UNIVERSITY OF WISCONSIN-MADISON CENTER FOR THE MATHEMATICAL SCIENCES

On the error in multivariate polynomial interpolation

 $C. de Boor^{1}$

Abstract. Simple proofs are provided for two properties of a new multivariate polynomial interpolation scheme, due to Amos Ron and the author, and a formula for the interpolation error is derived and discussed.

AMS (MOS) Subject Classifications: 41A63, 41A05; 41A10

Author's affiliation and address:

Center for the Mathematical Sciences University of Wisconsin-Madison 610 Walnut St. Madison WI 53705

 $^{^1\,}$ supported by the National Science Foundation under Grant No. DMS-9000053 and by the United States Army under Contract No. DAAL03-90-G-0090

On the error in multivariate polynomial interpolation

C. de Boor ¹

Dedicated to Garrett Birkhoff on the occasion of his 80th birthday

In interpolation, one hopes to determine, for g defined (at least) on a given pointset Θ , a function f from a given collection F which agrees with g on Θ . If, for arbitrary g, there is exactly one $f \in F$ with f = g on Θ , then one calls the pair $\langle F, \Theta \rangle$ **correct**. (Birkhoff [Bi79] and others would say that, in this case, the problem of interpolating from F to data on Θ is **well set**.) Assuming that F is a finite-dimensional linear space, correctness of $\langle F, \Theta \rangle$ is equivalent to having

$$\dim F = \#\Theta = \dim F_{|\Theta}$$

(with $F_{|\Theta} := \{f_{|\Theta} : f \in F\}$ the set of restrictions of $f \in F$ to Θ).

Multivariate interpolation has to confront what one might call 'loss of Haar', i.e., the fact that, for every linear space F of continuous functions on \mathbb{R}^d with d > 1 and $1 < \dim F < \infty$, there exist pointsets $\Theta \subset \mathbb{R}^d$ with $\dim F = \#\Theta > \dim F|_{\Theta}$. This observation rests on the following argument (see, e.g., the cover of [L66] or p.25 therein): For any basis $\Phi = (\phi_1, \ldots, \phi_n)$ for F, and any continuous curve $\gamma : [0 \, \text{d} 1] \to (\mathbb{R}^d)^n : t \mapsto (\gamma_1(t), \ldots, \gamma_n(t))$, the function $g: t \mapsto \det(\phi_j(\gamma_i(t)))$ is continuous. Since n > 1 and d > 1, we can so choose the curve γ that, e.g., $\gamma(1) = (\gamma_2(0), \gamma_1(0), \gamma_3(0), \ldots, \gamma_n(0))$, while, for any t, the n entries of $\gamma(t)$ are pairwise distinct. Since then g(1) = -g(0), we must have g(t) = 0 for some $t \in [0 \, \text{d} 1]$, hence F is of dimension < n when restricted to the corresponding pointset $\Theta := \{\gamma_1(t), \ldots, \gamma_n(t)\}$.

As a consequence, it is not possible for n, d > 1 (as it is for n = 1 or d = 1) to find an n-dimensional space of continuous functions which is correct for every n-point set $\Theta \in \mathbb{R}^d$. Rather, one has to choose such a correct interpolating space in dependence on the pointset.

A particular choice of such a *polynomial* space Π_{Θ} for given Θ has recently been proposed in [BR90], a list of its many properties has been offered and proved in [BR90-92], its computational aspects have been detailed in [BR91], and its generalization, from interpolation at a set of n points in \mathbb{R}^d to interpolation at n arbitrary linearly independent linear functionals on the space

$$\Pi = \Pi(\mathbb{R}^d)$$

of all polynomials on \mathbb{R}^d , has been treated in much detail in [BR92].

The present short note offers some discussion concerning the error in this new polynomial interpolation scheme, and provides a short direct proof of two relevant properties of the interpolation scheme, whose proof was previously obtained, in [BR91-92], as part of more general results.

