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Abstract It is shown that for an arbitrary strictly increasing knot sequence t = (ti)
∞
−∞ and for every i, there exists exactly

one fundamental spline Li (i.e., Li(tj) = δij , all j), of order 2r whose rth derivative is square integrable. Further, L
(r)
i (x) is

shown to decay exponentially as x moves away from ti, at a rate which can be bounded in terms of r alone. This allows one to
bound odd-degree spline interpolation at knots on bounded functions in terms of the global mesh ratio Mt := supi,j ∆ti/∆tj .

A very nice result of Demko’s concerning the exponential decay away from the diagonal of the inverse of a band matrix is
slightly refined and generalized to (bi)infinite matrices.

1. Introduction. Let t := (ti)+∞
−∞ be a biinfinite, strictly increasing sequence, set

t±∞ := lim
i→±∞

ti,

let k = 2r be a positive, even integer, and denote by $k,t the collection of spline functions of order k (or,
of degree < k) with knot sequence t. Explicitly, $k,t consists of exactly those k − 2 times continuously
differentiable functions on

I := (t−∞, t∞)

that, on each interval (ti, ti+1), coincide with some polynomial of degree < k, i.e.,

$k,t := IPk,t ∩Ck−2 on I = (t−∞, t∞).

We are particularly interested in bounded splines

m$k,t := $k,t ∩ m(I),

i.e., in splines s for which
‖s‖∞ := sup

t∈I
|s(t)|

is finite. It is obvious that the restriction map

Rt : $k,t → IRZZ : s 7→ s t := (s(ti))∞−∞

carries m$k,t into the space m(ZZ) of bounded, biinfinite sequences. We are interested in inverting this map,
i.e., in interpolation. We consider the

Bounded interpolation problem. To construct, for given α ∈ m(ZZ), some s ∈ m$k,t for which s t = α.

We will say that the B.I.P. is correct (for the given knot sequence t if it has exactly one solution for
every α ∈ m(ZZ).

We consider under what conditions on t the B.I.P. is correct. We also discuss the continuity properties
of the map α 7→ sα in case the B.I.P. is correct. We establish the following theorem.

Theorem 1. If the global mesh ratio
Mt := sup

i,j
∆ti/∆tj

is finite, then I = (−∞,∞), and Rt maps m$k,t faithfully onto m(ZZ), i.e., for every bounded, biinfinite
sequence α, there exists one and only one bounded spline sα ∈ $k,t for which sα(ti) = αi, all i. Moreover,

(1.1) ‖sα‖∞ ≤ const‖α‖∞, all α ∈ m(ZZ),

with const depending only on k and Mt.

We note in passing the following immediate corollary.
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Corollary. Denote by
0

C[a, b] the space of continuous (b−a)-periodic functions on R. Given τττττ := (τi)n
0 with

a = τ0 < · · · < τn = b, let t = (ti)∞−∞ be its “(b − a)-periodic extension”, i.e.,

ti+nj := τi + j(b − a) for i = 1, . . . , n and all j ∈ ZZ .

Denote by
0

$k,τττττ the (b − a)-periodic functions in $k,t. Then (as is well known), for every f ∈
0

C[a, b], there

exists exactly one sf ∈
0

$k,τττττ that agrees with f at τ0, τ1, . . . , τn. Further, for some const depending only on
the global mesh ratio Mτττττ = maxi,j ∆τi/∆τj ,

‖sf‖∞ ≤ const‖f‖∞, all f ∈
0

C[a, b].

Indeed, if sf ∈ $k,t agrees with f ∈
0

C[a, b] at t, then so does its translate sf (· − (b − a)) which is also
in $k,t, and therefore must equal sf , by the uniqueness of the interpolating spline. This shows that sf is the

interpolating spline in
0

$k,τττττ for f , and so ‖fs‖ ≤ const‖f‖ from (1.1).
For the case of uniform t, t = ZZ say, the problem of bounded interpolation has been solved some

time ago by Ju. Subbotin [17]. In this case, the interpolation conditions sα t
= α establish a one-to-one

and continuous correspondence between bounded splines and bounded sequences. Subbotin came upon the
interpolating spline as a solution of the extremum problem of finding a function s with s

t
= α and smallest

possible (k−1)st derivative, measured in the supremum norm. Later, I. J. Schoenberg investigated the B.I.P.
once more, this time as a special case of cardinal spline interpolation to sequences α that do not grow too
fast at infinity [15], [16].

Little is known for more general knot sequences. The simplest case, k = 2, of piecewise linear interpo-
lation is, of course, trivial. The next simplest case, k = 4, of cubic spline interpolation has been investigated
in [6] where the above theorem can be found for this case.

