Radial Basis Functions:
LP-approximation orders with scattered centres

Martin D. Buhmann and Amos Ron

Abstract. In this paper we generalize several results on uniform
approximation orders with radial basis functions in (Buhmann, Dyn
and Levin, 1993) and (Dyn and Ron, 1993) to LP-approximation or-
ders. These results apply, in particular, to approximants from spaces
spanned by translates of radial basis functions by scattered centres.
Examples to which our results apply include quasi-interpolation and
least-squares approximation from radial function spaces.

1. Introduction

Radial basis function methods are tools for multivariable approximation where
functions f : IR™ — IR are approximated from spaces spanned by translates of
normally just one function ¢ : R™ — IR. The points by which ¢ is translated
are usually called “centres”. The function ¢ may or may not be a radially
symmetric function, i.e., ¢ = @(|| - ||2), but for the most common and best
studied examples it is, such as the ubiquitous multiquadric function, where
@ = +/(-)2 + 2, ¢ being a parameter, or the equally well-known thin plate
spline, where ¢ = (-)?log(+). This is why these methods are still called radial
basis function methods, although their performance depends much more on
’s smoothness and growth properties than on its spherical symmetry.
There are several recent reviews about the state-of-the-art in the inves-
tigation of radial basis function methods, but we mention here only the one
due to the first author (1993). It is apparent from this survey that, in most
articles about radial basis functions and their approximation properties so
far, only translates along multiintegers have been studied in detail. Quasi-
interpolation and least-squares approximation from the radial basis function
spaces, and interpolation at the centres, have been investigated thoroughly
for multiinteger centres, but, to the best of our knowledge, extensions of this
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work to infinitely many scattered centres have not been provided until re-
cently, when the works of Buhmann, Dyn and Levin, and by Dyn and Ron
(both 1993) were completed. In both papers, quasi-interpolation from radial
basis function spaces with infinitely many scattered centres is analyzed. In
the former paper, quasi-interpolants for sets of scattered centres that enjoy
certain regularity conditions are explicitly constructed. It is shown that they
provide the same approximation orders as the quasi-interpolants on gridded
centres (which they agree with in the special case when the scattered centres
happen to be gridded) if the centres become dense in the underlying R"™. The
class of radial basis functions for which this approach applies is restricted by
various conditions, but none of the usually considered s is excluded.

In (Dyn and Ron, 1993), a different track is proposed. Rather than
constructing directly approximation schemes that employ scattered translates
of ¢, this paper suggests and analyzes a method for converting known “gridded
centre approximation schemes” to the scattered case. This is done in such
a way that the difference of the latter and the former is, at least, of the
same order as the approximation order anticipated (when the gridded centres
become dense in the underlying space). The approach to these results rests
on the idea that the gridded centre approximant can itself be approximated
by a function from the space spanned by scattered centre translates. For this,
one replaces each multiinteger translate of the radial basis function, ¢(- — j)
for a j € ZZ" say, by an approximation, call it ¢;, from the space spanned
by the scattered translates. The difference ¢(- — j) — ¢, then has to satisfy a
certain decay condition and there are other conditions on the gridded centre
scheme. This work applies to the class of radial basis functions as defined
in (Buhmann, Dyn and Levin, 1993). It is, in fact, more general because
not just one quasi-interpolant for scattered centres is manufactured. Instead,
a general conversion method is established that allows many approximation
schemes to be converted from gridded to scattered centres.

All the error estimates in the literature mentioned so far are in L>(IR"),
i.e., they are uniform estimates. Error analyses of quasi-interpolation schemes
in general LP(IR™)-norms are usually more subtle, and are less common than
their L*>°(IR"™)-counterparts. We mention here the work of Lei and Jia (1991),
where LP(IR™)-approximation orders are established from spaces spanned by
gridded translates of a compactly supported piecewise-exponential function; in
this regard we also mention arguments employed in the book on box splines
by de Boor, Hoéllig and Riemenschneider (1993) for a related theorem on
LP-approximation orders. Later, Jia and Lei (1993) offered approximation
schemes and a complementary error analysis for spaces generated by the grid-
ded translates of several non-compactly supported functions. This applies
to quasi-interpolation with basis functions of global support, such as is re-
quired here for radial basis function approximants, in contrast to the LP-
approximation order result by (de Boor, Héllig and Riemenschneider, 1993)
which only applies to compactly supported basis functions ¢. On the other
hand, the scheme proposed by Jia and Lei is more specific in nature.