1. The interpolation scheme

To recall from [BR90-91], the interpolation scheme is stated in terms of a pairing, between Π and the space

$$A_0$$

of all functions on \mathbb{R}^d with a convergent power series (in fact, the larger space Π' of all formal power series would work as well). Here is the pairing:

(1.1)
$$\langle p, g \rangle := p(D)g(0) = \sum_{\alpha \in \mathbf{Z}_{\perp}^{d}} D^{\alpha} p(0) \ D^{\alpha} g(0) \ / \alpha!.$$

The sum is over all **multi-indices** α , i.e., over all d-vectors with nonnegative integer entries, D^{α} denotes the partial derivative $D_1^{\alpha(1)} \cdots D_d^{\alpha(d)}$, and $\alpha! := \alpha(1)! \cdots \alpha(d)!$. Further, we will use the standard abbreviation

$$|\alpha| := \alpha(1) + \dots + \alpha(d), \quad \alpha \in \mathbb{Z}_+^d,$$

and the nonstandard, but convenient, notation

$$()^{\alpha}: \mathbb{R}^d \to \mathbb{R}: x \mapsto x^{\alpha}:=x(1)^{\alpha(1)}\cdots x(d)^{\alpha(d)}$$

for the α -power function or α -monomial. E.g., if p is the polynomial $\sum_{\alpha} c(\alpha)()^{\alpha}$, then p(D) is the constant coefficient differential operator $\sum_{\alpha} c(\alpha)D^{\alpha}$.

The pairing is set up so that the linear functional

$$\delta(\theta): \Pi \to \mathbb{R}: p \mapsto p(\theta)$$

of evaluation at θ is represented with respect to this pairing by the **exponential with** frequency $\theta \in \mathbb{R}^d$, i.e., by the function

$$e_{\theta}: \mathbb{R}^d \to \mathbb{R}: x \mapsto e^{\theta x}$$

(with $\theta x := \sum_{j} \theta(j) x(j)$ the usual scalar product). Indeed, since $D^{\alpha} e_{\theta}(0) = \theta^{\alpha}$, one computes

(1.2)
$$\langle p, e_{\theta} \rangle = \sum_{\alpha} D^{\alpha} p(0) \; \theta^{\alpha} / \alpha! = p(\theta).$$

Further, the pairing is graded, in the following sense. For $g \in A_0 \supset \Pi$ and $k \in \mathbb{Z}_+$, denote by

$$g^{[k]} := \sum_{|\alpha|=k} D^{\alpha} g(0)()^{\alpha}/\alpha!$$

its kth order term, i.e., the sum of all terms of exact order k in its power series expansion. In these terms, $p^{[k]}$ interacts in $\langle p,g\rangle$ only with the corresponding $g^{[k]}$. In particular, if we denote by p_{\uparrow} the **leading** term of $p \in \Pi$, i.e., the nonzero term $p^{[k]}$ with maximal k, then

$$\langle p_{\uparrow}, p \rangle = \langle p_{\uparrow}, p_{\uparrow} \rangle > 0,$$

except when p = 0, in which case, by convention, $p_{\uparrow} := 0$. Correspondingly, we denote by g_{\downarrow} the **least** or **initial** term of $g \in A_0$, i.e., the nonzero term $g^{[k]}$ with minimal k, and conclude correspondingly that

$$\langle g_{\downarrow}, g \rangle = \langle g_{\downarrow}, g_{\downarrow} \rangle > 0,$$

except when g = 0, in which case, by convention, $g_{\downarrow} := 0$. Set now (as in [BR90])

$$\Pi_{\Theta} := \operatorname{span}\{g_{\downarrow} : g \in \operatorname{Exp}_{\Theta}\}, \text{ with } \operatorname{Exp}_{\Theta} := \operatorname{span}\{e_{\theta} : \theta \in \Theta\}.$$