The basic tool of the investigation in [6] is the exponential decay or growth of nullsplines. Nullsplines
are therefore the topic of Section 2 of this paper, if only to admit defeat in the attempt to generalize the
approach of [6]. We are more successful, in Section 3, in identifying, for each knot sequence t and each i, a
particular fundamental spline Li, i.e., a spline with Li(tj) = δij , that must figure in the solution of the
B.I.P., if there is one at all (see Lemma 1 and 2). The argument is based on an idea of Douglas, Dupont and
Wahlbin [12] as used in [7] and further clarified, simplified and extended by S. Demko [10]. It is also shown
(in Lemma 3 and its corollary) that the rth derivative of a nontrivial nullspline must increase exponentially
in at least one direction. The exponential decay of the fundamental spline Li is used in Section 4 to prove
Theorem 1. That section also contains a proof of the fact (Theorem 4) that the B.I.P. is solvable in terms
of exponentially decaying fundamental splines, if it is correct at all. This fact is closely connected with S.
Demko’s results [10].

2. Nullsplines and fundamental splines. It is clear that the problem of finding, for an arbitrary
given biinfinite sequence α, some spline s ∈ $k,t for which s

t
= α, always has solutions. In other words,

it is clear that Rt maps $k,t onto IRZZ. To see this, start with a polynomial p0 of order k that satisfies
p0(t0) = α0, p0(t1) = α1, and set s = p0 on [t0, t1]. Now suppose that we have s already determined on some
interval [ti, tj ] and let pj−1 be the polynomial that coincides with s on [tj−1, tj ]. Then

pj(t) := pj−1(t) + (αj+1 − pj−1(tj+1))
( t − tj
tj+1 − tj

)k−1

is the unique polynomial of order k that takes on the value αj+1 at tj+1 and agrees with pj−1 (k − 1)-fold
at tj . The definition

s = pj on [tj , tj+1]

therefore provides an extension of s to [ti, tj+1], and, in fact, the only one possible. The extension to
[ti−1, tj+1] is found analogously. In this way, we find a solution inductively.
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The argument shows that we can freely choose the interpolating spline on the interval [t0, t1] from the
k-2 dimensional linear manifold {

p ∈ IPk : p(t0) = α0, p(t1) = α1

}
and that, with this choice, the interpolating spline is otherwise uniquely determined. In particular, the set of
solutions for α = 0, i.e., the kernel or nullspace of the restriction map Rt, is a k-2 dimensional linear space,
whose elements we call nullsplines. In other words, nullsplines are splines that vanish at all their knots.

The difficulty with the B.I.P. is therefore not the construction of some interpolating spline. Rather, the
problem is interesting because we require an interpolating spline with certain additional characteristics or
“side conditions”, viz. that it be bounded. Nullsplines can be made to play a major role in the analysis of
this problem.

For instance, the question of how many bounded solutions there are is equivalent to the question of
how many bounded nullsplines there are. More interestingly, a well known approach to the construction
of interpolants consists in trying to solve first the special problem of finding, for each i, a fundamental
spline, i.e., a spline Li ∈ $k,t for which

Li(tj) = δi−j , all j.

Such a spline consists (more or less) of two nullsplines joined together smoothly at ti. Therefore, if one could
prove that both nullsplines decay exponentially away from ti, i.e.,

‖Li‖(tj ,tj+1) ≤ constkλ|i−j|, all j,

at a rate λ ∈ [0, 1) which is independent of i, then it would follow that the series

(2.1) sα :=
∞∑

i=−∞
αiLi

converges uniformly on compact subsets of I and gives a solution sα to the B.I.P. In fact, sα then depends
continuously on α, i.e.,

‖sα‖∞ ≤ constk,λ‖α‖∞, all α ∈ m(ZZ)

for some constk,λ which does not depend on α.
The hope for such exponentially decaying fundamental functions is really not that farfetched. Such

functions form the basis for Schoenberg’s analysis in the case of equidistant knots, and they occur implicitly
already in Subbotin’s work. Further, a very nice result of S. Demko [10] to be elaborated upon in the next
section (see also C. Chui’s talk at this conference) shows that the bounded spline interpolant sα to bounded
data α is necessarily of the form (2.1) with exponentially decaying Li in case sα depends continuously on α.

In a rather similar way, nullsplines also occur in the discussion of interpolation error. If f is sufficiently
smooth, and sf is its spline interpolant, i.e., sf t = f t, then one gets, formally at first, that

(2.2) f(t) − sf (t) =
∫ t∞

t−∞
K(t, s)f (k)(s) ds.

Here, the Peano kernel K(t, ·) is a spline function of order k with knots t and an additional knot at the point
t, and vanishes at all the knots t. Hence, K(t, ·) is again a function put together from two nullsplines. The
exponential decay of these two nullsplines away from t is desirable here, since only with such a decay can
(2.2) actually be verified for interesting functions f . But, I won’t say anything more about this here.

