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In interpolation, one hopes to determine, for g defined (at least) on a given pointset ©,
a function f from a given collection F' which agrees with g on ©. If, for arbitrary g, there
is exactly one f € F with f = g on O, then one calls the pair (F,0) correct. (Birkhoff
[Bi79] and others would say that, in this case, the problem of interpolating from F' to data
on O is well set.) Assuming that F' is a finite-dimensional linear space, correctness of
(F,©) is equivalent to having

(0.1) dim F' = #0 = dim Fjg

(with Flg := {fje : f € F'} the set of restrictions of f € F' to ©).

Multivariate interpolation has to confront what one might call ‘loss of Haar’, i.e.,
the fact that, for every linear space F of continuous functions on IR? with d > 1 and
1 < dimF < oo, there exist pointsets © ¢ IR? with dimF = #6 > dim Flg. This
observation rests on the following argument (see, e.g., the cover of [L66] or p.25 therein):
For any basis ® = (¢1,...,¢,) for F, and any continuous curve vy : [0dl] — (RH)" -
t— (71(t),...,7(t)), the function g : ¢t — det(¢;(7:(t))) is continuous. Since n > 1 and
d > 1, we can so choose the curve v that, e.g., v(1) = (72(0),71(0),7v3(0),...,v,(0)), while,
for any ¢, the n entries of () are pairwise distinct. Since then g(1) = —g(0), we must
have g(t) = 0 for some t € [0dl], hence F is of dimension < n when restricted to the
corresponding pointset © := {y1(t),...,v.(t)}.

As a consequence, it is not possible for n,d > 1 (as it is for n = 1 or d = 1) to find an
n-dimensional space of continuous functions which is correct for every n-point set © € IR¢.
Rather, one has to choose such a correct interpolating space in dependence on the pointset.

A particular choice of such a polynomial space Ilg for given © has recently been
proposed in [BR90], a list of its many properties has been offered and proved in [BR90-
92], its computational aspects have been detailed in [BR91], and its generalization, from
interpolation at a set of n points in R? to interpolation at n arbitrary linearly independent
linear functionals on the space

IT = TI(RY)

of all polynomials on IR?, has been treated in much detail in [BR92].

The present short note offers some discussion concerning the error in this new poly-
nomial interpolation scheme, and provides a short direct proof of two relevant properties
of the interpolation scheme, whose proof was previously obtained, in [BR91-92], as part of
more general results.



1. The interpolation scheme

To recall from [BR90-91], the interpolation scheme is stated in terms of a pairing,
between II and the space
Ao

of all functions on IR? with a convergent power series (in fact, the larger space II' of all
formal power series would work as well). Here is the pairing:

(1.1) (p,g) :==p(D)g(0) = > D*p(0) D*g(0) /a!.

aEZi

The sum is over all multi-indices «, i.e., over all d-vectors with nonnegative integer en-
tries, D denotes the partial derivative Dla(l) e Dg‘(d), and a! := a(1)!--- «a(d)!. Further,
we will use the standard abbreviation

d
la) :==a(l) +---+a(d), acZf,
and the nonstandard, but convenient, notation
0 R R : 2z 2% := 2(1)*D ... g(d)d)

for the a-power function or a-monomial. E.g., if p is the polynomial ) c¢(a)()®, then
p(D) is the constant coefficient differential operator )  c(a)D®.
The pairing is set up so that the linear functional

(0): 1T —1R:p+— pd)

of evaluation at 6 is represented with respect to this pairing by the exponential with
frequency 0 € RY, i.e., by the function

eg :IRE>R:x—

(with 0z := >, 0(j)z(j) the usual scalar product). Indeed, since D%y(0) = 0%, one
computes

(1.2) (p.eg) = > _ D*p(0) 6°/a! = p(6).

Further, the pairing is graded, in the following sense. For g € A9 D Il and k € ZZ,
denote by

gM =" Dg(0)()"/a!

|a|=k

its kth order term, i.e., the sum of all terms of exact order k in its power series expansion.
In these terms, pl*! interacts in (p, g) only with the corresponding ¢l¥!. In particular, if we
denote by p; the leading term of p € II, i.e., the nonzero term plkl with maximal k, then

(p1,p) = (P1,p1) >0,
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except when p = 0, in which case, by convention, p; := 0. Correspondingly, we denote by
g, the least or initial term of g € Ay, i.e., the nonzero term ¢!¥! with minimal %, and
conclude correspondingly that

<glag> = <glagl> > 0;

except when g = 0, in which case, by convention, g| := 0.
Set now (as in [BR9I0])

Ilg :=span{g| : g € Expe}, with Expe :=span{ey: 60 € O}.