Then $\Pi_{\Theta} \to \mathbb{R}^{\Theta}$: $p \mapsto p_{|\Theta}$ is 1-1: For, if $p_{|\Theta} = 0$, then, by (1.2), $\langle p, g \rangle = 0$ for all $g \in \operatorname{Exp}_{\Theta}$. If now $p \neq 0$, then necessarily $p_{\uparrow} = g_{\downarrow}$ for some $g \in \operatorname{Exp}_{\Theta} \setminus 0$, and then $0 = \langle p, g \rangle = \langle p_{\uparrow}, g_{\downarrow} \rangle = \langle p_{\uparrow}, p_{\uparrow} \rangle > 0$, a contradiction. It follows that $\dim \Pi_{\Theta} = \dim(\Pi_{\Theta})_{|\Theta} \leq \#\Theta$.

On the other hand, it is possible to show, by a variant of the Gram-Schmidt orthogonalization process started from the basis $(e_{\theta})_{\theta \in \Theta}$ for Exp_{Θ} , the existence of a sequence (g_1, \ldots, g_n) in Exp_{Θ} (with $n := \#\Theta$), for which

$$\langle g_{i\downarrow}, g_j \rangle = 0 \quad \Longleftrightarrow \quad i \neq j.$$

This shows, in particular, that $(g_{1\downarrow}, \ldots, g_{n\downarrow})$ is independent (and in Π_{Θ}), hence that $\dim \Pi_{\Theta} \geq n = \#\Theta$.

Consequently, $\langle \Pi_{\Theta}, \Theta \rangle$ is correct. More than that, for arbitrary $f \in \Pi$,

(1.4)
$$I_{\Theta}f := \sum_{j} g_{j\downarrow} \frac{\langle f, g_{j} \rangle}{\langle g_{j\downarrow}, g_{j} \rangle}$$

is the unique element in Π_{Θ} which agrees with f at Θ . Indeed, it follows from (1.3) that, for i = 1, ..., n, $\langle I_{\Theta} f, g_i \rangle = \langle f, g_i \rangle$. Since $(g_1, g_2, ..., g_n)$ is independent (by (1.3)), hence a basis for $\operatorname{Exp}_{\Theta}$ (as $\operatorname{Exp}_{\Theta}$ is spanned by n elements), we conclude with (1.2) that, for all $\theta \in \Theta$, $I_{\Theta} f(\theta) = \langle I_{\Theta} f, e_{\theta} \rangle = \langle f, e_{\theta} \rangle = f(\theta)$.

Remark. Since Exp_{Θ} , as the span of $n = \#\Theta$ functions, is trivially of dimension $\leq \#\Theta$, we seem to have just proved that

$$\dim \operatorname{Exp}_{\Theta} = \#\Theta.$$

This is misleading, though, since the proof of the existence of that sequence (g_1, g_2, \ldots, g_n) in Exp_{Θ} satisfying (1.3) uses (1.5).

Note that, with $g_j =: \sum_{\theta \in \Theta} B(j, \theta) e_{\theta}$,

(1.6)
$$\langle f, g_j \rangle = \sum_{\theta \in \Theta} B(j, \theta) f(\theta).$$

Thus, with (1.6) as a definition for $\langle f, g_j \rangle$ in case $f \notin \Pi$, (1.4) provides the polynomial interpolant from Π_{Θ} at Θ to arbitrary f defined (at least) on Θ .

2. Simple proofs of some properties of I_{Θ}

As shown in [BR90-92], the interpolation scheme I_{Θ} has many desirable properties. Some of these follow directly from the definition of Π_{Θ} : For example, $\Pi_{\Theta} \subset \Pi_{\Theta'}$ in case $\Theta \subset \Theta'$ (leading to a Newton form for the interpolant). Also, for any r > 0 and any $c \in \mathbb{R}^d$, $\Pi_{r\Theta+c} = \Pi_{\Theta}$. The translation-invariance, $\Pi_{\Theta+c} = \Pi_{\Theta}$, implies that Π_{Θ} is D-invariant, i.e.,

(2.1)
$$\forall \{ p \in \Pi_{\Theta}, \alpha \in \mathbb{Z}_{+}^{d} \} \ D^{\alpha} p \in \Pi_{\Theta}.$$

Further, for any invertible matrix C, $\Pi_{C\Theta} = \Pi_{\Theta} \circ C^t$ (with C^t the transposed of C). Also, Π_{Θ} depends continuously on Θ (to the extent possible, limits on this being imposed by 'loss of Haar'), and I_{Θ} converges to appropriate Hermite interpolation if elements of Θ are allowed to coalesce in a sufficiently nice manner.