Based on my experience with [6], I had at one time considerable hope that the exponential decay of
nullsplines could be proved with the help of the following considerations. A nullspline s ∈ $k,t is determined
on the interval [ti, ti+1] as soon as one knows the vector

ŝi := (s′(ti), . . . , s(k−2)(ti)/(k − 2)!)
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since one knows that s(ti) = s(ti+1) = 0. One can therefore compute ŝi+1 from ŝi in a linear manner.
Specifically,

ŝi+1 = −A(∆ti)ŝi,

with A(h) the matrix of the form

A(h) := diag(1, h−1, . . . , h−k+3)A diag(1, h, . . . , hk−3)

and A = A(1) the matrix

A :=
((k − 1

i

)
−

(
j

i

))k−2

i,j=1
.

This means that A(h) has many nice properties. For instance, A−1(h) = A(−h), and A(h) is an oscillation
matrix in the sense of Gantmacher and Krein.

In the special cubic case, k = 4, A(h) has the simple form

A(h) =
(

2 h
3/h 2

)

and allows therefore the conclusion that ŝi grows exponentially either for increasing or else for decreasing
index i, at a rate of at least 2. This observation goes back to a paper by Birkhoff and the author [1].

The transformation A(h) has been studied in much detail in the case of equidistant knots in a paper
by Schoenberg and the author [8], and also, in more generality, by C. Micchelli [14]. But, such exponential
decay or growth for nullsplines on an arbitrary knot sequence has so far not been proved. S. Friedland and C.
Micchelli [13] have obtained from such considerations results concerning the maximal allowable local mesh
ratio

mt := sup
|i−j|=1

∆ti/∆tj .

3. Exponential decay of the rth derivative of fundamental splines and nullsplines of order
k = 2r. We base the arguments in this section on the best approximation property of spline interpolation.
To recall, the rth divided difference of a sufficiently differentiable function f at the points ti, . . . , ti+r can be
represented by

[ti, . . . , ti+r]f =
∫

Mi(t)f (r)(t) dt/r!

with Mi = Mi,r,t a B-spline of order r,

Mi(t) := r[ti, . . . , ti+r](· − t)r−1
+ ,

normalized to have unit integral. Further, {s(r) : s ∈ $2r,t} = $r,t while, by a theorem of Curry and
Schoenberg [9],

$r,t = {
∑

i

βiMi : β ∈ ZZIR} on I,

where we take the biinfinite sum pointwise, i.e.,

(
∑

i

βiMi)(t) :=
∑

i

βiMi(t), all t ∈ IR.

This, makes good sense since

Mi(t) ≥ 0, with strict inequality iff ti < t < ti+r.

Lemma 1. Let Li := {L ∈ $2r,t : L(tj) = δi−j , all j}. Then Li has exactly one element in common with

IL(r)
2 (I). We denote this element by

Li
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and call it the ith fundamental spline for the knot sequence t. Further, with the abbreviations

(3.1) h := sup
j

∆tj , h := inf
j

∆tj ,

we have

(3.2) ‖L(r)
i ‖2 ≤ constrh

1/2
/hr

for some constant constr depending only on r.

Proof: We first prove that Li contains at most one element in IL(r)
2 (I) = {f ∈ Cr−1(I) : f (r−1)

abs.cont., f (r) ∈ IL2(I)}. Since Li − Li = ker Rt, it is sufficient to prove that the only nullspline in IL(r)
2 is

the trivial nullspline. For this, let s ∈ ker Rt ∩ IL(r)
2 (I). Then, by the introductory remarks for this section,

s(r) =
∑

j

βjMj for some β ∈ IRZZ, s(r) ∈ IL2, and
∫

Mjs
(r) = 0 for all j.

But, by a theorem in [3], there exists a positive constant Dr which depends only on r so that, for 1 ≤ p ≤ ∞,
and for all γ ∈ IRZZ,

(3.3) D−1
r ‖γ‖p ≤ ‖

∑
j

γj((tj+r − tj)/r)1−1/pMj‖p ≤ ‖γ‖p.

Here, ‖γ‖p := (
∑

j |γ|p)1/p, while, for f on I, ‖f‖p := (
∫

I
|f |p)1/p. This shows the sequence (M̂j) given by

(3.4) M̂j := ((tj+r − tj)/r)1/2Mj , all j,

is a Schauder basis for $r,t∩ IL2. Therefore,
∑

j γjM̂j converges IL2 to the spline function in IL2 it represents.
But this means that our particular spline s(r) is in the IL2-span of (Mi), yet orthogonal to every one of the
Mi, which means that s(r) vanishes identically. But then, since s vanishes more than r times, s itself must
vanish identically.