In our work, we amalgamate these approaches and provide LP-error es-
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timates between the gridded and the scattered centre quasi-interpolants by
basis functions of global support. Therefore, they apply to quasi-interpolation
schemes using radial basis functions. We complement these results by sim-
plified approaches to estimating the LP-approximation orders of quasi-inter-
polants even for gridded centres. Examples that show the usefulness of our
work are provided in the paper too.

2. LP-approximation orders on uniform grids

We always assume that the given approximand is an f € WZ? (R™), p € [1, ),
without further mention, sz (R™) being the usual LP-Sobolev space of order
k of functions in n variables. We restrict attention to p € [1,00) because the
results for p = oo are readily available, as pointed out in the introduction,
and they are of the same nature as our LP-results, but simpler in various
respects. In fact, all our theorems remain true verbatim if every occurrence of
p is replaced by oo. The positive integer k is associated with the polynomial
recovery of the semi-discrete convolution operator

P * :fHZw(-—j)f(j)

(all sums are over ZZ" unless otherwise indicated) with a given basis function
1, i.e., we assume that ¢ %’ is the identity on IT;_; which is the space of
polynomials in n variables of total degree less than k. Such s that are
linear combinations of radial basis functions exist in abundance, for instance
k = n + 1 is permissible for multiquadrics and k& = n + 3 for thin plate
splines when 7 is odd or even respectively (Buhmann, 1989, for instance). In
connection with the LP-Sobolev spaces, we shall shortly require the following
further notation. By |- |x, we shall denote the homogeneous kth order LP-
Sobolev semi-norm on W} (IR"), i.e.,

[ flep = Z 1D f [ p,
o€’
loe|=k
where D = (8%1, 8%2, e %) is the vector of partial derivatives and || D f||,
is the LP-norm of D f. Moreover, D% = D' D3?*--- D", |a| = a1 + as +
-+ 4+ «, and, as we shall require in the sequel, a! = ajlas!---«,!, all for
a € ZY and o = (a1, 02,...,0p). Finally, || - ||p0 and |- |,y denote the

LP-norm and the homogeneous kth order LP-Sobolev semi-norm, restricted to
a prescribed subset 2 C R", respectively, and || - ||z~ stands for the ¢P(ZZ")
norm.

The approximation to f is provided in the form ) " g, for a suitably
chosen g. In case f is smooth enough (say, f € W]f (R™) N C*(R")), we may
take g = f. Otherwise, a smoothing procedure is required, and ¢ is defined
as g := A f, where A € C*(IR™) satisfies the two decay conditions

I 15 Al < oo and Y Alloc,j4u < o0 (2.1)
i
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Here, U := (—%, %)" We also demand A to satisfy the moment conditions
/)\(x)xa dx = 0pa Vel < k. (2.2)

Any integrals in this work are over R" unless noted otherwise. We note that
functions A that satisfy the above conditions do exist, and any such function
will do here.

The approximation scheme f =~ ¥ %’ (A * f) can be refined by dilation,
that is, with o}, the scaling operator

on: = f(:/h),

finer approximations to f are provided by

fron@ s A (oynf)).

Here and throughout, * denotes convolution, either discrete or continuous,
but never semi-discrete, as we use the *' notation for the latter. The exact
meaning of *« will be clear from the context. Note that this latter approximant
is a linear combination of the hZZ"-translates of 1. One should note that
in order to derive approximation orders, it suffices to establish a bound of the
form

1f =" (Ax Pllp < Clf Ik, (2.3)

(where C' denotes here and everywhere in the paper a universal positive con-
stant), since then it is straightforward to derive the estimate

If = on(@+ (Ax (o1/n))llp < CH*|flep,  h—0. (2.4)

Our principal result in this direction is as follows:

Theorem 1. Let v : R™ — IR be a function that satisfies the following
conditions:
(i) Decay condition: for all x € R", it is true that

[Y(@)] < O+ afloe) ™ 7F,

where k is a given positive integer, vy, > n and C does not depend on x.
(ii) Polynomial reproduction: ¥« is the identity on Ij_;.
Let f € sz (R"™), and let g € Wf (R"™) satisfy the following three conditions:
(a) g is k-times continuously differentiable.
(b) It is true that

(Z |g|z,oo,j+U) < O/l (2.5)
J

(c) It is true that
1f = glly < Clfl.p- (2.6)
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Then
1f =¥+ gllp < Clflrp- (2.7)

Thus, according to Theorem 1, we choose g = f, as long as f satisfies the
first two conditions (a)—(b) required of g in Theorem 1. Otherwise, the above
detailed smoothing process is suitable, i.e., g := X x f satisfies the three
required properties. Indeed, we note first that g = Ax f € C*(IR") N W]f (R™)
due to standard properties of the convolution (see, e.g., Stein and Weiss,
1971), so property (a) holds always. The fact that the two other required
properties, i.e., (b) and (c), also hold for g := A * f, is the content of the
following two propositions.

