have seen, it is easy to specify
this rank for the collection of all C(�)-conditions across one facet, it is, in
general, very di�cult to determine the rank of all conditions, as a simple
example below will illustrate. Already for � = 1, there are real di�culties in
ascertaining dim��

k;�. Strang's articles (1973, 1974) called attention to this

by providing a conjecture concerning dim��
k;� in the bivariate case, namely

that the lower bound in the following theorem, due to Schumaker, is the
exact dimension for `generic' triangulations.

Theorem 4.1 Let � be a �nite triangulation in R
2, let VI , EI denote the

collection of its interior vertices and edges, respectively. Further, for each
v 2 VI , let Ev denote the collection of all edges having v as an endpoint,
and denote by ~Ev � Ev those with di�erent slopes.

Then

dim��
k;��( dim�k+dim�k���1 �#EI�(k

2+3k��2�3�)=2�#VI) 2 [� : : ~�];

with

� :=
X
v2VI

k��X
j=1

(�+ j + 1� j �#Ev)+

and ~� de�ned in the same way, but with Ev replaced by ~Ev.

(Here and elsewhere, [a : : b] speci�es the (closed) interval with endpoints
a and b, since the more customary notation [a; b] is also used for the divided
di�erence at two points as well as for the matrix with columns a and b.) See
Schumaker (1979 (1984)) for a proof of the lower (upper) bound.
Perhaps the simplest example indicating that it is not possible to be more

precise than this is provided by consideration of dim�1
2;�, with the partition

� obtained by connecting the four points of a (convex) quadrilateral with
some point in its interior. Assume �rst that the interior point was chosen
`generically', in which case the four interior edges for � have four distinct
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Fig. 4.2. Generic and related nongeneric partitions.

slopes, as in the left half of Figure 4.2. In search for some f 2 �1
2;�n�2,

we consider the BB-net for f . We assume without loss that f vanishes on
the bottom triangle, and have indicated this in Figure 4.2 by drawing a
`�' at the six domain points in that triangle for the BB-net for f . Now,
as discussed in the last paragraph of subsection 3.2 above, C(1)-continuity
requires the coplanarity of the four control points associated with each of
the shaded quadrilaterals. In particular, this forces all the control points
in the �rst layer outside the edges of the bottom triangle to be zero, and
this is also indicated in the �gure. O�hand, the control points associated
with the two top corners are freely choosable except that the control point
associated with the midpoint of the top edge (the one left blank) must lie
on the plane spanned by the three control points to the left as well as on
the plane spanned by the three control points to the right. In the generic
case, this imposes one constraint on the two vertex control points, and we
conclude that dim�1

2;� = 7 in this case.
The same conclusion can be reached when the interior vertex lies on one

but not the other of the two diagonals of the quadrilateral, as shown in the
middle of Figure 4.2. In terms of that �gure, the domain point in the middle
of the upper edge lies on the straight line through the domain points of the
two zero control points to the right of it, hence the corresponding control
point must be zero. Since its domain point does not lie on the straight line
through the domain points of the two zero control points to the left of it,
this implies that also the remaining control point associated with the upper
left shaded quadrilateral, the vertex control point, must be zero. The other
upper vertex control point, however, is freely choosable.
Finally, if that interior vertex happens to be the intersection of the two

diagonals of the quadrilateral (as shown in the right of Figure 4.2), then the
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argument just given shows that the control point associated with the middle
of the upper edge must be zero, and both upper vertex control points are
freely choosable. Hence, dim�1

2;� = 8 in this case.
For comparison, for this particular example, we have just one interior

vertex, v, and #Ev = 4, while, in the three distinct cases, # ~E = 4; 3; 2.
Correspondingly, � = (1 + 1 + 1 � 4)+ = 0, while ~� = 0; 0; 1 in the three
cases. Thus, for this example and in these three cases, the theorem is sharp
in the sense that it amounts to the assertion that

(7; 7; 8)� 7 2 [0 : :(0; 0; 1)]:

The arguments used in this example illustrate how, in general, one might
go about to determine dim��

k;�. As already stressed, one rightly thinks of

��
k;� as the subspace of �0

k;� characterized by the C(�)-conditions. A pp

function on the triangulation � is in C(�) precisely when it is in C(�) on
any two simplices of � which share a whole facet, i.e., whose vertex sets
di�er only by one point. For this reason, ��

k;� is linearly isomorphic to all
the mesh-functions bf on Ak;� which, for each such simplex pair, satisfy the
corresponding conditions (3.9) across their common facet for r = 1; : : : ; �.
Moreover, for each such facet, this provides a maximally linearly indepen-
dent set of C(�)-conditions imposed across one such facet. However, con-
ditions across di�erent (but neighboring) facets may well be linearly de-
pendent. For example, Figure 4.2 shows four C(1)-conditions involving the
control point at the interior vertex. Yet, since they all require that their
respective control points lie on a certain plane, it takes just two such con-
ditions to ensure that all �ve control points involved lie on the same plane,
hence the other two conditions must be dependent on them. Unfortunately,
it is in general impossible to provide a basis for the collection of all smooth-
ness conditions imposed. This has made it a challenge (unsolved so far and
not likely to be solved in any generality) to determine the dimension of ��

k;�
when � > 0.
As the example shows, there is no hope to express dim��

k;� entirely in

such combinatorial terms as the number of (interior or boundary) vertices,
edges, triangles. However, even the hope that, as in this case, the counting of
such things as nonparallel edges incident to a vertex might su�ce is dashed
by a more subtle example due to Morgan and Scott in 1977 (Morgan and
Scott (1990)), which uses the partition � obtained by placing a scaled and
re
ected copy of an equilateral triangle concentrically inside that triangle
and connecting each vertex of the inner triangle to the two closer vertices
of the outer triangle. As Morgan and Scott show (and use of the BB-net
would show more readily), for this �, dim�1

2;� = 7 while, for any generic

perturbation �0 of �, dim�1
2;�0 = dim�2 = 6.
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Since the arguments for Theorem 4.1 make essential use of the fact that
one knows how to construct bases for arbitrary univariate spline spaces,
while we do not know how to do this in general for bivariate spline spaces,
it is unlikely that one can obtain even the trivariate analogon of Theorem
4.1. An observation of Alfeld (in Alfeld, Schumaker and Sirvent (1992),
see Schumaker (1991)) makes this precise. The latter reference gives a very
good summary of what is presently known about dim��

k;�. In particular,

the recent paper Alfeld, Whiteley and Schumaker (199x) gives �rst speci�c
results concerning the dimension of trivariate spline spaces. In addition,
Billera and his colleagues initiated and pursued an investigation of dim��

k;�
for arbitrary d with tools from Homological Algebra, which, however, forces
them to consider only the case of a `generic' � (which is di�cult enough);
see Billera (1988, 1989), Billera and Haas (1987) and Billera and Rose (1989,
1991). For example, Billera (1988) shows Strang's conjecture for � = 1 to
be correct `generically', using a speci�c construction of Whiteley (1991) to
make certain that a certain determinant is not identically zero, hence must
be generically nonzero.
Those with an urge to get a feeling for the di�culties one might encounter

in considering arbitrary partitions should try the still unsolved problem of
providing a formula for dim�1

3;�(R
2) for arbitrary �.