Next, we prove that Li contains at least one element on IL(r)
2 (I). For this, we recall from [5] that there

exists, for any given α ∈ IRZZ, a function g that is locally in IL(r)
2 and satisfies g t = α, and whose rth

derivative satisfies

(3.5) ‖g(r)‖2 ≤ Dr

(∑
j

(tj+r − tj)([tj , . . . , tj+r]α)2
)1/2

,

with Dr the same constant mentioned in (3.3). Here, a number [tj , . . . , tj+r]α stands for the rth divided
difference at the points tj , . . . , tj+r of any function f for which f t = α. In this way, we obtain for the
specific sequence α = (δi−j)∞j=−∞ a function g ∈ IL(r)

2 for which

g(ti) = δi−j , all j,

while ‖g(r)‖2 is bounded by the right side of (3.5). Note that, for the specific sequence α = (δi−j), this
bound becomes

‖g(r)‖2 ≤ Dr

( i∑
j=i−r

(tj+r − tj)[1/
j+r∏
n=j
n6=i

(ti − tn)]2
)1/2

≤ constr(h)1/2/hr.

Now let ĝ be any element in IL(r)
2 so that ĝ(r) is the IL2-approximation to g(r) from $r,t ∩ IL2. This makes

sense since (3.3) insures that $r,t ∩ IL2 is a closed subspace of IL2(I). Then

[tj , . . . , tj+r]ĝ =
∫

Mj ĝ
(r)/r! =

∫
Mjg

(r)/r! = [tj , . . . , tj+r]g,

all j, while ‖ĝ(r)‖2 ≤ ‖g(r)‖2. But this means that, for an appropriate polynomial p of order r,

(ĝ + p)(tj) = g(tj) = δi−j , all j,

while still ‖(ĝ + p)(r)‖2 ≤ ‖g(r)‖2 ≤ constrh
1/2

/hr. This shows that L := ĝ + p is a function of the desired
kind.
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We continue to use the inequality (3.3) and the abbreviation M̂j = ((tj+r − tj)/r)1/2Mj , and come now
to what I consider to be the main point of this paper.

Lemma 2. If β is the sequence of coefficients for L
(r)
i with respect to the basis (M̂j) for $r,t, i.e., if

L
(r)
i =

∑
j βjM̂j , and

β
(n)
j :=

{
0 , |j − i| < n,
βj , |j − i| ≥ n,

n = 0, 1, 2, . . . ,

then there exist constr and λr ∈ [0, 1) depending only on r so that

(3.6) ‖β(n)‖2 ≤ constr‖β‖2λ
n
r , n = 0, 1, 2, . . . .

The inequalities (3.3) allow us to conclude from Lemma 2 the exponential decay of L
(r)
i in the following

form.

Corollary. For some constr, and some λr ∈ [0, 1) depending only on r, and for all i and n,

‖L(r)
i ‖2,(t−∞,ti−n) + ‖L(r)

i ‖2,(ti+n,t∞) ≤ constr‖L(r)
i ‖2λ

n
r .

Proof of Lemma 2. Let
A := (

∫
M̂iM̂j)

be the Gram matrix for our appropriately normalized B-spline basis of $r,t. A proof of the lemma can be
obtained directly from the fact that the elements of the inverse matrix for A decay exponentially away from
the diagonal at a rate that can be bounded in terms of r and independently of t. This is proved in [7]
with the aid of a nice inequality due to Douglas, Dupont and Wahlbin [12]. But, between the time I proved
Lemma 2 this way and the delivery of this talk, S. Demko wrote a paper [10] in which he demonstrated that
such arguments use actually very little specific information about splines. Using the inequality of Douglas,
Dupont and Wahlbin, he proved the following nice

Theorem (S. Demko). Let A := (aij) be an invertible band matrix (of finite order). Explicitly, assume
that, for some m, aij = 0 whenever |i − j| > m, and that, for some positive K and K, and some p ∈ [1,∞],

K‖x‖p ≤ ‖Ax‖p ≤ K‖x‖p, all x.

Then the entries of the inverse A−1 =: (bij) satisfy

|bij | ≤ constλ|i−j|, all i, j,

for some const and some λ ∈ [0, 1) which depend only on m, p, K and K. In particular, these constants do
not depend on the order of the matrix A.

The interested reader will have no difficulty in proving this theorem after a study of the following proof
of Lemma 2, a proof which makes essential use of Demko’s ideas, even though the inequality of Douglas,
Dupont and Wahlbin fails to make an explicit appearance. In the bargain, the reader will thereby obtain
explicit estimates for const and λ (which Demko did not bother to compute).

