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Polynomial ideals and multivariate splines
Carl de Boor & Amos Ron

1. The issue

An exponential is, by definition, any function of the form
∑

θ∈Θ eθpθ, with Θ a finite subset

of the set Cs of complex s-vectors, with each pθ ∈ π\0, i.e., a (nontrivial) polynomial in s variables,

and with eθ : x 7→ e〈θ,x〉 the pure exponential for the frequency θ. We call the pointset Θ

the spectrum of the exponential
∑

θ∈Θ eθpθ. We take the spectrum of a function space to be

the union of the spectra of all exponentials in that space. We think of exponentials as defined on

Cs or merely on ZZs, depending on the situation. In the latter case, we treat the frequency θ of

eθ as an element of Cs/2πiZZs, since eθ = eξ on ZZs whenever θ = ξ mod 2πiZZs. We also use

ex := (ex(1), . . . , ex(s)).

Let φ be a distribution in the space E ′(IRs) of all compactly supported complex-valued s-

dimensional distributions. Let C be the space of all sequences defined on the lattice ZZs. Define the

operator φ∗ on C by

(1.1) φ∗ : c 7→ φ∗c :=
∑

α∈ZZs

cαE−αφ,

where Eα is the shift operator Eα : f 7→ f(·+α). The range of φ∗ is denoted here by S(φ), i.e., S(φ)

is the space spanned by the integer translates of φ. Important subspaces of S(φ) are the space H(φ)

of all exponentials in S(φ) and its polynomial subspace π(φ) = S(φ)∩π. The study of these spaces,

or, more generally, any subspace F ⊂ S(φ), is facilitated once we know the preimage (φ∗)−1(F )

of F . Since H(φ) and π(φ) are both shift-invariant (i.e., closed under integer translates), their

preimage is too. Moreover, since these spaces are finite-dimensional, their preimage is closed under

pointwise convergence. For that reason, we equip C with the topology of pointwise convergence

(which makes it into a Fréchet space), and equip S(φ) with the topology induced by φ∗, i.e., the

strongest topology that makes φ∗ continuous. The main result of this note is as follows.

(1.2) Theorem. Let F be a closed shift-invariant subspace of S(φ). Then there exists a finite

set Θ ⊂ Cs/2πiZZs and polynomial spaces {Pθ}θ∈Θ such that the (sequence) exponential space⊕
θ∈Θ eθPθ is dense in (φ∗)−1(F ).

We note that this theorem supplies also information about the kernel of φ∗, which corresponds

to the choice F = 0.

In case F = H(φ), F is also finite-dimensional. For a finite-dimensional F , more can be said.

(1.3) Theorem. Let F be a finite-dimensional shift-invariant subspace of S(φ). Then there exists

an exponential subspace G of (φ∗)−1(F ) which is mapped bijectively onto F . Furthermore, G can

be so chosen that, for every θ in its spectrum and every α ∈ ZZs, eθ(α) is an eigenvalue of Eα|F .
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The proof of the above results uses the validity of spectral synthesis in C (i.e., the fact that

every closed shift-invariant subspace of C contains a dense exponential space) and makes essential

use of polynomial ideal theory. In section 2, we review some analytic aspects of polynomial ideals,

and in section 3 discuss the kind of ideal that appears in our context. Lefranc’s [L] proof of the

validity of spectral synthesis in C is provided (in a slightly modified version) in section 4. In section

5, we prove the above theorems and apply them to the special choices F = H(φ), F = π(φ). An

example concerning box splines is then examined in the last section.

We now make more explicit the connection between C and polynomial ideals, showing that

each closed shift-invariant subspace of C is characterized by a corresponding ideal. The dual of C
is given by P, the space of all sequences with finite support, with the natural pairing

P × C → C : (p, c) 7→ 〈p, c〉 :=
∑

α∈ZZs

pαcα.