4.2. Subspaces of ��
k;�

It is not only the di�culty of determining dim��
k;�, hence of constructing

bases for ��
k;�, that makes the full space more of a challenge than of real

interest. For certain partitions, ��
k;� contains elements of no use for ap-

proximation (such as the half-space spline R
d ! R : x 7! (hy; xi � c)k+,

with y a certain element of Rd and c some constant). Also, if k is large
enough compared with �, then there are often subspaces of ��

k;� with the

same `approximation power' as ��
k;� itself.

For example, in the Finite Element method, bivariate pp spaces studied
by �Zeni�sek (1970, 1973, 1974) and recently termed super-spline spaces in
Chui and Lai (1987) consist of all elements of ��

k;� which, at each vertex,

are in C(2�). In terms of the BB-net, the motivation (as explained, e.g.,
in Farin (1986)) for consideration of such subspaces is simple: if, for some
� 2 �, we want to determine the polynomial piece p = fj� on � so as to have

a C(�)-join with its neighboring pieces, then its �rst � layers of control points
along each edge of � are determined by the polynomial piece adjoining that
edge. However, certain of these control points are in the �rst � layers of two
edges, hence in danger of being overdetermined. For any two edges, these
endangered control points are contained in the �rst 2� layers for the vertex
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common to those two edges (and in no smaller set of layers). Hence, the
enforcement of C(2�)-continuity at the vertices ensures consistency for the
competing smoothness conditions.
There are certain questions to be raised here. First, it has become popular,

because of the success of the multigrid method, to work with a sequence of
spaces, each obtained from the previous one by re�nement, typically looking
at the space of the same type on a re�nement of the triangulation of the
preceding one. If the spaces involved are super-spline spaces, then, because
of the higher smoothness requirement at the vertices, the �ner space will
fail to contain the rougher space. Also, the degree k must be large enough
so that the only questions of consistency of the smoothness conditions are
of the kind described. For d = 2, this means that k � 4�+ 1. Analogous
considerations for arbitrary d (though not using BB-nets) led Le M�ehaut�e
(1990) to the conclusion that k � 2d� + 1 was necessary (and su�cient)
to provide such a super-spline space, in which an approximation can be
constructed in a totally local way, with the approximant f on the simplex �
depending only on data on �.
Such degrees are daunting. One response is to give up on using arbitrary

triangulations, but use instead triangulations � obtained, e.g., by proper
re�nement of a given triangulation. The standard example is the Clough-
Tocher element (although, because of its greater smoothness at its interior
vertex, the space spanned by it does not properly re�ne, either). The ex-
treme case of partitions (in general, they are not even triangulations) which
will support compactly supported pp functions of low degree compared with
the required smoothness are those provided by the multivariate B-spline
construct to be discussed next.

5. Multivariate B-splines

The central role ultimately played by the univariate B-splines of (Curry
and) Schoenberg (1946, 1966) in univariate spline theory (as illustrated,
e.g., in Schoenberg (1969), de Boor (1976), or Schumaker (1981)) provided
the impetus for the study of a certain multivariate generalization. O�hand,
this generalization is based on preserving the somewhat obscure property
of the univariate B-spline illustrated in Figure 5.1 and originally proved, in
Curry and Schoenberg (1966), for the purpose of showing that the univariate
B-spline is log-concave. Here are the details.
The univariate B-spline M(�j�) with knot sequence � = (�0; : : : ; �s)

is, by one of its de�nitions, the Peano kernel for the divided di�erence (func-
tional) [�0; : : : ; �s], i.e., it is the unique function for which

[�0; : : : ; �s]f =

Z
R

M(tj�)Dsf(t) dt=s!
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Fig. 5.1. A quadratic B-spline as the shadow of a tetrahedron.

for all su�ciently smooth functions f . On combining this with the Hermite-
Genocchi formula (N�orlund (1924)) for the divided di�erence, Schoenberg
obtains the equationZ

R

M(tj�)Dsf(t)dt=s! =Z
�
Dsf :=

Z 1

0

Z �1

0
� � �
Z �s�1

0
Dsf(�0 + �1r�1 + � � �+ �sr�s)d�s � � �d�2 d�1

(with r�j := �j � �j�1, as usual). This equation implies that M(tj�) is the
(s� 1)-dimensional volume of the set

f� 2 Ts : �0 + �1r�1 + � � �+ �sr�s = tg;

with Ts the standard s-simplex

Ts := f� 2 Rs : 1 � �1 � �2 � � � � � �s � 0g:

This simplex has vertices vj :=
Pj

i=1 ii, j = 0; : : : ; s. Hence,

P : Rs ! R : � 7! �0 + �1r�1 + � � �+ �sr�s

is the a�ne map which carries vj to �j , all j. Consequently, M(�j�) repre-
sents the distribution (aka continuous linear functional on C(R))

f 7!
Z
Ts
f � P

which carries f to the sum over Ts of its extension f � P to a function on
R
s. This is illustrated in Figure 5.1 for s = 3.
Once this is recognized, there is much scope for generalization (initiated
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in Schoenberg (1965) and followed up in de Boor (1976), Micchelli (1980),
de Boor and DeVore (1983) and de Boor and H�ollig (1982)), as follows. For
a given (convex) body B in R

s and a given a�ne map P : Rs ! R
d, one

de�nes the corresponding B-spline MB as the distribution f 7!
R
B f � P .