We note that the specific matrix A = (
∫

M̂iM̂j) is a band matrix, of band width m = r − 1 in the
sense that

∫
M̂iM̂j = 0 for |i − j| > r − 1. Also, we conclude from (3.3) that the sequence-to-sequence

transformation
α 7→ Aα

induces a linear map on `2(ZZ) to `2(ZZ) which we also call A and which is bounded and boundedly invertible.
Specifically, one obtains from (3.3) that

(3.7) κ := ‖A‖2‖A−1‖2 ≤ D2
r .
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Here, ‖B‖2 := sup{‖Ba‖2/‖α‖2 : α ∈ `2(ZZ)}, as usual.
We now claim that,

(3.8) for all n ≥ 2r, ‖β(n)‖2
2 ≤ (κ2/(1 + κ2))‖β(n−2m)‖2

2

which, with the t-independent estimate (3.7) for κ, establishes the lemma (with λr ≤ (κ/(1 + κ2)1/2)1/2m).
For the proof of (3.8), we consider without loss of generality only the specific function L0. We note that

(Aβ)i =
∫

M̂iL
(r)
0 = r!((ti+r − ti)/r)1/2[ti, . . . , ti+r]L0

= 0 unless ti ≤ t0 ≤ ti+r.

Therefore,

(3.9) supp Aβ ⊆ [−r, 0],

where, for any biinfinite sequence α, we use the abbreviation

supp α := {i ∈ ZZ : αi 6= 0}.

We claim that, for n ≥ m,

(3.10) supp Aβ(n) ⊆ (−n − m, n + m)\(−n + m, n − m).

Indeed, supp(β(n) − β ⊆ (−n, n), hence supp A(β(n) − β) ⊆ (−n−m, n + m) which also contains supp Aβ =
[−r, 0], therefore

supp Aβ(n) ⊆ (−n − m, n + m).

On the other hand, suppβ(n) ⊆ ZZ \(−n, n), therefore also

suppAβ(n) ⊆ ZZ \(−n + m, n − m).

It follows from (3.10) that, for n ≥ 2r,

(3.11) supp Aβ(n) ∩ supp Aβ(n−2m) = ∅,

therefore
‖Aβ(n)‖2

2 ≤ ‖Aβ(n)‖2
2 + ‖Aβ(n−2m)‖2

2 = ‖A(β(n) − β(n−2m))‖2
2.

But then
‖A−1‖−1

2 ‖β(n)‖2 ≤ ‖Aβ(n)‖2 ≤ ‖A(
β(n) − β(n−2m)

)‖2

≤ ‖A‖2‖β(n) − β(n−2m)‖2,

i.e.,

‖β(n)‖2
2 ≤ κ2‖β(n) − β(n−2m)‖2

2

= κ2
(‖β(n−2m)‖2

2 − ‖β(n)‖2
2

)
which proves our earlier claim (3.8).
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It is clear that the argument provides the exponential decay of the form (3.6) and with λ ≤ (κ/(1 +
κ2)1/2)1/2m for any sequence β in `2(ZZ) for which Aβ has finite support. In particular, one obtains such
exponential decay for the sequence γ(i) for which Aγ(i) = (δi−j), i.e., for the ith row of the matrix inverse of
A. Further, it is clear that (3.11) implies ‖Aβ(n)‖p

p ≤ ‖Aβ(n)‖p
p +‖Aβ(n−2m)‖p

p for any 1 ≤ p < ∞, hence, the
argument carries at once from `2(ZZ) over to any `p(ZZ) with 1 ≤ p < ∞. Demko obtains such exponential
decay also for p = ∞ by considering the transposed matrix AT for which then automatically

‖AT ‖1‖(AT )−1‖1 = ‖A‖∞‖A−1‖∞
due to the finite order of the matrix he considers. This switch requires a word or two in the infinite case, as
follows. As one easily checks, if a (bi)infinite matrix (aij) gives rise to a bounded linear map A on `∞, then
its transpose gives a bounded linear map B on `1, and the adjoint of B is then necessarily A itself. This
implies that, if a matrix (aij) gives rise to a bounded linear map on `∞ that is boundedly invertible, then its
inverse can also be represented by a matrix, viz. the transpose of the matrix that represents the inverse of
the linear map on `1 given by the transpose of (aij). Of course, exponential decay away from the diagonal
is unchanged when going over to the transpose.

These comments establish the following

Theorem 2. Let M be a finite, infinite or biinfinite “interval” in ZZ, let 1 ≤ p ≤ ∞, and let q :=
min{p, p/(p − 1)}. Let (aij)i,j∈M be a matrix with band width m := sup{|i − j| : aij 6= 0}, and as-
sume that (aij) induces a bounded linear map A on `p(M). If A is boundedly invertible, then A−1 is also
given by a matrix, (bij) say, and

|bij | ≤ constλ|i−j|. all i, j,

with
λ := (κ/(1 + κq)1/q)1/2m, const ≤ ‖A−1‖p/λ2m, κ := ‖A‖p‖A−1‖p.