In particular,

(1.4) C⊥ := {p ∈ P : 〈p, c〉 = 0, all c ∈ C}

is the annihilator of the subspace C of C, while the annihilator of a subspace P ⊂ P is the

analogously defined subspace of C. It is a consequence of the Hahn-Banach theorem that every

closed subspace C ⊂ C satisfies C⊥⊥ = C. Furthermore, in case P ⊂ P is shift-invariant, it is

determined by its subspace P+ of all elements supported on ZZs
+. Also, a shift-invariant subspace

C ⊂ C is orthogonal to the shift-invariant P ⊂ P if and only if it is orthogonal to P+. We thus

conclude

(1.5) Proposition. Let S and C be shift-invariant subspaces of C. Then their closures coincide

if and only if

S⊥+ = C⊥+.

Polynomial ideals enter in this way, since each p ∈ P+ can be identified with the polynomial

p̌ :=
∑

α pα()α, while the shift-invariance of P implies (yet is not equivalent to) the fact that P+ˇ

is an ideal of π. Further, with this identification, p̌ (eξ) = 〈p, eξ〉, hence the point θ = eξ lies in the

variety of the ideal C⊥+ˇ if and only if the pure exponential eξ lies in C.

2. Polynomial ideals

Let I be a polynomial ideal in the ring π of all polynomials in s variables (over C). Associated

with I is its variety

(2.1) VI := {v ∈ C : q(v) = 0, all q ∈ I}.
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The fundamental result in polynomial ideal theory is Hilbert’s Nullstellensatz which says that

a power of p ∈ π lies in I whenever p vanishes on VI .

An ideal is primary if some power of p must lie in it whenever the product pq lies in it and

q does not. The importance of primary ideals in ideal theory is primarily due to the classical fact

that every ideal I is the intersection of finitely many primary ideals. The primary decomposition is,

in general, not unique even when assuming irredundancy. Yet, the prime components of VI , i.e,

the varieties of the primary ideals in an irredundant decomposition of I, are uniquely determined

by I. Furthermore, every primary ideal which corresponds to a maximal prime component is also

determined uniquely by I.

The primary decomposition can be used to show that a polynomial ideal I is characterized by

its multiplicity spaces

(2.2) I⊥v := {p ∈ π : p(D)q(v) = 0, ∀q ∈ I}.

Here, p(D) is the differential operator with constant coefficients induced by the polynomial p. As

the notation indicates, we think of I⊥v as the annihilator of I with respect to the pairing

π × π → Cs : (p, q) 7→ p(D)q(v).

I⊥v is nontrivial exactly when v ∈ VI . Since I is an ideal, I⊥v is D-invariant, i.e., closed under

differentiation. Conversely, for any D-invariant polynomial space P and any v ∈ Cs,

P⊥v := {q ∈ π : p(D)q(v) = 0, ∀p ∈ P}

is an ideal.

(2.3)Theorem. If I is a primary ideal, then I = I⊥v⊥v for any v ∈ VI .

Outline of the proof of (2.3)Theorem([L]): Assume without loss that v = 0 (which can always

be achieved by a translation). The ideal IA generated by I in the ring A of formal power series is

closed (in the natural topology of A as a local ring, i.e., fn converges to f iff, for every k, all terms

of order < k of f − fn are zero eventually; cf., e.g., [N;Proposition 2 on page 85]), yet IA⊥0 = I⊥0,

therefore IA = I⊥0⊥ := {f ∈ A : p(D)f(0) = 0 ∀p ∈ I⊥0}, using the fact that the pairing

π × A → Cs : (p, f) 7→ p(D)f(0)

makes it possible to identify π with the continuous dual of A and A with the dual of π. On the other

hand, since I is primary, the Noether-Lasker Theorem (cf., e.g., [K;p.61]) ensures that I = IA∩π.
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The primary decomposition available for an arbitrary polynomial ideal provides the following

(2.4)Corollary. Let I = ∩iQi be a primary decomposition for the ideal I. Then, for any V which

intersects each VQi ,

(2.5) I = ∩v∈V I⊥v⊥v.