MB is nonnegative and has support P (B). MB is a function exactly when
P (B) � R

d has interior, but is always a function on a�ne(P (B)). When B
is a polytope (i.e., the convex hull of some �nite set), then MB is called a
polyhedral spline. A polyhedral spline is pp, with the junction places the
images under P of the (d� 1)-dimensional faces of B. This is most readily
seen by using Stokes' theorem, as follows.
After a shift, if need be, we can assume that P is a linear map. Then

Dz(f � P ) = (DPzf) � P:

Further, with MB merely a distribution, DyMB is de�ned by integration by
parts,

DyMBf = �MB(Dyf):

Therefore, for arbitrary y 2 R
d and for any z 2 P�1fyg,

(DPzMB)f = �
Z
B
(DPzf) � P = �

Z
B
Dz(f � P )

(5:2)

= �
Z
@B
zTn (f � P ) = �

X
F2B(s�1)

zTnF MF f:

Here, @B is the (oriented) boundary of B. Since B is a polytope, @B is
the essentially disjoint union of the collection B(s�1) of facets (i.e., (s� 1)-
dimensional faces) of B. Further, n is the outward unit normal, and nF is
its constant value on the facet F .
Iteration of this recurrence relation shows that any derivative of MB of

order > s� d is a linear combination of distributions of the form MF with
F itself less than d-dimensional. Hence, on any connected component of the
complement of the set [

F2B(d�1)

P (F );

(with B(d�1) the collection of all (d � 1)-dimensional faces of B), MB is
a polynomial of degree � k := s � d. Further, if the polytope B is in
general position and P is onto Rd, then any d-face of B is mapped by P
to a set with interior, hence all derivatives of MB of order � s � d are L1
functions. This means that, generically, MB is pp of degree � s� d and in
C(s�d�1). However, in the interest of obtaining a relatively simple partition
(or a partition which is not too di�erent from a given one), one may have
to choose B in a special way, and then MB may not be maximally smooth.
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For, as the argument shows,MB is in C(s�m�1), with m the smallest integer
for which P maps every F 2 B(m) to a set with interior.
For example, if B = [0 : :1]s is the s-dimensional unit cube, and �j := P ij ,

j = 1; : : : ; s, and �0 := P0 = 0, then the bivariate B-spline MB may have
discontinuities in some derivative across any image under P of an edge of B,
i.e., across any segment of the form [

P
�2U � : :

P
�2W �], with U ,W arbitrary

subsequences of the sequence (�0; : : : ; �s). If each of these segments is also
required to be part of the so-called square mesh (or, two-direction mesh)
(formed by all the lines of the form fx 2 R

2 : x(j) = hg with j 2 f1; 2g and
h 2 Z), then, up to scaling and certain translations, each �j is necessarily one
of the two unit vectors i1, i2. This implies that some face of B of dimension
ds=2e is mapped by P to a set without (2-dimensional) interior, hence MB

is, at best, in C(s=2�2) if s is even. The situation is slightly better for the
three-direction mesh (formed by all lines of the form fx 2 R

2 : x(j) = hg
with j 2 f1; 2; 3g and h 2 Z, and x(3) := x(1) � x(2)). Now, �j may, in
addition to i1 and i2, also take on the value i3 := i1+ i2. In fact, if s = 3 and
�j = ij , j = 1; 2; 3, then the resulting MB is the hat function, the standard
linear �nite element at times associated with Courant because of Courant
(1943).
Of course, one uses not just one polyhedral spline but linear combinations

of su�ciently many to e�ect good approximation. At a minimum, this
means that, after normalization if need be, such a collection (MB)B2B of
polyhedral splines should form a partition of unity, i.e., satisfyX

B2B

MB = 1:

This is quite easy to achieve, as follows. Simply choose the collection B so
that its elements are pairwise essentially disjoint, and their union is a set
of the form R

d � C for some suitable (convex) (s � d)-dimensional set C.
For, in that case,

P
B2BMB(x) = vols�d(C), while MB � 0 in any case. If

B = [0 : :1]s (henceMB is a `box spline') and P is given by an integer matrix,
then the collection MB(�� j), j 2 Z

d, of all integer shifts can be shown to be
a partition of unity. Standard arguments concerning approximation order
(see the next section) require, more generally, that it be possible to write
every p 2 �<r as a linear combination of the MB, B 2 B, and this is
clearly satis�ed for r = 1 in case (MB)B2B forms a partition of unity. Much
work has gone into constructing B for which r is large, preferably as large
as s � d + 1 (it could be no larger), or, alternatively, into determining the
largest possible such r for a given B.
It is also important to have the means for reliable evaluation of such a

polyhedral spline. It was only after the discovery of stable recurrence rela-
tions that univariate B-splines became an e�ective computational tool. In
the same way, work on polyhedral splines only 
ourished after Micchelli
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(1980) established stable recurrence relations for simplex splines. The fol-
lowing generalization, to arbitrary polyhedral splines, was given in de Boor
and H�ollig (1982); it connects MB to the MF with F a facet of B:

(s� d)MB(Pz) =
X

F2B(s�1)

(z � aF )
TnF MF (Pz); (5:3)

with aF an arbitrary point in a�ne(F ). But there are only very few bodies
B for which such a facet F is again a body of the same kind: the simplex, the
cube or `box', and the (polyhedral) cone. The corresponding B-splines are
called, correspondingly, simplex spline, box spline, and cone spline (the
last introduced in Dahmen (1979)). Each of these can be described entirely
in terms of P (B). In other words, any such B-spline is (a shift of)MB with
B a standard simplex, e.g., h0; i1; : : : ; isi, a standard box := [0 : :1]s, or a
standard cone Rs+, and P a suitable linear map (which is speci�ed as soon
as we know P ij for all j).
A �rst survey of multivariate B-splines is given in Dahmen and Micchelli

(1983), an introduction to both simplex splines and box splines is given in
H�ollig (1986). The only book so far devoted entirely to multivariate B-splines
is de Boor, H�ollig and Riemenschneider (1992), a book on box splines. Box
splines also �gure prominently in the survey Chui (1988).
The �rst multivariate B-spline (and for some still the only one worthy

of this appellation) was the simplex spline. If v0; : : : ; vs is the sequence of
vertices of the underlying simplex, then Mhv0;:::;vsi is, up to a scale factor,
uniquely determined by the sequence � := (Pvj)j. For this reason, it has
become standard to denote the typical simplex spline by