Perhaps the two most striking properties are that (i) I_{Θ} is degree-reducing, and (ii) $\Pi_{\Theta} = \bigcap_{p_{|\Theta}=0} \ker p_{\uparrow}(D)$. These properties are proved in [BR90-92] as part of more general results. Because of the evident and expected importance of these results, it seems useful to provide direct proofs, which I now do.

The minimum-degree property:

$$(2.2) \forall \{p \in \Pi\} \operatorname{deg} I_{\Theta} p \le \operatorname{deg} p,$$

follows immediately from (1.4) since $\langle p, g_j \rangle = 0$ whenever $\deg p < \deg g_{j\downarrow}$. (It is stressed in [Bi79] that univariate Lagrange interpolation has this property.)

In fact, the inequality in (2.2) is strict if and only if $p_{\uparrow} \perp \Pi_{\Theta}$, as will be established during the proof of the second property. Here and below, I find it convenient to write $p \perp G$ (and say that 'p is perpendicular to G') in case $\langle p, g \rangle = 0$ for all $g \in G$, with $p \in \Pi$ and $G \subset A_0$.

(2.3)Proposition ([BR91-92]).
$$\Pi_{\Theta} = \bigcap_{p_{|\Theta}=0} \ker p_{\uparrow}(D)$$
.

Proof: I begin with a proof of the following string of equivalences and implications:

$$p_{|\Theta} = 0 \iff p \perp \operatorname{Exp}_{\Theta}$$

$$\implies p_{\uparrow} \perp \Pi_{\Theta}$$

$$\iff \forall \{q \in \Pi_{\Theta}\} \ p_{\uparrow}(D)q(0) = 0$$

$$\iff \forall \{q \in \Pi_{\Theta}\} \forall \{\alpha\} \ p_{\uparrow}(D)D^{\alpha}q(0) = 0$$

$$\iff \forall \{q \in \Pi_{\Theta}\} \ p_{\uparrow}(D)q = 0.$$

The first equivalence follows from (1.2), the second relies on the definition of orthogonality, and the third uses the facts that $p(D)D^{\alpha} = D^{\alpha}p(D)$ (for any $p \in \Pi$), and that the polynomial $p_{\uparrow}(D)q$ is the zero polynomial iff all its Taylor coefficients are zero.

The ' \Longrightarrow ' follows from the observation that if $\langle p,g\rangle=0$, then $\langle p_{\uparrow},g_{\downarrow}\rangle=0$, either because $\deg p_{\uparrow}\neq \deg g_{\downarrow}$, or else because, in the contrary case, $\langle p,g\rangle=\langle p_{\uparrow},g_{\downarrow}\rangle$. Finally, the ' \Longleftrightarrow ' is trivial.

The ' \Leftarrow ' can actually be replaced by ' \Leftrightarrow ' since Π_{Θ} is *D*-invariant, by (2.1). Also, the ' \Longrightarrow ' can be reversed in the following way:

$$(2.5) \qquad \forall \{\Pi \ni f \perp \Pi_{\Theta}\} \; \exists \{p \perp \operatorname{Exp}_{\Theta}\} \; p_{\uparrow} = f_{\uparrow}.$$

For, if f is a polynomial perpendicular to Π_{Θ} , of degree k say, then $I_{\Theta}f$ is necessarily of degree k, since, in the formula (1.4), the terms $\langle f, g_j \rangle$ for deg $g_{j\downarrow} > k$ are trivially zero while, for deg $g_{j\downarrow} = k$, we have $\langle f, g_j \rangle = \langle f, g_{j\downarrow} \rangle$ and this vanishes since $f \perp \Pi_{\Theta}$. Consequently $p := f - I_{\Theta}f$ is a polynomial with the same leading term as f and perpendicular to Exp_{Θ} .