Indeed, with v ∈ VQi ∩ V , we have I⊥v ⊃ Qi⊥v since I ⊂ Qi, hence I⊥v⊥v ⊂ Qi⊥v⊥v = Qi

by (2.3)Theorem. This shows that the right side of (2.5) is contained in I, while the opposite

inclusion is trivial.

3. q-ideals

If the linear subspace P of P is shift-invariant, then P+ˇ is an ideal, but not every ideal in π

arises in this way. A polynomial ideal I is of the form P+ˇ for some shift-invariant subspace P of

P if and only if it satisfies the condition

(3.1) p ∈ I ⇐⇒ ()αp ∈ I

for every α ∈ ZZs
+. This condition is equivalent to the requirement that

(3.2) p ∈ I ⇐⇒ qp ∈ I

for the polynomial q := ()1,1,...,1. Provided I is non-trivial, we call such an ideal a q-ideal. We

define the q-reduced variety Vq
I of I by

Vq
I := {θ ∈ VI : q(θ) 6= 0}.

An E-ideal corresponds to the choice q = ()(1,...,1), hence its reduced variety becomes V∗
I := VI∩Cs

∗,

where Cs
∗ := (C\0)s.

(3.3) Proposition. If I is a q-ideal and the polynomial p vanishes on Vq
I , then a power of p lies

in I.

Indeed, if p vanishes on Vq
I , then pq vanishes on VI . Therefore, by the Nullstellensatz, pkqk ∈ I

for some k, and repeated application of (3.2) then yields pk ∈ I.

The following theorem is a special case of [N;Thm. 6, p. 23]:
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(3.4) Theorem. An ideal I is a q-ideal if and only if it admits a primary decomposition I = ∩iQi

with Vq
Qi

6= ∅ for all i.

Proof: Assume first that I is a q-ideal, let ∩iQi be a primary decomposition of I and suppose

that for some j, VQj lies in the zero set of q. Then J := ∩i6=jQi ⊃ I. On the other hand q vanishes

on VQj , hence qn ∈ Qj for some n, and therefore qnJ ⊂ QjJ ⊂ Qj ∩ J = I. Since I is a q-ideal, it

follows that J ⊂ I and consequently J = I. We conclude that Qj is a redundant component in the

primary decomposition of I.

For the converse, we assume that I = ∩iQi and that no VQi lies in the zero set of q. Then, for

every i, no power of q can lie in Qi, hence, since Qi is primary,

pq ∈ I =⇒ pq ∈ Qi =⇒ p ∈ Qi.

We conclude that p ∈ I and thus I is a q-ideal.

(3.5) Corollary. A q-ideal can be decomposed into primary q-ideals.

The following two corollaries will be used in the sequel:

(3.6) Corollary. If I is a q-ideal, then V in (2.4)Corollary can be chosen from Vq
I . In particular,

if I is an E-ideal, V can be chosen from V∗
I ⊂ Cs

∗.

(3.7) Corollary. Assume Vq
I is finite. Then I is a q-ideal if and only if VI = Vq

I .

Proof: If VI = Vq
I , then I is a q-ideal by (3.4)Theorem, since q vanishes nowhere on VI . Con-

versely, if VI\Vq
I is not empty, it contains a maximal prime component of VI which lies entirely

in the zero set of q, which means that there exists a primary ideal Q which appears in every pri-

mary decomposition of I and whose variety lies entirely in the zero set of q. Consequently, by

(3.4)Theorem, I is not a q-ideal.

4. Spectral synthesis in C

The following lemma is the technical link between ideal theory and spectral synthesis in C. It

uses the normalized factorial function []α defined by

[x]α :=
∏
j

[x(j)]α(j), with [t]n := t(t − 1) · · · (t − n + 1)/n!.