Then g — R® : p — p|e is 1-1: For, if pjg = 0, then, by (1.2), (p,g) = 0 for all g € Expe.
If now p # 0, then necessarily p; = g for some g € Expe\0, and then 0 = (p,g) =
(p1,91) = (p1,p1) > 0, a contradiction. It follows that dimIlg = dim(Ile)e < #0O.

On the other hand, it is possible to show, by a variant of the Gram-Schmidt orthog-
onalization process started from the basis (eg)gco for Expeg, the existence of a sequence
(91,---,9n) in Expe (with n := #0), for which

(1.3) (9i1,95) =0 <= i#]

This shows, in particular, that (g1),...,9n|) is independent (and in Ilg), hence that
dimIlg > n = #6.
Consequently, (Ilg, ©) is correct. More than that, for arbitrary f € 11,

f gj
4 I = E
(1 ) of = g5\ gj 793

is the unique element in Ilg which agrees with f at ©. Indeed, it follows from (1.3) that,
fori=1,...,n, (Ief,g:;) = (f,9:). Since (g1,92,-..,9gn) is independent (by (1.3)), hence
a basis for Expg (as Expg is spanned by n elements), we conclude with (1.2) that, for all
0 €0, Ilof(0) = (lof es) = (f eq) = f(0).

Remark. Since Expg, as the span of n = #0 functions, is trivially of dimension
< #0, we seem to have just proved that

(1.5) dim Expe = #O.

This is misleading, though, since the proof of the existence of that sequence (g1, go, ..., gn)
in Expg satisfying (1.3) uses (1.5).
Note that, with g; =: > ;.o B(J,0)eo,

(1.6) (f.9;)=_B(j 0
0O

Thus, with (1.6) as a definition for (f,g;) in case f ¢ II, (1.4) provides the polynomial
interpolant from ITg at © to arbitrary f defined (at least) on O.



2. Simple proofs of some properties of Ig

As shown in [BR90-92], the interpolation scheme Ig has many desirable properties.
Some of these follow directly from the definition of Ilg: For example, Ilg C Ilg/ in case
O C ©’ (leading to a Newton form for the interpolant). Also, for any r > 0 and any ¢ € IR?,
IT,o+. = lle. The translation-invariance, Ilg;. = Ilg, implies that Ilg is D-invariant,
ie.,

(2.1) V{p € llg,a € ZL} D*p € .

Further, for any invertible matrix C, Ilce = Ilg o C* (with C?* the transposed of C). Also,
IIo depends continuously on © (to the extent possible, limits on this being imposed by
‘loss of Haar’), and Ig converges to appropriate Hermite interpolation if elements of © are
allowed to coalesce in a sufficiently nice manner.

Perhaps the two most striking properties are that (i) Ig is degree-reducing, and (ii)
Ile = Ny o=0 ker p; (D). These properties are proved in [BR90-92] as part of more general
results. Because of the evident and expected importance of these results, it seems useful
to provide direct proofs, which I now do.

The minimum-degree property:

(2.2) V{p € I1} deglop < degp,

follows immediately from (1.4) since (p, g;) = 0 whenever degp < degg;,. (It is stressed
in [Bi79] that univariate Lagrange interpolation has this property.)

In fact, the inequality in (2.2) is strict if and only if p; L Ilg, as will be established
during the proof of the second property. Here and below, I find it convenient to write
p L G (and say that ‘p is perpendicular to G’) in case (p,g) = 0 for all g € G, with p € II
and G C Ayp.

(2.3)Proposition ([BR91-92]). Ilg = N, ,=o ker p;(D).

Proof: I begin with a proof of the following string of equivalences and implications:

pe=0 <= plExpe
— D7 1 Ilg
(2.4) < V{gelle} p;(D)q(0) =0
— V{qelle}V{a} p;(D)D%q(0) =0
< V{g€lle} p(D)g=0.

The first equivalence follows from (1.2), the second relies on the definition of orthogonality,
and the third uses the facts that p(D)D® = D%p(D) (for any p € II), and that the
polynomial p;(D)q is the zero polynomial iff all its Taylor coefficients are zero.

The ‘=’ follows from the observation that if (p,g) = 0, then (p;,g;) = 0, either
because degp; # degg,, or else because, in the contrary case, (p,g) = (p1,g;). Finally,
the ‘<=’ is trivial.