In any case, the argument given so far shows that $\Pi_{\Theta} \subset \cap_{p_{|\Theta}=0} \ker p_{\uparrow}(D)$. To show equality, note that $\dim \Pi_{\Theta} = \#\Theta < \infty$, hence $\Pi_{\Theta} \subset \Pi_k$ for some k. Thus, for any $|\alpha| = k + 1$, $\deg I_{\Theta}()^{\alpha} < \deg()^{\alpha} = k + 1$, hence

$$(()^{\alpha} - I_{\Theta}()^{\alpha})_{\uparrow} = ()^{\alpha},$$

therefore $\bigcap_{p_{|\Theta}=0} \ker p_{\uparrow}(D) \subset \bigcap_{|\alpha|=k+1} \ker D^{\alpha} = \Pi_k \subset \Pi$. Further, if $q \in \Pi$, then $p := q - I_{\Theta}q$ is a polynomial of degree $\leq \deg q$ (by (2.2)) and $p_{\uparrow}(D)(\Pi_{\Theta}) = 0$ (since $p_{|\Theta} = 0$), therefore $p_{\uparrow}(D)p = p_{\uparrow}(D)q$. Hence, if $q \in \bigcap_{p_{|\Theta}=0} \ker p_{\uparrow}(D)$, then $p_{\uparrow}(D)p = 0$, hence p = 0, i.e., $q \in \Pi_{\Theta}$.

3. Error

The standard error formula for univariate polynomial interpolation is based on the Newton form, i.e., on the 'correction' term $[\theta_1, \theta_2, \dots, \theta_k, x] f \prod_{j=1}^k (\cdot - x_j)$ which is added to the polynomial interpolating to f at $\theta_1, \theta_2, \dots, \theta_k$ in order to obtain the polynomial interpolating to f at $\theta_1, \theta_2, \dots, \theta_k, x$. An analogous formula is available for the error $f - I_{\Theta}f$ in our multivariate polynomial interpolant. For its description, it is convenient to use the **dual of** I_{Θ} with respect to the pairing (1.1), i.e., the map

$$I_{\Theta}^*: A_0 \to A_0: g \mapsto \sum_j g_j \frac{\langle g_{j\downarrow}, g \rangle}{\langle g_{j\downarrow}, g_j \rangle}.$$

(3.1)Proposition. For any $x \in \mathbb{R}^d$ and any $f \in \Pi$,

$$(3.2) f(x) - (I_{\Theta}f)(x) = \langle f, \varepsilon_{\Theta, x} \rangle$$

with

(3.3)
$$\varepsilon_{\Theta,x} := e_x - I_{\Theta}^* e_x = e_x - \sum_j g_j \frac{\langle g_{j\downarrow}, e_x \rangle}{\langle g_{j\downarrow}, g_j \rangle}.$$

Proof: Since e_x represents the linear functional $\delta(x)$ of evaluation at x with respect to (1.1), $I_{\Theta}^* e_x$ is the exponential which represents the linear functional $\delta(x)I_{\Theta}$ with respect (1.1).

(3.4)Corollary. The exponential $\varepsilon_{\Theta,x}$ represents $\delta(x)$ on the ideal

$$ideal(\Theta) := \ker I_{\Theta} = \{ f \in \Pi : f_{|\Theta} = 0 \},$$

and is orthogonal to Π_{Θ} , hence so are all its homogeneous components $\varepsilon_{\Theta,x}^{[k]}$.

Proof: If
$$f_{|\Theta} = 0$$
, then $f(x) = f(x) - I_{\Theta}f(x) = \langle f, \varepsilon_{\Theta, x} \rangle$.