This function’s chief virtue lies in the fact that ∆α[]β = []β−α, with ∆ the forward difference

operator. This provides the pretty identity

(4.1) ∆p([]) = (Dp)([]),

in which p([]) :=
∑

β []βDβp(0), and which is meant to signify that ∆αp([]) = (Dαp)([]) for all

α ∈ ZZs
+.
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(4.2) Lemma. Let p ∈ π, q ∈ P+, v ∈ Cs
∗, and let θ = logv, i.e., eθj = vj , j = 1, ..., s. Then

p(vD)q (̌v) = 0 if and only if 〈q, eθp([])〉 = 0.

Proof: For every α, β ∈ ZZs
+,

(4.3) (vD)β()α(v) =
α!

(α − β)!
vα = β![α]βvα.

Hence

p(vD)q (̌v) =
∑
α

qαp([α])vα = 〈q, eθp([])〉. ♠

(4.4) Theorem([L]). Every closed shift-invariant subspace of C contains a dense exponential

subspace of finite spectrum.

Proof: Let C be the space in question. Then I := C⊥+ˇ is an E-ideal. By (2.4)Corollary and

(3.6)Corollary, there exists V ⊂ Cs
∗ such that

(4.5) C⊥+ˇ = I =
⋂

v∈V

I⊥v⊥v.

We conclude from (4.2)Lemma that, with Θ := log V ,

(4.6) C⊥+ = {q ∈ P+ : 〈q, eθr([])〉 = 0, all θ ∈ Θ, r ∈ Pθ},

where Pθ = {p(·/v) : p ∈ I⊥v}. Since I⊥v is D-invariant, so is Pθ, and hence Pθ([]) := {p([]) : p ∈
Pθ} is shift-invariant by (4.1). This implies that the subspace F of C defined by F :=

⊕
θ∈Θ eθPθ([])

is shift-invariant, while C⊥+ = F⊥+ by (4.6). Therefore, an application of (1.5)Proposition shows

that C and F have the same closure, and since C is closed, F is dense in C.

The proof just given supports the following corollary:

(4.7) Corollary. Let C be a closed shift-invariant subspace of C. Let Θ be a subset of Cs. If

eΘ := {eθ : θ ∈ Θ} intersects each prime component of VC⊥+ˇ, then the space of all exponentials

in C with spectrum in Θ is dense in C.

With the aid of (3.7)Corollary, we also conclude

(4.8) Corollary. A closed shift-invariant subspace C of C is finite-dimensional if and only if it has

finite spectrum.

Proof: The “only if” claim is trivial. For the converse, we note that if the spectrum of C is finite,

then the reduced variety of C⊥+ˇ is finite, hence by (3.7)Corollary, so is VC⊥+ˇ. Now, for an ideal

of finite variety, it follows from the Nullstellensatz that each of the multiplicity spaces associated

with the variety is finite-dimensional. Application of (4.2)Lemma then yields that the space of all

exponentials in C is finite-dimensional, and by virtue of (4.4)Theorem, so is C.
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5. Main results

Unless stated otherwise, the exponentials considered in the rest of the paper will always be

defined on ZZs, hence the associated spectra are meant in Cs/2πiZZs.

We prove here (1.2)Theorem, (1.3)Theorem and draw other conclusions from the spectral

synthesis in C.

Proof of (1.2)Theorem: Since F is closed and shift-invariant, (φ∗)−1(F ) is a closed shift-invariant

subspace of C. Now apply (4.4)Theorem.

Proof of (1.3)Theorem: The first part of the theorem follows directly from (1.2)Theorem and

the fact that F , being finite-dimensional, contains no proper dense subspaces. To prove the second

part, we note that, for every α ∈ ZZs, Eα is an endomorphism on F , hence it indeed makes sense

to consider the spectrum σ(α) of Eα|F .

We now take an arbitrary exponential g :=
∑

θ∈Θ eθpθ in the preimage of F (under φ∗) and,

following the argument of [BR; Prop. 7.1], show that, for every ϑ ∈ Θ for which eϑ(α) 6∈ σ(α) for

some α ∈ ZZs, the summand eϑpϑ is in the kernel of φ∗, hence can be omitted from the sum.