M(�j�);

with � some �nite sequence in R
d (the images under P of the vertices of

the underlying simplex) and to choose the underlying simplex to have unit
volume, whence

R
Rd
M(�j�) = 1. This is entirely consistent with the notation

M(�j�) used earlier for the univariate B-spline.
The relative neglect simplex splines have experienced in spite of the fact

that they were the �rst multivariate B-splines to be considered may have
several reasons.
Box splines, like their univariate antecedents, the cardinal B-splines (see

Schoenberg's monograph (1969)), lead very quickly to a rich mathematical
theory, as exempli�ed by the beautiful results of Dahmen and Micchelli
(announced in Dahmen and Micchelli (1984)). This theory concerns mainly
the shift-invariant space spanned by the integer translates of one box spline,
and these are pp spaces with a regular partition �, and this regularity makes
them amenable to Fourier transform techniques.
In contrast, the simplex splines were expected to be the multivariate equi-

valent of the general univariate B-spline, of use in the understanding and
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handling of arbitrary multivariate spline spaces. Since any polytope is the
essentially disjoint union of simplices, any multivariate B-spline is a linear
combination of simplex splines. However, use of the recurrence relations
for the evaluation of simplex splines turned out to be much more expensive
than had been hoped, for the simple reason (Grandine (1986)) that the
recurrrence relation connects a d-variate simplex spline to at least d + 1
simplex splines of one order less, while it connects it to at most two simplex
splines of one order higher. Further, as already pointed out, for an arbitrary
partition � and positive �, ��

k;� may not contain any compactly supported
element unless k is very much larger than �. This means that, for k `close' to
�, only some suitably chosen re�nement �0 of � may support enough simplex
splines so that their span has some approximation power. Unfortunately,
the �rst scheme proposed for this (in Goodman and Lee (1981), Dahmen and
Micchelli (1982) and H�ollig (1982)) did not lead to a spline space with easily
constructed quasi-interpolant schemes. However, very recently, a scheme has
become available, in Dahmen, Micchelli and Seidel (1992), that, in hindsight,
appears to be the `right' one. It is based on the multivariate `B-patch' of
Seidel (1991). Given a triangulation �, it provides a suitable basis of simplex
splines for the space �k�1

k;�0 , with �0 obtained, in e�ect, as the roughest
partition that contains all the cells for the simplex splines employed, thus
known, at least in principle, once these simplex splines are in hand. These
simplex splines are all possible ones of the form

M(�jV �);

where

(i) V is a (d+ 1)-set with hV i 2 �;
(ii) � 2 Z

V
+ with j�j = k;

(iii) V � := fvj : 0 � j � �(v); v 2 V g;
(iv) the points vj are obtained, by choosing, for each v in the vertex set

V (�) := [hV i2�V for �, k additional points v1; : : : ; vk 2 R
d, and

setting v0 := v.

The only condition imposed upon the choice of these additional points vj ,
j = 1; : : : ; k, v 2 V (�), is the following. For any (d+1)-set V with hV i 2 �,


V;k :=
\
fh(v�(v))v2V i : � 2 Z

V
+; j�j � kg 6= ;:

Under these assumptions, Seidel (1992) proves that, for any f 2 �k�1
k;� ,

f =
X
V;�

M(�jV �)w(V; �)FV (V
��i); (5:5)

with w(V; �) certain explicitly known normalizing factors, with

� � i : v 7! �(v)� 1;
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Fig. 5.4. With k = 1, the triangle hV i (lightly shaded and partially covered by)
the set 
V;k (strongly shaded), and the meshlines (heavy) for one of the

three related simplex splines.

hence #V ��i = j�j = k, and with FV the blossom of the polynomial which
agrees with f on the cell hV i 2 �. This means that FV is the unique
symmetric multi-linear form with k arguments for which

f(x) = FV (x; x; : : : ; x); 8x 2 hV i:

The proof uses the validity of this result for any f 2 �k , as established in
Dahmen et al. (1992).
This is a most surprising and unexpected result. It captures completely

the now standard formula for the coe�cients in the B-spline expansion of an
arbitrary univariate spline as stated in de Casteljau (1963) and beautifully
explained in Ramshaw (1987, 1989). It is to be hoped that the computational
aspects of this formulation are equally favorable.

6. Approximation order

The treatment of approximation order given here follows in part the survey
article de Boor (1992). The approximation power of a subspace S of �k;�

is, typically, measured in terms of the mesh(size)

j�j := sup
�2�

diam �

of the partition � and the smoothness of the function f being approximated.
The typical result is a statement of the following sort:

dist(f; S) � constj�jrkDrfk;

in which kDrfk is some appropriate measure of the derivatives of order r
of f , and const is independent of f and �, provided � is chosen from some
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appropriate class of partitions. For example, the constant may, o�hand,
depend on the uniformity measure

R� := sup
�2�

inffM=m : Bm(x) � � � BM (y)g

(with Bm(x) the open ball with center x and radius m), hence be indepen-
dent of � only if � is restricted to have R� � R for some �nite R.
A particularly simple version of the approximation order of S is the fol-

lowing. One considers not just S, but the entire scale (�hS)h with

�hS := ff(�=h) : f 2 Sg;

and says that S has (exact) approximation order r and writes

ao(S) = r;

provided

(i) for all `smooth' f , dist(f; �hS) = O(hr);
(ii) for some `smooth' f , dist(f; �hS) 6= o(hr).

By itself, (i) provides a lower bound for ao(S), and such lower bounds
are usually established by exhibiting a particular approximation scheme, Qh

say, for which ranQh (= the range of Qh) lies in � �hS, and kf � Qhfk �
consthrkDrfk. So-called quasi-interpolants are a favorite choice for the Qh,
of which more below.
By itself, (ii) provides an upper bound on ao(S), and there seems to be

only duality (as made clear below) to establish such upper bounds.
Of course, for completeness, this de�nition requires speci�cation of the

norm in which the distance is to be measured, i.e., the normed linear space
X in which the approximation is to take place. Typically, it is Lp(G),
with G some suitable subset of Rd, and p = 1; 2 or 1. It also requires
a de�nition of `smooth'. Often, it is su�cient to mean `polynomial' or
`complex exponential'. However, it usually means that some norm involving
certain derivatives is �nite.
Somewhat more generally, one considers an indexed family (Sh)h of spaces,

and denotes its approximation order, correspondingly, by ao((Sh)h) to stress
the fact that it is not (necessarily) obtained by scaling. In the latter situa-
tion, it turns out to be helpful to consider Sh to be of the form

