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On the error in multivariate polynomial interpolation

C. de Boor 1

Dedicated to Garrett Birkhoff on the occasion
of his 80th birthday

In interpolation, one hopes to determine, for g defined (at least) on a given pointset Θ,
a function f from a given collection F which agrees with g on Θ. If, for arbitrary g, there
is exactly one f ∈ F with f = g on Θ, then one calls the pair 〈F,Θ〉 correct. (Birkhoff
[Bi79] and others would say that, in this case, the problem of interpolating from F to data
on Θ is well set.) Assuming that F is a finite-dimensional linear space, correctness of
〈F,Θ〉 is equivalent to having

(0.1) dimF = #Θ = dim F|Θ

(with F|Θ := {f|Θ : f ∈ F} the set of restrictions of f ∈ F to Θ).
Multivariate interpolation has to confront what one might call ‘loss of Haar’, i.e.,

the fact that, for every linear space F of continuous functions on IRd with d > 1 and
1 < dimF < ∞, there exist pointsets Θ ⊂ IRd with dimF = #Θ > dimF|Θ. This
observation rests on the following argument (see, e.g., the cover of [L66] or p.25 therein):
For any basis Φ = (φ1, . . . , φn) for F , and any continuous curve γ : [0 d1] → (IRd)n :
t 7→ (γ1(t), . . . , γn(t)), the function g : t 7→ det(φj(γi(t))) is continuous. Since n > 1 and
d > 1, we can so choose the curve γ that, e.g., γ(1) = (γ2(0), γ1(0), γ3(0), . . . , γn(0)), while,
for any t, the n entries of γ(t) are pairwise distinct. Since then g(1) = −g(0), we must
have g(t) = 0 for some t ∈ [0 d1], hence F is of dimension < n when restricted to the
corresponding pointset Θ := {γ1(t), . . . , γn(t)}.

As a consequence, it is not possible for n, d > 1 (as it is for n = 1 or d = 1) to find an
n-dimensional space of continuous functions which is correct for every n-point set Θ ∈ IRd.
Rather, one has to choose such a correct interpolating space in dependence on the pointset.

A particular choice of such a polynomial space ΠΘ for given Θ has recently been
proposed in [BR90], a list of its many properties has been offered and proved in [BR90-
92], its computational aspects have been detailed in [BR91], and its generalization, from
interpolation at a set of n points in IRd to interpolation at n arbitrary linearly independent
linear functionals on the space

Π = Π(IRd)

of all polynomials on IRd, has been treated in much detail in [BR92].
The present short note offers some discussion concerning the error in this new poly-

nomial interpolation scheme, and provides a short direct proof of two relevant properties
of the interpolation scheme, whose proof was previously obtained, in [BR91-92], as part of
more general results.
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1. The interpolation scheme

To recall from [BR90-91], the interpolation scheme is stated in terms of a pairing,
between Π and the space

A0

of all functions on IRd with a convergent power series (in fact, the larger space Π′ of all
formal power series would work as well). Here is the pairing:

(1.1) 〈p, g〉 := p(D)g(0) =
∑

α∈Zd
+

Dαp(0) Dαg(0) /α!.

The sum is over all multi-indices α, i.e., over all d-vectors with nonnegative integer en-
tries, Dα denotes the partial derivative D

α(1)
1 · · ·Dα(d)

d , and α! := α(1)! · · ·α(d)!. Further,
we will use the standard abbreviation

|α| := α(1) + · · · + α(d), α ∈ ZZd
+,

and the nonstandard, but convenient, notation

()α : IRd → IR : x 7→ xα := x(1)α(1) · · ·x(d)α(d)

for the α-power function or α-monomial. E.g., if p is the polynomial
∑

α c(α)()α, then
p(D) is the constant coefficient differential operator

∑
α c(α)Dα.

The pairing is set up so that the linear functional

δ(θ) : Π → IR : p 7→ p(θ)

of evaluation at θ is represented with respect to this pairing by the exponential with
frequency θ ∈ IRd, i.e., by the function

eθ : IRd → IR : x 7→ eθx

(with θx :=
∑

j θ(j)x(j) the usual scalar product). Indeed, since Dαeθ(0) = θα, one
computes

(1.2) 〈p, eθ〉 =
∑

α

Dαp(0) θα/α! = p(θ).