Since I_{Θ}^* is the dual to the linear projector of interpolation from Π_{Θ} , its interpolation conditions are of the form $\langle p, \cdot \rangle$ with $p \in \Pi_{\Theta}$. Hence $\varepsilon_{\Theta,x}$, as the error $e_x - I_{\Theta}^* e_x$, must be perpendicular to Π_{Θ} , and this, incidentally, can also be written as

$$p(D)\varepsilon_{\Theta,x}(0)=0, \quad \forall \ p\in\Pi_{\Theta}.$$

Finally, since Π_{Θ} is spanned by homogeneous polynomials, $f \perp \Pi_{\Theta}$ implies that $f^{[k]} \perp \Pi_{\Theta}$ for all $k \in \mathbb{Z}_+$.

(3.5)Lemma ([BR90]). For any $x \notin \Theta$, $\Pi_{\Theta \cup x} = \Pi_{\Theta} + \operatorname{span}\{p_{\Theta,x}\}$, with

$$(3.6) p_{\Theta,x} := (e_x - I_{\Theta}^* e_x)_{\downarrow}$$

the initial term of $\varepsilon_{\Theta,x}$.

Proof: First, $p_{\Theta,x} \in \Pi_{\Theta \cup x}$ since it is the initial term of some element of $\text{Exp}_{\Theta \cup x}$. Further, $p_{\Theta,x} \neq 0$ since $p_{\Theta,x} = 0$ would imply that $e_x \in \text{Exp}_{\Theta}$, hence $x \in \Theta$ by (1.5). Therefore

$$(3.7) 0 < \langle p_{\Theta,x}, p_{\Theta,x} \rangle = \langle p_{\Theta,x}, \varepsilon_{\Theta,x} \rangle = \langle p_{\Theta,x} - I_{\Theta} p_{\Theta,x}, e_x \rangle = (p_{\Theta,x} - I_{\Theta} p_{\Theta,x})(x),$$

showing that $p_{\Theta,x} - I_{\Theta} p_{\Theta,x} \neq 0$, hence $p_{\Theta,x} \notin \Pi_{\Theta}$.

(3.8) Corollary. For any ordering $\Theta = (\theta_1, \theta_2, \dots, \theta_n)$ and with $\Theta_j := (\theta_1, \theta_2, \dots, \theta_j)$,

(3.9)
$$I_{\Theta}f = \sum_{j=1}^{n} \left(p_{\Theta_{j}} - I_{\Theta_{j-1}} p_{\Theta_{j}} \right) \frac{\langle f, \varepsilon_{\Theta_{j}} \rangle}{\langle p_{\Theta_{j}}, p_{\Theta_{j}} \rangle}.$$

Proof: The proof is by induction on $\#\Theta$, starting with the case n = 0, i.e., $\Theta = \{\}$, for which the definition $I_{\{\}} := 0$ is suitable. For any finite Θ and $x \notin \Theta$ and any f, we know from the lemma that

$$(3.10) p := I_{\Theta} f + \left(p_{\Theta,x} - I_{\Theta} p_{\Theta,x} \right) \frac{\langle f, \varepsilon_{\Theta,x} \rangle}{\langle p_{\Theta,x}, p_{\Theta,x} \rangle}$$

is in $\Pi_{\Theta \cup x}$, and from (3.7) and Proposition 3.1, that p(x) = f(x), while evidently p = f on Θ , hence p must be the polynomial $I_{\Theta \cup x}f$. Thus if (3.9) holds for Θ , it also holds for $\Theta \cup x$.

Such a **Newton form** for $I_{\Theta}f$ was derived in a somewhat different manner in [BR90]. Note that

$$q_{\Theta,x} := (p_{\Theta,x} - I_{\Theta}p_{\Theta,x})/\langle p_{\Theta,x}, p_{\Theta,x}\rangle$$

is the unique element of $\Pi_{\Theta \cup x}$ which vanishes at Θ and takes the value 1 at x. But there does not appear to be in general (as there is in the univariate case) a scaling $sq_{\Theta,x}$ which makes its coefficient $\langle f, \varepsilon_{\Theta,x} \rangle / s$ in (3.10) independent of the way $\Theta \cup x$ has been split into Θ and x. The only obvious exception to this is the case when $\Pi_{\Theta} = \Pi_k :=$ the collection of polynomials of total degree $\leq k$. Thus, only for this case does one obtain from I_{Θ} a ready multivariate divided difference.