Sh =: �hS
h:

If Sh is independent of h, we are back to the scaling case which, therefore,
is also referred to as the stationary case, to distinguish it from the more
general nonstationary case.
Questions of approximation order, particularly from (multivariate) pp

spaces, have been dominated by what in Approximation Theory is called the
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Strang-Fix theory, which, on careless reading, seems to imply that ao((Sh)h)
cannot be � r unless �<r � \hSh. In fact, such a conclusion can only be
reached in the stationary case, and even there only for very special situ-
ations. See Example 6.4 below for a simple counterexample; Ron (1991,
1992) and Beatson and Light (1992) treat approximation order speci�cally
in the absence of polynomial reproduction. A similarly careless reading has
also led to the wrong conclusion that, if all of �<r is contained in each Sh

locally, uniformly in h, then ao((Sh)h) � r. Even in the stationary case, the
situation is more subtle, as is indicated in the subsections to follow. A �rst
counter-example to that careless reading was given in de Boor and H�ollig
(1983).
In any event, the Strang-Fix theory applies only to the stationary case

Sh = �hS, with S a shift-invariant space.

6.1. Shift-invariance

A collection S of functions on Rd is called shift-invariant if it is invariant
under any translation by an integer, i.e., if

g 2 S =) g(�+ �) 2 S for all � 2 Z
d:

For example, the space ��
k;� is shift-invariant in case � is shift-invariant

in the sense that

� + � = � for all � 2 Z
d:

Examples of interest include the three- and four-direction mesh popular in
the bivariate box spline literature.
With `0(Z

d) the collection of all �nitely supported sequences c : Zd 7! R,
the simplest (nontrivial) example of a shift-invariant space is the space

S0(') :=

�X
�2Zd

'(� � �) c(�) : c 2 `0(Z
d)

�
of all �nite linear combinations of the shifts of one (nontrivial) function, '.
This is the shift-invariant space generated by ' since it is the smallest
shift-invariant space containing '. Following de Boor, DeVore and Ron
(1991), its closure, in whatever norm the context suggests, is denoted by

S(') := S0(')

and called the principal shift-invariant, or PSI, space generated by '.
For example, approximation by box splines has been discussed almost en-
tirely in terms of the scale (�hS('))h with ' a box spline.
More generally, if � is a �nite collection of functions on R

d, then one
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de�nes

S0(�) :=
X
'2�

S0(')

and calls

S(�) := S0(�)

the �nitely generated shift-invariant, or FSI, space, and calls � its set
of generators. The structure of PSI and FSI spaces in L2(R

d) is detailed in
de Boor et al. (1991, 1992a), with particular emphasis on the construction
of generating sets for a given FSI space having good properties (such as
`stability' or `linear independence').
It is natural to consider approximations from S(') in the form

'�c :=
X
�2Zd

'(� � �) c(�) (6:1)

for a suitable coe�cient sequence c. However, o�hand, such a sum makes
sense only for �nitely supported c, and one of the technical di�culties in
ascertaining the approximation order of S(') derives from the fact that,
in general, S(') may contain elements which cannot be represented in the
form '�c for some sequence c, with the series '�c converging in norm. This
is a problem even in the present context, where ' is, typically, some pp
�nite element and, in particular, compactly supported, hence the sum (6.1)
converges pointwise (and even uniformly on compact sets) for arbitrary c.
To give a simple example, from de Boor DeVore Ron (1992a), take for ' the
Haar function, speci�cally ' := �

[�1::0)
� �

[0::1)
, with �

I
the characteristic

function of the set I . Then S(') = �0;Z \L2(R) and, in particular, �
[0::1)

2

S('). However, if the equation �
[0::1)

= ' � c is to hold even only in some

weak sense, e.g., in the sense of pointwise convergence, then necessarily
c(�) = c(0)+ (�� :5)0+, all � 2 Z, and ' � c fails to converge in norm.

6.2. Quasi-interpolants

In the spline and �nite-element literature, lower bounds for ao((Sh)h) are
usually obtained with the aid of a corresponding sequence (Qh)h of linear
maps, with ranQh � Sh, which is a `good quasi-interpolant sequence of
order r' in the sense of the following de�nition.

De�nition 6.2 (Qh)h is a good quasi-interpolant sequence of order
r if it satis�es the following two conditions:

(i) uniformly local: For some h-independent �nite ball B and all x 2 G,
j(Qhf)(x)j � constkfjx+hBk;

(ii) polynomial reproduction: Qhf = f for all f 2 �<r .
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For example, if (')'2� is a stable and local partition of unity, i.e.,

k
X
'2�

j'jk1 <1; sup
'2�

diam supp' <1;
X
'2�

' = 1;

then (�hQ�1=h)h with

Q : f 7!
X
'2�

' f(�')

and �' 2 supp', all ' 2 �, is a good quasi-interpolant sequence of order 1.
As a more substantial example, it is part of the attraction of (5.5) that it

provides an expansion of any f 2 �k in the form

f =
X
V;�

M(�jV �)w(V; �)�V;�(f); (6:3)

with each �V;� an explicitly known linear functional on �k. In particular
(see Dahmen et al. (1992)) it is possible, as in the univariate case, to specify
points �V;� so that the Schoenberg operator

Qf :=
X
V;�

M(�jV �)w(V; �)f(�V;�)

reproduces every f 2 �1. Since �V;� necessarily lies in the support of
M(�jV �) and this support is compact (and of the size of hV i), it follows that
(�hQ�1=h)h is a good quasi-interpolant sequence of order 2. In fact, Dahmen
et al. (1992) are able to lift the entire univariate quasi-interpolation argu-
ment (see, e.g., de Boor (1976)) to their multivariate setting, by showing
the uniform linear independence of the functions M(�jV �)w(V; �) which, in
conjunction with (5.5), implies that any norm-preserving extension of �V;�
from�k(hV i) to some linear functional �V;� , all V and �, provides a bounded
linear projector