The ‘=’ can actually be replaced by ‘<=’ since Ilg is D-invariant, by (2.1). Also,
the ‘=" can be reversed in the following way:

(2.5) V{H >5f L H@} 3{]) 1 EXp@} pr = fT'

For, if f is a polynomial perpendicular to Ilg, of degree k say, then Ig f is necessarily of
degree < k, since, in the formula (1.4), the terms (f, g,;) for degg;| > k are trivially zero
while, for degg;; = k, we have (f,g;) = (f,g;,) and this vanishes since f L IIg. Conse-
quently p := f — Io f is a polynomial with the same leading term as f and perpendicular
to Expe.

In any case, the argument given so far shows that Ille C Ny o=o0 kerp; (D). To show
equality, note that dimIlg = #0 < oo, hence Ilg C Il for some k. Thus, for any
la| =k +1, deglo()* < deg()* = k + 1, hence

(0" =Ie()%)1 = 0",

therefore mp‘(_)zo kerp1 (D) C [ 4j=g41 ker D* = 1l C II. Further, if ¢ € II, then p :=
q — leq is a polynomial of degree < degq (by (2.2)) and p;(D)(Ile) = 0 (since pje = 0),
therefore p1(D)p = py(D)q. Hence, if ¢ € Ny =0 ker py (D), then py(D)p = 0, hence p = 0,
ie., q€llg. O

3. Error

The standard error formula for univariate polynomial interpolation is based on the

Newton form, i.e., on the ‘correction’ term [01,0s, ..., 0k, x|f H§:1(' — ;) which is added
to the polynomial interpolating to f at 61,60s,...,60; in order to obtain the polynomial
interpolating to f at 61,60s,...,0r,z. An analogous formula is available for the error

f —Iof in our multivariate polynomial interpolant. For its description, it is convenient to
use the dual of Ig with respect to the pairing (1.1), i.e., the map

163 A= A “’Hzg%ggjf 2
. J J

(3.1)Proposition. For any € R? and any f € II,

(3.2) f(x) = (e f)(x) = (f co.)
with
g] 1y €x>
(3.3) o =€y —I5e, = ey — gj "
; (951,950
Proof: Since e, represents the linear functional §(z) of evaluation at x with re-
spect to (1.1), I§e, is the exponential which represents the linear functional §(x)Ie with
respect (1.1). O



(3.4)Corollary. The exponential g , represents §(x) on the ideal
ideal(©) :=ker Ig = {f € Il : fijg = 0},
and is orthogonal to Ilg, hence so are all its homogeneous components g[g}m.

Proof: If foe =0, then f(z) = f(z) — lef(z) = (f,c0,2)-

Since I§ is the dual to the linear projector of interpolation from Ilg, its interpolation
conditions are of the form (p,-) with p € Ilg. Hence g 4, as the error e, — I§e,, must be
perpendicular to Ilg, and this, incidentally, can also be written as

p(D)eo (0) =0, Vpelle.

Finally, since IIg is spanned by homogeneous polynomials, f L IIg implies that fI* 1 IIg
for all k € 7. O

(3.5)Lemma ([BR90]). For any = ¢ O, Ilgy, = Ile + span{pe .}, with

(3.6) pow = (ex — Io€z)|

the initial term of €g .

Proof: First, pe, » € oy, since it is the initial term of some element of Expg,,.
Further, pe , # 0 since pe, = 0 would imply that e, € Expeg, hence z € © by (1.5).
Therefore

(37) 0< <p®,m7p®,x> = <p®,:c756,m> = <p®,m - I@p®,x7 em) = (p@,:c - I@p@,m)(£>7
showing that pe » — lepe,» # 0, hence pe , ¢ Ilo. O

(3.8)Corollary. For any ordering © = (61,02,...,6,) and with ©; := (61,0s,...,6;),

. <f7 €o >
3.9 Ief= pe; —lo,_pe,;) —— -
( ) ; ( ' ) <p@j 7p@j>
Proof: The proof is by induction on #0, starting with the case n = 0, i.e., © = {},
for which the definition Iy, := 0 is suitable. For any finite © and z ¢ © and any f, we
know from the lemma that

y € ,T
(3.10) p = Iof + (Po. —Iepe,m)ﬁ

is in Ilgus, and from (3.7) and Proposition 3.1, that p(z) = f(x), while evidently p = f
on O, hence p must be the polynomial Igy, f. Thus if (3.9) holds for ©, it also holds for



Such a Newton form for /g f was derived in a somewhat different manner in [BR90].
Note that

g0, = (Po.« — lope.z)/(Po.w,Po.x)

is the unique element of Ilg, which vanishes at © and takes the value 1 at x. But there
does not appear to be in general (as there is in the univariate case) a scaling sge , which
makes its coefficient (f,ce )/s in (3.10) independent of the way © U x has been split into
© and z. The only obvious exception to this is the case when Ilg = II; := the collection
of polynomials of total degree < k. Thus, only for this case does one obtain from Ig a
ready multivariate divided difference.