Further, the pairing is graded, in the following sense. For g ∈ A0 ⊃ Π and k ∈ ZZ+,
denote by

g[k] :=
∑

|α|=k

Dαg(0)()α/α!

its kth order term, i.e., the sum of all terms of exact order k in its power series expansion.
In these terms, p[k] interacts in 〈p, g〉 only with the corresponding g[k]. In particular, if we
denote by p↑ the leading term of p ∈ Π, i.e., the nonzero term p[k] with maximal k, then

〈p↑, p〉 = 〈p↑, p↑〉 > 0,
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except when p = 0, in which case, by convention, p↑ := 0. Correspondingly, we denote by
g↓ the least or initial term of g ∈ A0, i.e., the nonzero term g[k] with minimal k, and
conclude correspondingly that

〈g↓, g〉 = 〈g↓, g↓〉 > 0,

except when g = 0, in which case, by convention, g↓ := 0.
Set now (as in [BR90])

ΠΘ := span{g↓ : g ∈ ExpΘ}, with ExpΘ := span{eθ : θ ∈ Θ}.

Then ΠΘ → IRΘ : p 7→ p|Θ is 1-1: For, if p|Θ = 0, then, by (1.2), 〈p, g〉 = 0 for all g ∈ ExpΘ.
If now p 6= 0, then necessarily p↑ = g↓ for some g ∈ ExpΘ\0, and then 0 = 〈p, g〉 =
〈p↑, g↓〉 = 〈p↑, p↑〉 > 0, a contradiction. It follows that dimΠΘ = dim(ΠΘ)|Θ ≤ #Θ.

On the other hand, it is possible to show, by a variant of the Gram-Schmidt orthog-
onalization process started from the basis (eθ)θ∈Θ for ExpΘ, the existence of a sequence
(g1, . . . , gn) in ExpΘ (with n := #Θ), for which

(1.3) 〈gi↓, gj〉 = 0 ⇐⇒ i 6= j.

This shows, in particular, that (g1↓, . . . , gn↓) is independent (and in ΠΘ), hence that
dimΠΘ ≥ n = #Θ.

Consequently, 〈ΠΘ,Θ〉 is correct. More than that, for arbitrary f ∈ Π,

(1.4) IΘf :=
∑

j

gj↓
〈f, gj〉
〈gj↓, gj〉

is the unique element in ΠΘ which agrees with f at Θ. Indeed, it follows from (1.3) that,
for i = 1, . . . , n, 〈IΘf, gi〉 = 〈f, gi〉. Since (g1, g2, . . . , gn) is independent (by (1.3)), hence
a basis for ExpΘ (as ExpΘ is spanned by n elements), we conclude with (1.2) that, for all
θ ∈ Θ, IΘf(θ) = 〈IΘf, eθ〉 = 〈f, eθ〉 = f(θ).

Remark. Since ExpΘ, as the span of n = #Θ functions, is trivially of dimension
≤ #Θ, we seem to have just proved that

(1.5) dimExpΘ = #Θ.

This is misleading, though, since the proof of the existence of that sequence (g1, g2, . . . , gn)
in ExpΘ satisfying (1.3) uses (1.5).

Note that, with gj =:
∑

θ∈Θ B(j, θ)eθ,

(1.6) 〈f, gj〉 =
∑

θ∈Θ

B(j, θ)f(θ).

Thus, with (1.6) as a definition for 〈f, gj〉 in case f 6∈ Π, (1.4) provides the polynomial
interpolant from ΠΘ at Θ to arbitrary f defined (at least) on Θ.
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2. Simple proofs of some properties of IΘ

As shown in [BR90-92], the interpolation scheme IΘ has many desirable properties.
Some of these follow directly from the definition of ΠΘ: For example, ΠΘ ⊂ ΠΘ′ in case
Θ ⊂ Θ′ (leading to a Newton form for the interpolant). Also, for any r > 0 and any c ∈ IRd,
ΠrΘ+c = ΠΘ. The translation-invariance, ΠΘ+c = ΠΘ, implies that ΠΘ is D-invariant,
i.e.,

(2.1) ∀{p ∈ ΠΘ, α ∈ ZZd
+} Dαp ∈ ΠΘ.

Further, for any invertible matrix C, ΠCΘ = ΠΘ ◦Ct (with Ct the transposed of C). Also,
ΠΘ depends continuously on Θ (to the extent possible, limits on this being imposed by
‘loss of Haar’), and IΘ converges to appropriate Hermite interpolation if elements of Θ are
allowed to coalesce in a sufficiently nice manner.

Perhaps the two most striking properties are that (i) IΘ is degree-reducing, and (ii)
ΠΘ = ∩p|Θ=0 ker p↑(D). These properties are proved in [BR90-92] as part of more general
results. Because of the evident and expected importance of these results, it seems useful
to provide direct proofs, which I now do.