P : f 7!
X
V;�

M(�jV �)w(V; �)�V;�(f)

onto the span of the simplex splines involved, and now, (�hP�1=h)h is a good
quasi-interpolant sequence of order k + 1.
The term `quasi-interpolant' is used in the �nite element literature (see,

e.g., Strang and Fix (1973)) to stress the fact that Qhf does not necessar-
ily match function values at all the nodes of the �nite elements used, but
`merely' reproduces certain polynomials. For a recent survey of the use of
quasi-interpolants in spline theory, see de Boor (1990).
To recall, the standard use made of such a good quasi-interpolant sequence

is to observe that, for arbitrary f and arbitrary g 2 �<r ,

jf(x)�Qhf(x)j = j(1�Qh)(f � g)(x)j � constk(f � g)jx+hBk;

which provides a bound on kf � Qhfk in terms of how well f can be ap-
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proximated from �<r on a set of the form x + hB, giving the error bound
constBhrkDrfk in which kDrfk measures the `size' of the rth derivatives
of f and which provides the desired O(hr). If our space X is Lp for some
p <1, then this argument has to be 
eshed out a bit (see, e.g., Jia and Lei
(1991)).
There are certain costs associated with the quasi-interpolant approach,

even when one only considers shift-invariant spaces with compactly sup-
ported generators. For example, it works, o�hand, only with integer values
of r. Also, o�hand, it requires that \hSh contain some non-trivial polyno-
mial space. The arti�ciality of this last restriction is nicely illustrated by
the following simple example, from Dyn and Ron (1990):

Example 6.4. Let d = 1, p = 1, and let Sh be the span of the hZ-
translates of the piecewise linear function

'h : x 7!

�
x+ 1 ; 0 � x < h ;
0 ; otherwise.

Thus Sh consists of certain piecewise linear functions, with breakpoint se-
quence hZ, but the only polynomial (hence the only analytic function) it
contains is the zero polynomial. In particular, it is not possible to construct
a quasi-interpolant of positive order for it. Nevertheless, the approximation

Qhf :=
X
j2hZ

'h(� � j)f(j)

has the error

f �Qhf = f �
X
j2hZ

�
h
(� � j)f(j) +

X
j2hZ

(�
h
� 'h)(� � j)f(j);

with �
h
the characteristic function of the interval [0 : :h). Since k�

h
�

'hk1 = h,

kf �Qhfk1 � !f (h) + kfk1h;

where !f is the modulus of continuity of f . It follows that Qhf converges to
f uniformly in case f is uniformly continuous and bounded. More than that,
if f has a bounded �rst derivative, then kf � Qhk1 � (kDfk1 + kfk1)h,
giving approximation order 1 in the uniform norm.

This example could still be treated by an appropriate generalization of the
notion of quasi-interpolant. Speci�cally, one could consider a good quasi-
interpolant sequence (Qh) of positive local order r, meaning that (Qh) is
uniformly local and that

Qhf = f + O(kfjBk jhj
r)

on hB for any f 2 �<r. However, the point is made that a sequence (Sh)h
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of spaces does not need to contain a nontrivial polynomial space in order to
have positive approximation order.
Finally, the quasi-interpolant approach is of no help with upper bounds.

6.3. The Strang-Fix condition

The literature on ao(S(')) for a compactly supported ' has been domi-
nated by the Strang-Fix condition. It concerns the behavior of the Fourier
transform b' : � 7!

Z
R
d
' e��

of ' at the points of 2�Zd. Here and below,

e� : R
d ! C : x 7! exp(i�Tx)

denotes the exponential function (with purely imaginary frequency i�). In
one of its many versions, the Strang-Fix condition reads as follows.

De�nition 6.5 We say that ' satis�es SFr in case

(i) b'(0) = 1;
(ii) For all multi-indices � satisfying j�j < r we have D� b' = 0 on 2�Zdn0.

Its importance derives from the following theorem (see Schoenberg (1946)
for d = 1 and Strang and Fix (1973) for the general case), in which we use
the convenient notation

'�0f :=
X
j2Zd

'(� � j)f(j)

for the semidiscrete convolution of the two functions ' and f even if it
requires further discussion of just what exactly is meant by it when the sum
is not (locally) �nite. Also, for any set X of functions on Rd, we denote by

Xc

the compactly supported functions in X .

Theorem 6.6 For ' 2 L1(Rd)c, the following are equivalent:

(a) '�0 is degree-preserving on �<r , i.e., '�
0p 2 p+�<deg p, for all p in

�<r;
(b) ' satis�es SFr.

The proof is via the Poisson summation formula (for which see, e.g., Stein
and Weiss (1971; p. 252)). Starting with Strang and Fix (1973), the theorem
is used to construct a good quasi-interpolant sequence (Qh) of order r with
ranQh � �hS('). More than that, it forms part of an argument that seems
to show that ao(S(')) � r if and only if '= b'(0) satis�es SFr. The precise
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statement of this equivalence for X = L2(R
d) (see Strang and Fix (1973))

involves, unfortunately, a restricted notion of approximation order called
`controlled' approximation.
For X = L2(R

d), the recent paper de Boor et al. (1991) contains a com-
plete characterization of the approximation order of a not necessarily sta-
tionary scale of closed shift-invariant spaces. A crucial ingredient is the
following theorem from the same reference, in which PSf denotes the or-
thogonal projection of f onto S, hence dist(f; S) = kf � PSfk.

Theorem 6.7 Let S be a closed shift-invariant subspace of L2(R
d), and let

f; g 2 L2(R
d). Then

dist(f; S) � dist(f;S(PSg)) � dist(f; S) + 2 dist(f;S(g)):

This theorem shows that the approximation power of a general shift-
invariant subspace of L2 is already attained by one of its PSI subspaces,
provided one can, for given r, supply an element g 2 L2(Rd) for which
ao(S(g)) > r. But that is easy to do, as follows.

Lemma 6.8 There are simple functions g (e.g., the inverse Fourier trans-
form of the characteristic function of some small neighborhood of the origin)
for which, for any r,

dist(f; �hS(g)) = o(hrkfkW r
2 (R

d)):

Here,

kfkW r
2 (R

d) := k(1 + j � j)r bfk2:
For a directed family (�hSh)h with each Sh a PSI space, de Boor et al.

(1991) provides the following characterization of the approximation order,
in which

�' := 1�
j b'j2
[ b'; b'] =

P
�2Zdn0 j b'(�+ 2��)j2P
�2Zd j b'(�+ 2��)j2

;

T
d is the d-dimensional torus, i.e.,

T
d := [�� : :�]d

with the appropriate identi�cation of boundary points, and

[f; g] : Td ! C : x 7!
X
�2Zd

f(x+ 2��)g(x+ 2��)

is the very convenient bracket product of f; g 2 L2(R
d).