We add one more remark. With the appropriate interpretation of “bandedness”, the above argument
carries through even for matrices that are not banded in the straightforward sense. As a typical example,
consider the Gram matrix for a local support basis of some space of functions of several variables. Then
there is no ordering of that basis for which the corresponding Gram matrix is appropriately banded. But, if
we follow the geometry of the underlying problem and think of the Gram “matrix” as acting on functions on
some multidimensional index set M having an appropriate metric | · | (instead of on ZZ), then the statement
and the proof of Theorem 2 go through otherwise unchanged. We do not pursue this point here further, but
alert the reader to Desloux’s fine paper [11] in which such considerations can be uncovered once one knows
what to look for.

We finish this section with the observation that the rth derivative of a nontrivial nullspline must increase
exponentially in at least one direction. The argument is rather similar to the proof of Lemma 2. We continue
to denote by A the specific matrix (

∫
M̂iM̂j) and recall

(3.7) κ := ‖A‖2‖A−1‖2 ≤ D2
r .

Lemma 3. If
∑

i βiM̂i is the rth derivative of a nullspline in $2r,t and i ≤ j are arbitrary indices, then

(1 + κ2)
j∑

ν=i

|βν |2 ≤ κ2

j+2m∑
ν=i−2m

|βν |2.

Proof: Define β′, β′′ by

β′
ν :=

{
βν , i ≤ ν ≤ j

0 , otherwise
, β′′

ν :=
{

βν , i − 2m ≤ ν ≤ j + 2m

0 , otherwise
,

so that the inequality to be proved reads

(3.12) (1 + κ2)‖β′‖2
2 ≤ κ2‖β′′‖2

2.
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We have
supp Aβ′ ⊆ [i − m, j + m]

while
supp(β − β′′) ⊆ ZZ \[i − 2m, j + 2m],

therefore, with Aβ = 0,

supp Aβ′′ = supp A(β − β′′) ⊆ ZZ \[i − m, j + m] ⊆ ZZ \ supp Aβ′.

Consequently,
‖A−1‖−1

2 ‖β′‖2 ≤ ‖Aβ′‖2 ≤ ‖A(β′ − β′′)‖2 ≤ ‖A‖2‖β′ − β′′‖2,

or, with κ = ‖A‖2‖A−1‖2,
‖β′‖2

2 ≤ κ2‖β′ − β′′‖2
2 = κ2(‖β′′‖2

2 − ‖β′‖2
2)

which implies (3.12).

Corollary. Let
∑

i βiM̂i be the rth derivative of a nullspline s in $2r,t and set

aj :=
∑

2mj<i≤2m(j+1)

|βi|2, all j ∈ ZZ,

with m := r − 1, as before. Then

(3.13)
∑

i<ν<j

aν ≤ κ2(ai + aj), for all i < j.

Therefore, for all µ, and either for all i > µ or for all i < µ,

ai ≥ constµ∧|i−µ|

with

constµ :=
1
2
aµ/(κ2∧)

and
∧ := (1 + κ2)/κ2 > 1.

Proof: Assertion (3.13) follows at once from the lemma. The second assertion of the corollary is
less obvious. For its proof, assume without loss that µ = 0. From (3.13),

∧i−1a0 ≤
∑

−i<ν<i

aν , i = 1, 2, 3, . . . .

Therefore,

(3.14) ∧ic ≤
∑

−i<ν<i

aν , i = 1, 2, 3, . . .

with
c := a0 / ∧ .

Let now const0 = 1
2c/κ2, as defined above, and assume that the inequality

ai ≥ const0∧|i|

9



is violated for some i > 0 while also

(3.15) a−j < const0∧j

for some positive j which we assume without loss of generality to be no less than i. Then, we can also assume
that j is the smallest index ≥ i for which (3.15) holds. We obtain from (3.13) that

(3.16)
∑

−j<ν<i

aν ≤ κ2(a−j + ai) < κ2const0(∧j + ∧i) =
1
2
c(∧j + ∧i).

On the other hand, by (3.13) and by the choice of j,

∑
−j<ν<i

aν =
∑

−j<ν≤−i

aν +
∑

−i<ν<i

aν

≥ const0
( ∧j −1 − (∧i − 1)

)
/(∧ − 1) + c∧i

=
1
2
c(∧j − ∧i) + c∧i =

1
2
c(∧j + ∧i)

which contradicts (3.16), and so finishes the proof. In the second last equality, we used the fact that
∧ − 1 = (κ2 + 1)/κ2 − 1 = 1/κ2.