The minimum-degree property:

(2.2) ∀{p ∈ Π} deg IΘp ≤ deg p,

follows immediately from (1.4) since 〈p, gj〉 = 0 whenever deg p < deg gj↓. (It is stressed
in [Bi79] that univariate Lagrange interpolation has this property.)

In fact, the inequality in (2.2) is strict if and only if p↑ ⊥ ΠΘ, as will be established
during the proof of the second property. Here and below, I find it convenient to write
p ⊥ G (and say that ‘p is perpendicular to G’) in case 〈p, g〉 = 0 for all g ∈ G, with p ∈ Π
and G ⊂ A0.

(2.3)Proposition ([BR91-92]). ΠΘ = ∩p|Θ=0 ker p↑(D).

Proof: I begin with a proof of the following string of equivalences and implications:

(2.4)

p|Θ = 0 ⇐⇒ p ⊥ ExpΘ

=⇒ p↑ ⊥ ΠΘ

⇐⇒ ∀{q ∈ ΠΘ} p↑(D)q(0) = 0
⇐= ∀{q ∈ ΠΘ}∀{α} p↑(D)Dαq(0) = 0
⇐⇒ ∀{q ∈ ΠΘ} p↑(D)q = 0.

The first equivalence follows from (1.2), the second relies on the definition of orthogonality,
and the third uses the facts that p(D)Dα = Dαp(D) (for any p ∈ Π), and that the
polynomial p↑(D)q is the zero polynomial iff all its Taylor coefficients are zero.

The ‘=⇒’ follows from the observation that if 〈p, g〉 = 0, then 〈p↑, g↓〉 = 0, either
because deg p↑ 6= deg g↓, or else because, in the contrary case, 〈p, g〉 = 〈p↑, g↓〉. Finally,
the ‘⇐=’ is trivial.
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The ‘⇐=’ can actually be replaced by ‘⇐⇒’ since ΠΘ is D-invariant, by (2.1). Also,
the ‘=⇒’ can be reversed in the following way:

(2.5) ∀{Π 3 f ⊥ ΠΘ} ∃{p ⊥ ExpΘ} p↑ = f↑.

For, if f is a polynomial perpendicular to ΠΘ, of degree k say, then IΘf is necessarily of
degree < k, since, in the formula (1.4), the terms 〈f, gj〉 for deg gj↓ > k are trivially zero
while, for deg gj↓ = k, we have 〈f, gj〉 = 〈f, gj↓〉 and this vanishes since f ⊥ ΠΘ. Conse-
quently p := f − IΘf is a polynomial with the same leading term as f and perpendicular
to ExpΘ.

In any case, the argument given so far shows that ΠΘ ⊂ ∩p|Θ=0 ker p↑(D). To show
equality, note that dimΠΘ = #Θ < ∞, hence ΠΘ ⊂ Πk for some k. Thus, for any
|α| = k + 1, deg IΘ()α < deg()α = k + 1, hence

(
()α − IΘ()α

)
↑ = ()α,

therefore
⋂

p|Θ=0 ker p↑(D) ⊂ ⋂
|α|=k+1 kerDα = Πk ⊂ Π. Further, if q ∈ Π, then p :=

q − IΘq is a polynomial of degree ≤ deg q (by (2.2)) and p↑(D)(ΠΘ) = 0 (since p|Θ = 0),
therefore p↑(D)p = p↑(D)q. Hence, if q ∈ ∩p|Θ=0 ker p↑(D), then p↑(D)p = 0, hence p = 0,
i.e., q ∈ ΠΘ.

3. Error

The standard error formula for univariate polynomial interpolation is based on the
Newton form, i.e., on the ‘correction’ term [θ1, θ2, . . . , θk, x]f

∏k
j=1(· −xj) which is added

to the polynomial interpolating to f at θ1, θ2, . . . , θk in order to obtain the polynomial
interpolating to f at θ1, θ2, . . . , θk, x. An analogous formula is available for the error
f − IΘf in our multivariate polynomial interpolant. For its description, it is convenient to
use the dual of IΘ with respect to the pairing (1.1), i.e., the map

I∗
Θ : A0 → A0 : g 7→

∑

j

gj
〈gj↓, g〉
〈gj↓, gj〉 .

(3.1)Proposition. For any x ∈ IRd and any f ∈ Π,

(3.2) f(x) − (IΘf)(x) = 〈f, εΘ,x〉
with

(3.3) εΘ,x := ex − I∗
Θex = ex −

∑

j

gj
〈gj↓, ex〉
〈gj↓, gj〉 .