Theorem 6.9 For any ('h)h in X := L2(Rd),

ao((�hS('h))h) � r () sup h




 �'h

(h+ j � j)2r





L1(Td)

<1:
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This result focuses attention on the behavior of �'h near 0, hence, if b'h
is bounded away from zero near 0 (uniformly in h), it focuses attention on
the ratios b'h(�+ 2��)= b'h ; � 2 Z

dn0: (6:10)

Here is a typical corollary (from the same reference) which shows the
relationship of this characterization to the Strang-Fix condition.

Corollary 6.11 If ' 2 L2(Rd), and 1= b' is essentially bounded near 0, andb' 2 W �
2 (U) for some � > r+ d=2 and some neighborhood U of 2�Zdn0, and

if ' satis�es SFr, then ao(S(')) � r.

Finally, as a consequence of Theorem 6.7 (and a good understanding of
the structure of FSI spaces), de Boor et al. (1992a) obtains the following
result which �nishes a job left undone in Strang and Fix (1973) (see de Boor
et al. (1992a) for historical commentary).

Theorem 6.12 The approximation order in L2(Rd) of the FSI space S(�)
with � � L2(Rd) is already attained by some PSI space S(') with ' 2 S0(�).

In particular, if � consists of compactly supported functions, then the
`super element' ' of the theorem is also compactly supported. This fol-
lows, more explicitly, from a representation of the Fourier transform of PSg
as a sum of the form

P
'2� �' b', in which the �' are ratios of 2�-periodic

functions, each a linear combination of products of functions of the form
[ b'; b ] with �;  2 � [ fgg. Now, for any particular r, it is possible to
choose g compactly supported and such that ao(()S(g)) � r, while all the
elements of � are compactly supported by assumption. This means that,
with such a choice for g, each �' is the ratio of two trigonometric polyno-
mials, hence, there are trigonometric polynomials Tg, T', ' 2 �, so that

TgdPSg =
P

'2� T' b'. This implies that the inverse Fourier transform of

TgdPSg is in S0(�) and generates the same shift-invariant space as does PSg,
hence may be taken as the desired `super-element'.

The paper de Boor and Ron (1991) deals with approximation from PSI
spaces in L1(Rd). The results are surprisingly similar in form, even if, due
to the greater di�culties expected in this norm, there is a gap between lower
and upper bounds for the approximation order obtained.
The main tool is Ron's (1991) surprisingly simple observation that, since

'�0f = f�0' 8 f 2 S(') (6:13)

(as hinted at in Chui, Jetter and Ward (1987)), therefore

'�0e� � e��
0' = '�0(e� � f)� (e� � f)�0'; 8 f 2 S(')

(recall that e� : x 7! exp(i�Tx)), and this leads to the conclusion that

k'�0e� � e��
0'k1 � 2k'�0k1 dist1(e� ;S(')); (6:14)
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with

k'�0k1 := k
X
�2Zd

j'(� � �)j k1:

Since (as pointed out by A. Ron)

'�0e� � e��0'

e�
� c+

X
�2Zdn0

b'(� + 2��) e�;

and the left-hand side has the same norm as k'�0e� � e��
0'k1, this throws

new light on the connection between ao(S(')) in L1 and the behavior of b'
`at' 2�Zdn0, and provides both upper and lower bounds for ao((S('h))h).
As to lower bounds, these are obtained (in de Boor and Ron (1991)) by

the approximation

f(�) =
Z
Rd

e� bf=(2�)d � Z
Rd

"� bf=(2�)d
(and a related one), with

"� := '�0e�=
X
�2Zd

'(�)e��

an approximation from S(') to e� suggested by (6.14). In particular, the
following theorem is proved there, in which S(') is not the norm-closure of
S0(') in L1(Rd) but, in e�ect, the largest shift-invariant space containing
S0(') and satisfying (6.13). Also, the `size' of the rth derivatives of f is
measured in terms of its Fourier transform, as follows. It is assumed that f
is `smooth' in the sense that its Fourier transform is a Radon measure for
which

kfk(r) := k(1 + j � jr) bfk1 <1;

with the su�x `1' intended to indicate that the total variation of the measure
in question is meant.

Theorem 6.15 Assume that k'h�
0k <1 for every h. Then, for any posi-

tive �,

dist(f; �hS('h)) � hr (2�)�d kfk(r) A + o(hr)

with

A := sup
h

X
�2Zdn0




 1

(hr + j � jr)

b'h(�+ 2��)b'h




L1(B�)

:

Since this theorem gives ao((�hS('h))h) � r only if A <1, this focuses,
once again, attention on the behavior near zero of each of the ratiosb'h(�+ 2��)= b'h ; � 2 Z

dn0

mentioned already in (6.10). Speci�cally, in the stationary case, if this ratio
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is a smooth function in a neighborhood of 0, then the �niteness of A would
require the ratio to have a zero of order r at 0, and conversely, provided b'
has some decay. From this vantage point, the Strang-Fix condition SFr is
seen to be neither necessary nor su�cient for ao(S(')) � r, but to come
close to being necessary and su�cient for appropriately restricted '.
The striking observation (6.14) actually provides more immediately an

upper bound on the approximation order (see Ron (1991)). The main result
of de Boor and Ron (1991) concerning this is the following.

Theorem 6.16 Let ('h) be an indexed collection of elements of X :=
L1(Rd). Assume that suph k'h�

0k <1, and that � 2 R
d.

If dist(e�; �hS('h)) = O(hr), thenX
�2Zdn0

j b'h(h� + 2��)j2 � const� h
2r:

In particular, then

j b'h(h� + 2��)j � const�h
r for all nonzero � in Z

d:

Note that nothing is said here about b'h(0) (which is particularly impor-
tant if b'h(0) is zero). On the other hand, it is easy to recover from this the
rest of SFr in the stationary case, i.e., in case 'h = ', for all h.