For any α, the characteristic polynomial χα of Eα|F gives

φ∗χα(Eα)g = χα(Eα)(φ∗g) ∈ χα(Eα)(F ) = {0}.

For arbitrary p ∈ π, β ∈ ZZs and λ ∈ Cs

Eβ(eθp) − λeθp = eθ (eθ(β)Eβp − λp),

hence (Eβ − λ)(eθp) = eθq, with q a polynomial that satisfies

deg q = deg p ⇐⇒ eθ(β) − λ 6= 0.

Assume now that eϑ(α) 6∈ σ(α). Then χα(Eα) is 1-1 on eϑπ. Also, we can find a polynomial q for

which q(E) annihilates eθpθ for all θ ∈ Θ\ϑ but is 1-1 on eϑπ. Consequently,

(5.1) 0 = q(E)(φ∗χα(Eα)g) =: φ∗r(E)(eϑpϑ).

Since r(E) is 1-1 on eϑπ, it carries each eϑπk onto itself, hence, with k ≥ deg pϑ, there is some poly-

nomial s so that (sr)(E) is the identity on eϑπk. Thus, from (5.1), 0 = s(E)0 = φ∗(sr)(E)(eϑpϑ) =

φ∗eϑpϑ, which is what we set out to prove.
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To make use of the second part of (1.3)Theorem, one needs to know the spectrum of sufficiently

many Eα|F , a task that might appear to be difficult in general. Yet, if we assume that F is an

exponential space and denote its spectrum by Θ, then F contains each eθ with θ ∈ Θ, hence

(5.2) σ(α) = {eθ(α)}θ∈Θ, all α ∈ ZZs.

This implies that the points θ ∈ Θ are the only frequencies that satisfy

(5.3) eθ(α) ∈ σ(α), all α ∈ ZZs.

So we obtain

(5.4) Corollary. Let H be a shift-invariant exponential subspace of S(φ) with spectrum Θ ⊂ Cs.

Then there exists a finite-dimensional shift-invariant exponential space of spectrum Θ/2πiZZs which

is mapped by φ∗ onto H.

Of particular interest is the following

(5.5) Corollary. For every θ ∈ Cs, S(φ) ∩ eθπ is the image of some finite-dimensional shift-

invariant space C ⊂ C ∩ eθπ under φ∗.

6. An example: box splines

We discuss here an example in which we identify the spectrum of the preimage of H(φ) for a

box spline φ. For background about box splines we refer to [BR], from where most of the notations

are borrowed.

Let Γ be a finite index set. The (exponential) box spline BΓ is defined via its Fourier transform

as

B̂Γ(x) =
∏
γ∈Γ

eλγ−i〈xγ ,x〉 − 1
λγ − i〈xγ , x〉 ,

where for each γ, λγ ∈ C and xγ ∈ ZZs\0. We assume that span{xγ}γ∈Γ = IRs.

Since CΓ := (BΓ∗)−1(H(BΓ)) is shift-invariant, its spectrum coincides (mod 2πiZZs) with the

set

(6.1) Θ := {θ ∈ Cs : BΓ∗eθ ∈ H(BΓ)}.

An important subset of Θ was identified in [DM] and [BR] as the set

Θ̃ := {θ ∈ Cs : span{xγ}γ∈Γ̃θ
= Cs},

with

Γ̃θ := {γ ∈ Γ : ∇γ(eθ) = 0},
and ∇γ := 1 − eλγ E−xγ .
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(6.2) Proposition([DM],[BR]). The set Θ̃ is finite mod 2πiZZs, and for each θ ∈ Θ̃

BΓ∗eθ ∈ H(BΓ).

We therefore conclude that indeed Θ̃ ⊂ Θ. In the following theorem we show that the spectrum

of CΓ is a finite union of linear manifolds, each of which intersects Θ̃. For K ⊂ Γ, we use here the

notations

〈K〉 := span{xγ}γ∈K , K⊥ := {x ∈ Cs : x ⊥ 〈K〉}.