Unless the ordering (01,0s,...,60,) is carefully chosen (e.g., as in the algorithm in
[BRI1]), there is no reason for the corresponding sequence (degpe,,...,degpe,) to be
nondecreasing. In particular, degpe , may well be smaller than deglgf. For example,
if x is not in the affine hull of ©, then degpg, = 1. This means that the order of
the interpolation error, i.e., the largest integer k for which f(z) — Ig f(xz) = 0 for all
f € ll«x, may well change with x, since it necessarily equals deg pg . The only exception
to this occurs when Ilg = 11 for some k. More generally, deg pe . is a continuous function
of x, hence constant, in some neighborhood of the point £ if the pointset © U ¢ is regular
in the sense of [BRI0], i.e., if

Moy C lgue C I
for some k. (To be precise, [BRI0] calls Expg ¢ rather than © U ¢ regular in this case.)
(3.11)Proposition. k :=degpe , = min{degp : p(x) # 0,p € ideal(O)}.

Proof: Let k' := min{degp : p(z) # 0,p € ideal(©)}. If p € ideal(©), then
p(z) = (p,co,z) by Corollary 3.4, therefore p(x) # 0 implies k& < degp. Thus £k < k’. On
the other hand, q := pe ., — lope, has degree < degpe , (by (2.2); in fact, we already
know from the proof of Proposition 2.3 that degq = degpe », but we don’t need that here)
and does not vanish at x, by (3.7), hence also k' < degq < k. O

The derivation from (3.2) of useful error bounds requires suitable bounds for expres-
sions like

> IDYF(0)]P/al

l| =k

in terms of norms like } -, _, [|D®f[|(Lp(B)), with k = degpe » and B containing © U z.
Presumably, one would first shift the origin to lie in B, in order to keep the constants
small, and so as to benefit from the fact that eg , vanishes to order k at 0.

In view of Proposition 2.3, integral representations for the interpolation error f — Ig f
should be obtainable from the results of K. Smith, [K70], using as differential operators
the collection p;(D), p € P, with P a minimal generating set for ideal(©).



4. A generalization and Birkhoff’s ideal interpolation schemes

In [Bi79], Birkhoff gives the following abstract description of interpolation schemes.
With X some space of function on some domain 7T into some field F' and closed under
pointwise multiplication, and ® a collection of functionals (i.e., F-valued functions) on X,
there is associated the data map

I(P): X — e 19— (¢9)peca

(for which Birkhoff uses the letter «). Birkhoff calls any right inverse I of 6(®) an inter-
polation scheme on ®. (To be precise, Birkhoff talks about maps I : ® — X which are
to be right inverses for 6(®), and uses F¥ with Y C T as an example for ®, but the intent
is clear.) He observes that P := I§(®) is necessarily a projector, i.e., idempotent.

He calls the pair (6(®), ), or, better, the resulting projector P := I§(®P), an ideal
interpolation scheme in case

(i) §(®)I =1id;
(ii) both §(®) and I are linear (hence P is linear);
(iii) ker P is an ideal, i.e., closed under pointwise multiplication by any element from X.

For linear §(®) and I, (§(®),I) is ideal if and only if kerd(®) is an ideal (since
ker P = ker §(®) regardless of I). Thus any linear scheme for which the data map is
a restriction map f +— fle (such as the map lg discussed in the preceding sections) is
trivially ideal.

In these terms, the generalization of Ig treated in [BR92] deals with the situation
when T = R? and X = II = II(RY), and & : f — (¢f)pca for some finite, linearly
independent, collection of linear functionals on IT (with a further extension, to infinite ®,
also analysed). The algebraic dual II' can be represented by the space of formal power
series (in d indeterminates), and the pairing (1.1) has a natural extension to IT x IT'.

In this setting,

kerd(®)=A, :={pell:p L A},

with
A ;= span ®.
(4.1)Proposition ([BR92]). ker§(®) is an ideal if and only if A is D-invariant.

The proof uses nothing more than the observation that

(0%p, ¢) = (p, D*¢).

As an example, if @ is a linearly independent subset of Ugceegll, then ¢ € ® is of the
form

f=p(D)f(0)
for some § € © and p € II. Correspondingly, A = span® = », o eqFy for certain
polynomial spaces Py. Hence, ker 6(®) is an ideal iff each Py is D-invariant. In particular,
Hermite interpolation at finitely many points is ideal, while G.D. Birkhoff interpolation is,
in general, not.
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