6.4. Upper bounds

Upper bounds for ao((Sh)h) have to be fashioned separately for each case.
available. However, one always employs duality, which provides the following
well-known observation.
If Y is a linear subspace of the normed linear space X , and � 2 X� with

� ? Y (i.e., � is a continuous linear functional on X which vanishes on all
of Y ), then, for any x 2 X and any y 2 Y , �x = �(x � y) � k�kkx� yk,
hence j�xj � k�k dist(x; Y ). In other words,

� ? Y =) dist(x; Y ) �
j�xj

k�k
:

For example, Ron's upper-bound argument mentioned in the preceding
subsection is based on the linear map f 7! '�0f � f�0' which vanishes on
all of S(').
As a more direct example, consider ao(S) for

X = L1(G); S = ��
k;�:

Assume without loss of generality that G is the d-dimensional cube,

G = C := [�1 : :1]d;

let � be any cell in the partition �, and let g be any nontrivial homogeneous
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polynomial of degree k+1. If 
 is the error in the best L2(�)-approximation
to g from �k , then the mapping

� : L1 ! R : f 7!
Z
�

f

(i) is a bounded linear functional;
(ii) is orthogonal to S, since all � sees of f 2 S is its restriction to �, and

on � each f 2 S is just a polynomial of degree � k;
(iii) satis�es �g =

R
� 

 > 0.

Now consider �hf :=
R
� 
f(h�). Then

(i) �h is a bounded linear functional, with h-independent norm

k�hk =
Z
�
j
j = � signum(
);

where signum(
) : x 7! signum(
(x)).
(ii) �h ? Sh := �hS, since g 2 Sh is of the form f(�=h) for some f 2 S.
(iii) Using the homogeneity of g, one computes that

�hg =

Z
�

g(h�) = hk+1

Z
�

g = hk+1�g

with �g > 0.

So, altogether,

dist(g; Sh) � hk+1(�g=� signum(
));

showing that ao(��
k;�) � k + 1.

If we try the same argument for p <1, we hit a little snag. Take, in fact,
p at the other extreme, p = 1. There is no di�culty with (ii) or (iii), but
the conclusion is weakened because (i) now reads

(i)0 k�hk = supf2L1
j
R
� 
f(h�)j=kfk1 � k
j�k1 supf2L1(�)

R
� jf(h�)j=kfk1;

and the best we can say about that last supremum is that it is at most h�d

since
R
� f(h�) =

R
h� f=h

d. Hence, altogether, k�hk � const=hd. Thus, now
our bound reads

dist 1(g; Sh) � hk+1const=(const=hd) 6= o(hk+1+d)

which is surely correct, but not very helpful.
What we are witnessing here is the fact that the error in a max-norm

approximation is indeed localized, i.e., it occurs at a point, while, for p <1,
the error `at a point' is less relevant; the error is more global; one needs to
consider the error over a good part of G. Further, in the argument below,
I need some kind of uniformity of the partition �, of the following (very
weak) sort (in which jAj denotes the d-dimensional volume of the set A, and
C continues to denote the cube [�1 : :1]d):
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Assumption 6.17 There exists an open set b and a locally �nite set I � R
d

(meaning that I meets any bounded set only in �nitely many points) so that

(�) b + I is the disjoint union of b+ i, i 2 I , with each b+ i lying in some
� 2 � (the possibility of several lying in the same � is not excluded);
(�) for some const > 0 and all n, j(b+ I)\ nCj � constjnCj.

For example, any uniform partition of R satis�es this condition. As an-
other example, if d = 2 and � is the three-direction mesh, then � consists
of triangles of two kinds, and taking b to be the interior of one of these
triangles and I = Z

2 guarantees (�), while (�) holds with const = 1=2. On
the other hand, Shayne Waldron (a student at Madison) has constructed a
neat example to show that the Assumption 6.17 is, in general, necessary for
the conclusion that ao(��

k;�) � k + 1. The example uses � = �1 and arbi-

trary k, d = 1, G = [�1 : :1], p = 1, and � obtained from Z by subdividing
[j : : j + 1] into 2jjj equal pieces, j 2 Z.
With Assumption 6.17 holding, de�ne � as before, but with b replacing

the element � of �. Further, assume without loss that C � G, and de�ne

�hf :=

Z
b


X
i2Ih

f(h �+i);

where

Ih := fi 2 I : b+ i � C=hg:

This gives

(i)1

k�hk � sup
f2L1

P
i2Ih

R
b+i j
jjf(h�)jP

i2Ih

R
h(b+i) jf j

= k
jbk1=h
d;

using the fact that the union b+ Ih is disjoint.
Hence, we have not worsened our situation here. Neither have we sacri-

�ced (ii) because, by assumption, each b+i lies in the interior of some � 2 �,
and therefore

R
b 
f(h � +i) = 0 for every f 2 Sh. But we have materially

improved the situation as regards (iii), for we now obtain

(iii)1

�hg =

Z
b


X
i2Ih

g(h �+i) = hk+1
Z
b


X
i2Ih

g = hk+1 const#Ih

with

#Ih = jb+ Ihj=jbj � constjC=hj=jbj= const=hd:

With this, our conclusion is back to what we want:

dist 1(g; Sh) � (hk+1const=hd)=(const=hd) 6= o(hk+1):
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Note that this lower bound on the distance only sees S as a space of pp's
of degree � k, hence is valid even when we take the biggest such space, i.e.,
the space �k;� of all pp functions of degree � k on the partition �. For
this space, it is not hard to show that the approximation order is at least
k + 1, since approximations can be constructed entirely locally. Thus,

ao(�k;�) = k + 1:

For this reason, this is called the optimal approximation order for a pp
space of degree � k.
Such a local construction of approximations is still possible for �0

k;�,
hence,

ao(��
k;�) = k + 1 for � � 0:

However, for � > 0, the story is largely unknown. Here are some working
conjectures.

Conjecture (Ming-Yun Lai) If ao(��
k;�) = k+1, then ao(��

k0;�) = k0+1

for all k0 � k.

Conjecture ao(��
k;�) > 0 =) ��

k;� contains elements with compact
support.

Conjecture ao(��
k;�) > 0 =) ��

k;� contains a local partition of unity.

First results (and more conjectures) can be found in de Boor and DeVore
(1985) and Jia (1989).
Further illustrations of the use of duality in the derivation of upper bounds

on ao(S) (albeit only for bivariate pp S) can be found in de Boor and Jia
(199x) and its references. In particular, in conjunction with de Boor and
H�ollig (1988), it is proved there that, with � the three-direction mesh, the
approximation order of ��

k;� (in the uniform norm) is k + 1 (i.e., optimal)
if and only if k > 3�+ 1.
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