Proof: Since ex represents the linear functional δ(x) of evaluation at x with re-
spect to (1.1), I∗

Θex is the exponential which represents the linear functional δ(x)IΘ with
respect (1.1).
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(3.4)Corollary. The exponential εΘ,x represents δ(x) on the ideal

ideal(Θ) := ker IΘ = {f ∈ Π : f|Θ = 0},

and is orthogonal to ΠΘ, hence so are all its homogeneous components ε
[k]
Θ,x.

Proof: If f|Θ = 0, then f(x) = f(x) − IΘf(x) = 〈f, εΘ,x〉.
Since I∗

Θ is the dual to the linear projector of interpolation from ΠΘ, its interpolation
conditions are of the form 〈p, ·〉 with p ∈ ΠΘ. Hence εΘ,x, as the error ex − I∗

Θex, must be
perpendicular to ΠΘ, and this, incidentally, can also be written as

p(D)εΘ,x(0) = 0, ∀ p ∈ ΠΘ.

Finally, since ΠΘ is spanned by homogeneous polynomials, f ⊥ ΠΘ implies that f [k] ⊥ ΠΘ

for all k ∈ ZZ+.

(3.5)Lemma ([BR90]). For any x 6∈ Θ, ΠΘ∪x = ΠΘ + span{pΘ,x}, with

(3.6) pΘ,x := (ex − I∗
Θex)↓

the initial term of εΘ,x.

Proof: First, pΘ,x ∈ ΠΘ∪x since it is the initial term of some element of ExpΘ∪x.
Further, pΘ,x 6= 0 since pΘ,x = 0 would imply that ex ∈ ExpΘ, hence x ∈ Θ by (1.5).
Therefore

(3.7) 0 < 〈pΘ,x, pΘ,x〉 = 〈pΘ,x, εΘ,x〉 = 〈pΘ,x − IΘpΘ,x, ex〉 = (pΘ,x − IΘpΘ,x)(x),

showing that pΘ,x − IΘpΘ,x 6= 0, hence pΘ,x 6∈ ΠΘ.

(3.8)Corollary. For any ordering Θ = (θ1, θ2, . . . , θn) and with Θj := (θ1, θ2, . . . , θj),

(3.9) IΘf =
n∑

j=1

(
pΘj

− IΘj−1pΘj

) 〈f, εΘj
〉

〈pΘj
, pΘj

〉 .

Proof: The proof is by induction on #Θ, starting with the case n = 0, i.e., Θ = {},
for which the definition I{} := 0 is suitable. For any finite Θ and x 6∈ Θ and any f , we
know from the lemma that

(3.10) p := IΘf +
(
pΘ,x − IΘpΘ,x

) 〈f, εΘ,x〉
〈pΘ,x, pΘ,x〉

is in ΠΘ∪x, and from (3.7) and Proposition 3.1, that p(x) = f(x), while evidently p = f
on Θ, hence p must be the polynomial IΘ∪xf . Thus if (3.9) holds for Θ, it also holds for
Θ ∪ x.
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Such a Newton form for IΘf was derived in a somewhat different manner in [BR90].
Note that

qΘ,x := (pΘ,x − IΘpΘ,x)/〈pΘ,x, pΘ,x〉

is the unique element of ΠΘ∪x which vanishes at Θ and takes the value 1 at x. But there
does not appear to be in general (as there is in the univariate case) a scaling sqΘ,x which
makes its coefficient 〈f, εΘ,x〉/s in (3.10) independent of the way Θ∪ x has been split into
Θ and x. The only obvious exception to this is the case when ΠΘ = Πk := the collection
of polynomials of total degree ≤ k. Thus, only for this case does one obtain from IΘ a
ready multivariate divided difference.

Unless the ordering (θ1, θ2, . . . , θn) is carefully chosen (e.g., as in the algorithm in
[BR91]), there is no reason for the corresponding sequence (deg pΘ1 , . . . ,deg pΘn

) to be
nondecreasing. In particular, deg pΘ,x may well be smaller than deg IΘf . For example,
if x is not in the affine hull of Θ, then deg pΘ,x = 1. This means that the order of
the interpolation error, i.e., the largest integer k for which f(x) − IΘf(x) = 0 for all
f ∈ Π<k, may well change with x, since it necessarily equals deg pΘ,x. The only exception
to this occurs when ΠΘ = Πk for some k. More generally, deg pΘ,x is a continuous function
of x, hence constant, in some neighborhood of the point ξ if the pointset Θ∪ ξ is regular
in the sense of [BR90], i.e., if

Π<k ⊆ ΠΘ∪ξ ⊂ Πk

for some k. (To be precise, [BR90] calls ExpΘ∪ξ rather than Θ ∪ ξ regular in this case.)