Unless the ordering $(\theta_1, \theta_2, \ldots, \theta_n)$ is carefully chosen (e.g., as in the algorithm in [BR91]), there is no reason for the corresponding sequence $(\deg p_{\Theta_1}, \ldots, \deg p_{\Theta_n})$ to be nondecreasing. In particular, $\deg p_{\Theta,x}$ may well be smaller than $\deg I_{\Theta}f$. For example, if x is not in the affine hull of Θ , then $\deg p_{\Theta,x}=1$. This means that the **order of the interpolation error**, i.e., the largest integer k for which $f(x)-I_{\Theta}f(x)=0$ for all $f \in \Pi_{\leq k}$, may well change with x, since it necessarily equals $\deg p_{\Theta,x}$. The only exception to this occurs when $\Pi_{\Theta}=\Pi_k$ for some k. More generally, $\deg p_{\Theta,x}$ is a continuous function of x, hence constant, in some neighborhood of the point ξ if the pointset $\Theta \cup \xi$ is **regular** in the sense of [BR90], i.e., if

$$\Pi_{\leq k} \subseteq \Pi_{\Theta \cup \mathcal{E}} \subset \Pi_k$$

for some k. (To be precise, [BR90] calls $\operatorname{Exp}_{\Theta \cup \xi}$ rather than $\Theta \cup \xi$ regular in this case.)

(3.11) Proposition.
$$k := \deg p_{\Theta,x} = \min\{\deg p : p(x) \neq 0, p \in \operatorname{ideal}(\Theta)\}.$$

Proof: Let $k' := \min\{\deg p : p(x) \neq 0, p \in \operatorname{ideal}(\Theta)\}$. If $p \in \operatorname{ideal}(\Theta)$, then $p(x) = \langle p, \varepsilon_{\Theta, x} \rangle$ by Corollary 3.4, therefore $p(x) \neq 0$ implies $k \leq \deg p$. Thus $k \leq k'$. On the other hand, $q := p_{\Theta, x} - I_{\Theta}p_{\Theta, x}$ has degree $\leq \deg p_{\Theta, x}$ (by (2.2); in fact, we already know from the proof of Proposition 2.3 that $\deg q = \deg p_{\Theta, x}$, but we don't need that here) and does not vanish at x, by (3.7), hence also $k' \leq \deg q \leq k$.

The derivation from (3.2) of useful error *bounds* requires suitable bounds for expressions like

$$\sum_{|\alpha|>k} |D^{\alpha}f(0)|^2/\alpha!$$

in terms of norms like $\sum_{|\alpha|=k} \|D^{\alpha}f\|(L_p(B))$, with $k = \deg p_{\Theta,x}$ and B containing $\Theta \cup x$. Presumably, one would first shift the origin to lie in B, in order to keep the constants small, and so as to benefit from the fact that $\varepsilon_{\Theta,x}$ vanishes to order k at 0.

In view of Proposition 2.3, integral representations for the interpolation error $f - I_{\Theta}f$ should be obtainable from the results of K. Smith, [K70], using as differential operators the collection $p_{\uparrow}(D)$, $p \in P$, with P a minimal generating set for ideal(Θ).