(6.3) Theorem. For an exponential box spline BΓ, the spectrum of the space CΓ of the preimage

of the exponential space H(BΓ) is

(6.4)
⋃
θ,K

θ + K⊥,

where θ runs over Θ̃ and, for each θ, K runs over all subsets of Γ which are minimal with respect

to the property

BK∗eθ ∈ H(BΓ).

Proof: We show first that each point in (6.4) lies indeed in the desired spectrum Θ (as given

by (6.1)). So assume that θ ∈ Θ̃, that BK∗eθ ∈ H(BΓ), and K is minimal. Then it is sufficient

to prove that BK∗eθ+η ∈ H(BΓ), for all η ∈ K⊥. By (6.2)Proposition, this is true for η = 0, and

hence there is nothing to prove in case 〈K〉 = Cs, since then K⊥ = 0. Otherwise, since BK is

supported on 〈K〉, we must have BK∗eθ = 0. In fact, already
∑

α∈〈K〉∩ZZs eθ(α)E−αBK = 0. Since

eθ+η coincides on 〈K〉 with eθ, we conclude that indeed BK∗eθ+η = 0, and hence the union in (6.4)

lies in Θ.

For the converse, assume that θ ∈ Θ and let K be a minimal subset of Γ with respect to the

property

BK∗eθ ∈ H(BΓ).

By the preceding arguments, θ + K⊥ ⊂ Θ. In what follows, we show that θ + K⊥ intersects Θ̃,

and hence θ + K⊥ = ϑ + K⊥ for some ϑ ∈ Θ̃.

For that we introduce, for each γ ∈ Γ, the differential operator Dγ := Dxγ −λγ , and note [BR]

that Dγ(BK∗eθ) = BK\γ∗∇γ(eθ) for γ ∈ K. Since BK∗eθ is an exponential, so is Dγ(BK∗eθ), and

thus, since ∇γ(eθ) is a constant multiple of eθ, the minimality of K shows that ∇γ(eθ) = 0, and

since γ ∈ K was arbitrary, ∇γ(eζ) = ∇γ(eθ) = 0, for all γ ∈ K, ζ ∈ θ + K⊥.

Now, let η be the unique solution in K⊥ of the equations

〈xγ , θ+?〉 = λγ , all γ ∈ J,
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where J ⊂ Γ\K is chosen so that #J = dimK⊥ and 〈K ∪J〉 = Cs. Then θ +η ∈ θ +K⊥, and also

∇γ(eθ+η) = 0 for every γ ∈ K ∪ J , which implies that ϑ := θ + η ∈ Θ̃, and consequently θ + K⊥

intersects Θ̃, as claimed.

Finally, if K is also minimal with respect to the property BM∗eϑ ∈ H(BΓ), then θ + K⊥ =

ϑ + K⊥ is one of the sets in (6.4); otherwise, a set of the form ϑ + M⊥ with M ⊂ K appears in

(6.4), and since K⊥ ⊂ M⊥, θ ∈ ϑ + M⊥, and our claim follows.

With the aid of (4.4)Theorem we conclude the following

(6.5) Corollary. Let Cθ,K be the closure of the space of all exponentials in CΓ with spectrum in

θ + K⊥. Then

(6.6) CΓ =
∑
θ,K

Cθ,K ,

where θ and K vary as in (6.3)Theorem.

Proof: Note first that the right hand side of (6.6) is closed, as the sum of finitely many closed

spaces. Furthermore, by (6.3)Theorem, this sum contains all the exponentials in CΓ. Now apply

(4.4)Theorem.

We conjecture that there is 1-1 correspondence between sets of the form θ + K⊥ and the

components of the variety of CΓ⊥ .̌ If so, it will follow that the finite set in (4.4)Theorem can be

chosen as Θ̃/2πiZZs.

Combining (6.3)Theorem with (4.8)Corollary, we obtain a result which was proved in [DM] by

other means:

(6.7) Corollary. CΓ if finite dimensional if and only if its spectrum is Θ̃/2πiZZs.
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