Remark. It is easy to see that, in the corollary, aµ−1 +aµ 6= 0 for any µ in case the nullspline s is not
trivial. For if, e.g., a−1 = a0 = 0, then s(r) would vanish on [t−2m+1+(r−1), t2m−(r−1)] = [t2−r, tr−1], hence
s would be a polynomial of degree < r on that interval and vanish 2(r − 1) times there, therefore would
have to vanish identically there. But then, we would have s = 0 by the considerations in Section 2. We can
therefore conclude from the corollary that, for a nontrivial nullspline s,

ai ≥ ∧|i|

either for all i > 1 or else for all i < −1, with ai and ∧ as in the corollary and const := 1
2 max{a−1, a0}/(κ∧)2 >

0.
The argument for this corollary would have been simpler had I been able to prove that every β with

Aβ = 0 can be written as a sum β = β′+β′′ with
∑

i≥0 |β′
i|2 < ∞ and

∑
i≤0 |β′′

i |2 < ∞, and Aβ′ = Aβ′′ = 0.
A minor variation of the arguments for Lemma 3 and its corollary allow the following conclusion of

independent interest in the study of linear difference equations.

Theorem 3. Let A = (aij) be a biinfinite matrix which represents a linear map, also denoted by A, on
`p(ZZ) for some p ∈ [1,∞) which is bounded and bounded below, i.e., there exist positive K and K so that

K‖α‖p ≤ ‖Aα‖p ≤ K‖α‖p for all α ∈ `p(ZZ).

If A is a band matrix, i.e., if
m := sup

{|1 − j| : aij 6= 0
}

< ∞,

then any nontrivial sequence β for which Aβ = 0 must increase exponentially either for increasing or for
decreasing i. Explicitly, there exist an index µ and a positive constβ,µ, so that, either for all i > µ or else
for all i < µ, ∑

2mi<j≤2m(i+1)

βp
j ≥ constβ,µ∧|i−µ|

with
∧ := (1 + κp)/κp and κ := K/K.

Thanks are due to Allan Pinkus for questioning the necessity of an additional assumption in an earlier
version of this theorem.
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4. Exponential decay of the fundamental spline. Assume that the knot sequence is such that
the B.I.P. is correct, i.e., has exactly one solution sα ∈ m$k,t for every α ∈ m(ZZ). This means that the
restriction map Rt, when restricted to m$k,t, is one-one, onto, and clearly bounded with respect to the sup-
norm. One verifies directly (else see (4.2) below) that m$k,t is a closed subspace of m(I), hence complete.
The Open Mapping Theorem therefore provides the conclusion that Rt is boundedly invertible. This means
the existence of some const so that

(4.1) ‖sα‖∞ ≤ const‖α‖∞, all α ∈ m(ZZ).

Let Ni = Ni,k,t be the ith B-spline of order k for the knot sequence t, normalized so that

Ni(t) :=
(
[ti+1, . . . , ti+k] − [ti, . . . , ti+k−1]

)
(· − t)k−1

+

and so, comparing with the B-splines introduced at the beginning of Section 3,

Ni,k,t =
(
(ti+k − ti)/k

)
Mi,k,t.

From (3.3), or already from [2],

(4.2) D−1
k ‖β‖∞ ≤ ‖

∑
i

βiNi‖∞ ≤ ‖β‖∞, all β ∈ m(ZZ),

for some positive constant Dk depending only on k and not on t.
Since (Ni)∞−∞ is a basis for $k,t (in the sense described in the preceding section), it follows that s ∈ $k,t

satisfies s t = α if and only if its B-spline coefficient sequence β satisfies

(4.3)
∑

j

Nj(ti)βj = αi, all i,

while s ∈ $k,t is bounded if and only if its corresponding B-spline sequence β is bounded, by (4.2). We
conclude that the B.I.P. has exactly one solution for every α ∈ m(ZZ) iff the matrix

A := (Nj(ti))

maps `∞ faithfully onto `∞. We collect these facts in the following

Theorem 4. The bounded interpolation problem is correct if and only if the matrix

A = (Nj(ti))

provides a faithful linear map from `∞(ZZ) onto `∞(ZZ). If one or the other of these conditions holds, then
A, being trivially bounded, is boundedly invertible. Since A is also a band matrix, of band width m := r−1,
it then follows from Theorem 2 that the inverse of A is also given by a matrix, (bij) say, and that

|bij | ≤ constλ|i−j|, all i, j,

with
λ := (κ/(1 + κ))1/2m, const ≤ κ/λ2m, κ := ‖A−1‖∞

since ‖A‖∞ = 1. In particular, for all i, the function

Li :=
∑

j

bijNj

is then a fundamental spline that decays exponentially at the rate λ, and the solution sα of the B.I.P. for
given α ∈ m(ZZ) is given by

sα =
∑

j

αjLj ,
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a series that converges uniformly on compact subsets of I.

We do not know conditions that are both necessary and sufficient for the correctness of the B.I.P. . Since
correctness implies boundedness of the map α 7→ sα, we obtain∗ from [4; Lemma of Section 2] the necessary
condition that the local mesh ratio

mt = sup
|i−j|=1

∆ti/∆tj

be finite. If the local mesh ratio is indeed finite, then a simple sufficient condition for uniqueness of the
interpolating bounded spline is the condition that

(4.4) I = (−∞,∞).