4. A generalization and Birkhoff's ideal interpolation schemes

In [Bi79], Birkhoff gives the following abstract description of interpolation schemes. With X some space of function on some domain T into some field F and closed under pointwise multiplication, and Φ a collection of functionals (i.e., F-valued functions) on X, there is associated the **data map**

$$\delta(\Phi): X \to F^{\Phi}: g \mapsto (\phi g)_{\phi \in \Phi}$$

(for which Birkhoff uses the letter α). Birkhoff calls any right inverse I of $\delta(\Phi)$ an **interpolation scheme on** Φ . (To be precise, Birkhoff talks about maps $I:\Phi\to X$ which are to be right inverses for $\delta(\Phi)$, and uses F^Y with $Y\subset T$ as an example for Φ , but the intent is clear.) He observes that $P:=I\delta(\Phi)$ is necessarily a projector, i.e., idempotent.

He calls the pair $(\delta(\Phi), I)$, or, better, the resulting projector $P := I\delta(\Phi)$, an **ideal** interpolation scheme in case

- (i) $\delta(\Phi)I = \mathrm{id}$;
- (ii) both $\delta(\Phi)$ and I are linear (hence P is linear);
- (iii) ker P is an **ideal**, i.e., closed under pointwise multiplication by any element from X. For linear $\delta(\Phi)$ and I, $(\delta(\Phi), I)$ is ideal if and only if ker $\delta(\Phi)$ is an ideal (since $\ker P = \ker \delta(\Phi)$ regardless of I). Thus any linear scheme for which the data map is a restriction map $f \mapsto f_{|\Theta|}$ (such as the map I_{Θ} discussed in the preceding sections) is trivially ideal.

In these terms, the generalization of I_{Θ} treated in [BR92] deals with the situation when $T = \mathbb{R}^d$ and $X = \Pi = \Pi(\mathbb{R}^d)$, and $\Phi : f \mapsto (\phi f)_{\phi \in \Phi}$ for some finite, linearly independent, collection of linear functionals on Π (with a further extension, to infinite Φ , also analysed). The algebraic dual Π' can be represented by the space of formal power series (in d indeterminates), and the pairing (1.1) has a natural extension to $\Pi \times \Pi'$.

In this setting,

$$\ker \delta(\Phi) = \Lambda_{\perp} := \{ p \in \Pi : p \perp \Lambda \},\$$

with

$$\Lambda := \operatorname{span} \Phi$$
.

(4.1)Proposition ([BR92]). $\ker \delta(\Phi)$ is an ideal if and only if Λ is D-invariant.

The proof uses nothing more than the observation that

$$\langle ()^{\alpha} p, \phi \rangle = \langle p, D^{\alpha} \phi \rangle.$$

As an example, if Φ is a linearly independent subset of $\bigcup_{\theta \in \Theta} e_{\theta} \Pi$, then $\phi \in \Phi$ is of the form

$$f \mapsto p(D)f(\theta)$$

for some $\theta \in \Theta$ and $p \in \Pi$. Correspondingly, $\Lambda = \operatorname{span} \Phi = \sum_{\theta \in \Theta} e_{\theta} P_{\theta}$ for certain polynomial spaces P_{θ} . Hence, $\ker \delta(\Phi)$ is an ideal iff each P_{θ} is D-invariant. In particular, Hermite interpolation at finitely many points is ideal, while G.D. Birkhoff interpolation is, in general, not.

References

- [B] G. Birkhoff (1979), "The algebra of multivariate interpolation", in *Constructive approaches to mathematical models* (C. V. Coffman and G. J. Fix, eds), Academic Press (New York), 345–363.
- [B] C. de Boor and A. Ron (1990), "On multivariate polynomial interpolation", *Constr. Approx.* **6**, 287–302.
- [BR91] C. de Boor and Amos Ron (199x), "Computational aspects of polynomial interpolation in several variables", *Math. Comp.* **xx**, xxx–xxx.
- [BR92] C. de Boor and A. Ron (1992), "The least solution for the polynomial interpolation problem", *Math. Z.* **xx**, xxx–xxx.
 - [L66] G. G. Lorentz (1966), Approximation of Functions, Holt, Rinehart and Winston (New York).
 - [K70] K. T. Smith (1970), "Formulas to represent functions by their derivatives", Math. Ann. 188, 53–77.