(3.11)Proposition. k := deg pΘ,x = min{deg p : p(x) 6= 0, p ∈ ideal(Θ)}.
Proof: Let k′ := min{deg p : p(x) 6= 0, p ∈ ideal(Θ)}. If p ∈ ideal(Θ), then

p(x) = 〈p, εΘ,x〉 by Corollary 3.4, therefore p(x) 6= 0 implies k ≤ deg p. Thus k ≤ k′. On
the other hand, q := pΘ,x − IΘpΘ,x has degree ≤ deg pΘ,x (by (2.2); in fact, we already
know from the proof of Proposition 2.3 that deg q = deg pΘ,x, but we don’t need that here)
and does not vanish at x, by (3.7), hence also k′ ≤ deg q ≤ k.

The derivation from (3.2) of useful error bounds requires suitable bounds for expres-
sions like ∑

|α|≥k

|Dαf(0)|2/α!

in terms of norms like
∑

|α|=k ‖Dαf‖(Lp(B)), with k = deg pΘ,x and B containing Θ ∪ x.
Presumably, one would first shift the origin to lie in B, in order to keep the constants
small, and so as to benefit from the fact that εΘ,x vanishes to order k at 0.

In view of Proposition 2.3, integral representations for the interpolation error f − IΘf
should be obtainable from the results of K. Smith, [K70], using as differential operators
the collection p↑(D), p ∈ P , with P a minimal generating set for ideal(Θ).
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4. A generalization and Birkhoff’s ideal interpolation schemes

In [Bi79], Birkhoff gives the following abstract description of interpolation schemes.
With X some space of function on some domain T into some field F and closed under
pointwise multiplication, and Φ a collection of functionals (i.e., F -valued functions) on X,
there is associated the data map

δ(Φ) : X → FΦ : g 7→ (φg)φ∈Φ

(for which Birkhoff uses the letter α). Birkhoff calls any right inverse I of δ(Φ) an inter-
polation scheme on Φ. (To be precise, Birkhoff talks about maps I : Φ → X which are
to be right inverses for δ(Φ), and uses FY with Y ⊂ T as an example for Φ, but the intent
is clear.) He observes that P := Iδ(Φ) is necessarily a projector, i.e., idempotent.

He calls the pair (δ(Φ), I), or, better, the resulting projector P := Iδ(Φ), an ideal
interpolation scheme in case
(i) δ(Φ)I = id;
(ii) both δ(Φ) and I are linear (hence P is linear);
(iii) kerP is an ideal, i.e., closed under pointwise multiplication by any element from X.

For linear δ(Φ) and I, (δ(Φ), I) is ideal if and only if ker δ(Φ) is an ideal (since
kerP = ker δ(Φ) regardless of I). Thus any linear scheme for which the data map is
a restriction map f 7→ f|Θ (such as the map IΘ discussed in the preceding sections) is
trivially ideal.

In these terms, the generalization of IΘ treated in [BR92] deals with the situation
when T = IRd and X = Π = Π(IRd), and Φ : f 7→ (φf)φ∈Φ for some finite, linearly
independent, collection of linear functionals on Π (with a further extension, to infinite Φ,
also analysed). The algebraic dual Π′ can be represented by the space of formal power
series (in d indeterminates), and the pairing (1.1) has a natural extension to Π× Π′.

In this setting,
ker δ(Φ) = Λ⊥ := {p ∈ Π : p ⊥ Λ},

with
Λ := spanΦ.

(4.1)Proposition ([BR92]). ker δ(Φ) is an ideal if and only if Λ is D-invariant.

The proof uses nothing more than the observation that

〈()αp, φ〉 = 〈p,Dαφ〉.
As an example, if Φ is a linearly independent subset of ∪θ∈ΘeθΠ, then φ ∈ Φ is of the

form
f 7→ p(D)f(θ)

for some θ ∈ Θ and p ∈ Π. Correspondingly, Λ = spanΦ =
∑

θ∈Θ eθPθ for certain
polynomial spaces Pθ. Hence, ker δ(Φ) is an ideal iff each Pθ is D-invariant. In particular,
Hermite interpolation at finitely many points is ideal, while G.D. Birkhoff interpolation is,
in general, not.
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