This is connected with the fact that, with k = 2r, the rth derivative of any nontrivial nullspline grows
exponentially in at least one direction, as described in Lemma 3 and its corollary. Precisely, we have the
following

Lemma 4. If mt := sup|i−j|=1 ∆ti/∆tj < ∞, and there exists a bounded nontrivial nullspline s in $k,t,
then either t−∞ > −∞ or t∞ < ∞.

Proof: Let s =
∑

i γiNi,k be the nontrivial bounded nullspline in $k,t. Its jth derivative is then
s(j) =

∑
i γ

(j)
i Ni,k−j , with

γ
(j)
i :=




γi , j = 0

(k − j)(γ(j−1)
i − γ

(j−1)
i−1 )/(ti+k−j − ti) , j > 0.

This implies the estimate

(4.5) |γ(j)
i | ≤ k!

(k − j − 1)!
2j max

{|γi−j |, . . . , |γi|
}
/(ti+k−j − ti)j

(see, e.g., [4], for similar considerations). Write now the rth derivative of s in terms of the somewhat
differently normalized B-splines M̂i := (r/(ti+r − ti))1/2Ni,r,t introduced in Section 2,

s(r) =
∑

i

βiM̂i.

Then βi = γ
(r)
i ((ti+r − ti)/r)1/2, so that, from (4.5),

(4.6) |βi| ≤ constr‖γ‖∞/(ti+r − ti)r−1/2.

By the corollary to Lemma 3 (in Section 3), we may assume, without loss of generality, the existence of a
positive const so that, with m = r − 1,∑

2mj<i≤2m(j+1)

|βi|2 ≥ const∧j , j = 2, 3 . . .

where ∧ := (1 + κ2)/κ2 > 1 and κ ≤ D2
r , the latter a certain constant independent of t. In conjunction with

(4.6), this implies that

const∧j ≤ constr,γ max
{
(ti+r − ti)1−2r : 2mj < i ≤ 2m(j + 1)

}
≤ constr,γ(mt)r2

min
{
(ti+r − ti)1−2r : 2mj < i ≤ 2m(j + 1)

}
,

where we have used the fact that

m
−|i−j|
t ≤ (ti+r − ti)/(tj+r − tj) ≤ m

|i−j|
t .

It follows that
ti+r − ti ≤ const∧−i/(2r), i = 2r, 2r + 1, . . .

and therefore

t∞ = t2r +
∞∑

i=0

(t(i+1)r − tir) < ∞.

∗ 1995: is this really true?
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We note in passing that the argument also establishes uniqueness in case either t−∞ or t∞ is finite as
long as the local mesh ratio is < ρ for some ρ that is greater than 1 and depends on ∧.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Since the global mesh ratio Mt = supi,j ∆ti/∆tj is finite, then, in particular,
I = (−∞,∞) and Lemma 4 implies that Rt maps m$k,t one-one to m(ZZ).

Next, we prove that, for each i, the fundamental spline function Li introduced in Lemma 1 decays
exponentially away from ti, i.e., for all j and all x ∈ [tj , tj+1],

(4.7) |Li(x)| ≤ constλ|i−j|

for some const depending only on k and Mt, and some λ ∈ [0, 1) which depends only on k. It suffices to
consider j ≥ i. We have Li(tn) = 0 for n 6= i, therefore

Li(x) = (x − tj+1) · · · (x − tj+r[x, tj+1, . . . , tj+r]Li

=
r∏

n=1

(x − tj+n)
∫

r[x, tj+1, . . . , tj+r](· − t)r−1
+ L

(r)
i (t) dt/r!.

By Hölder’s inequality,

∫
r[x, tj+1, . . . , tj+r](· − t)r−1

+ L
(r)
i (t) dt

≤ (r/(tj+r − x))1/2‖L(r)
i ‖2,[x,tj+r ],

making use of (3.3), so that, from the corollary to Lemma 2,

|Li(x)| ≤ constr(h
r
/h1/2)constr‖L(r)

i ‖2λ
j−i

with λ ∈ [0, 1) depending only on k, and

h := sup
n

∆tn, h := inf
n

∆tn.

But now, from Lemma 1,

‖L(r)
i ‖2 ≤ constrh

1/2
/hr,

and (4.7) follows.
The exponential decay of all fundamental splines Li at a rate that does not depend on i now allows us

to construct an interpolant sα in $k,t for arbitrary α ∈ m(ZZ), in the form

sα =
∑

i

αiLi,

that satisfies

‖sα‖∞ ≤ const‖α‖∞
and therefore is in m$k,t.
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It is clear that the argument for Theorem 1 shows the existence of a number ρ > 1 (which depends on
k and on the λ of Lemma 2) so that the conclusions of Theorem 1 hold even if we only know that the local
mesh ratio is less than ρ. A quick analysis of the constants involved shows this provable ρ to converge to 1
very fast as k increases.
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