Proposition 1. Let g := Ax f, with )\ satisfying the moment conditions (2.2)
as well as the decay conditions (2.1). Then,

1f =gl < Clf k., (2.8)

that is, g satisfies condition (c) of Theorem 1.

Proof. According to the integral remainder form of the multivariable Taylor
theorem and according to (2.2),

—u) !
(0 f)z) = /)\(u) y L / (1= 051DV f(z — ut) dt du, =€ R".
no 0
YEZLY
IvI=k
(2.9)
Therefore, using the generalized Minkowski inequality, (2.9) implies that the
left-hand side of (2.8) is at most a constant multiple of

//o IAw)||ulF(1 =)t dt du|fli - (2.10)

By virtue of (2.1), expression (2.10) is a constant multiple of | f|x ,. O

The proof shows that the constant C' in (2.8) may depend on A and k, but is
independent of p and f.

Proposition 2. Let g be as in Proposition 1. Then (2.5) holds, and, further,
19lk.p < Clf |kp- (2.11)

Proof. We use Holder’s inequality and obtain, for any f € LP(R"), for any
j,i € 7", and for every x € j + U,

| M@ - u)du] < 1 Fls-svaul Nl i (212)
i+U
where % + i = 1. Introducing the two sequences

a(i) == | Alpitu, (@) = |If]

p,i+2U, 1€ Zna
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and summing (2.12) over all integer ¢, we obtain the bound

A% flloojiu < (axb)(5),  jez™

Therefore, by Young’s inequality (cf., e.g., Stein and Weiss, 1971, p. 178),

(Z ST :

1]

J /A

Because of the second assumption in (2.1), ||a|1,z» < oo. Also, ||b|pz» <
27/?|| f||,, and we thus have proved that

(Zux*fuwu) < C|Fll.

Substituting f := D7, for all possible v with |7| = k, we obtain the de-
sired claim. The second inequality (2.11) is an easy consequence of Young’s
inequality and the fact that, as a result of (2.1), A € L*(IR"™). O

Propositions 1 and 2 assure us of the existence of a suitable g for the sake of
constructing the approximation scheme f = v %’ g. We can, therefore, turn
our attention to the proof of Theorem 1, as, indeed, we do now.

The condition (¢) on g (in Theorem 1) allows us to bound the error by

If =v " glly <IIf = gllp +1lg =¥ gllp < Clflkp + lg =¥+ gllp, (2.13)

and therefore leads to the desired estimate (2.7), as soon as one has an estimate
of the form

lg —+"gll, <C|f

in hand. One can in fact prove more generally for any g € C*(IR™)N W; (R™),
and p € [1,00), that

k.p (2.14)

lg =+ gllp < Clglep (2.15)
so long as g satisfies

1

(Z |g|mj+U) < Clgle. (2.16)

The arguments below that lead to (2.16) also support the derivation of (2.14)
from our condition (2.5): one simply needs to replace in the proofs all appli-
cations of (2.16) by (2.5).

We first establish our approximation order result for the (relatively simple
case) when 1 is of compact support. Thereafter we will provide a proof for
Theorem 1 in its full generality.
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Theorem 2. The conclusions of Theorem 1 hold in case v is bounded and of

compact support. More generally, if g € C* (]R”)HW']Z;C (R"™), and v is bounded
and of compact support and satisfies (ii), then (2.16) implies (2.15).

Proof. Let x € R™ be arbitrary. If T denotes the Taylor polynomial to g €
Ck(R"™) about x of degree k — 1, we get (since ¢ ' T =T)

(¢« g = g)(@)] < Z [z = )llg(G) =TG-

Let m be a positive integer that satisfies supp ) C (2m — 1)U. Therefore

o+ g =gl < | [ (3 wta=alla) -701) @] 2am)

J€Ze

where Z, := {j € Z" | ||z — j||c < 2(2m —1)}. By the integral form of the
Taylor remainder, the right-hand side of (2.17) is at most ||1)||oo-times

/(JGZZ |9(j>—T(j)!>pdxF
:/(JEZZ‘WGZZ j_x /(l_t)k_lD”g((l—t)a:+tj)dt))pdwf
lv|=k
<gz:n U(/ aezz: R ((1—f)x+tj>|dt)pdmf
< Z Tz—:c 1(1 )h= 1H Z ID7g((1 = )(-) + tj |H i,
Tjg ’ IEZ()

where we have used the Minkowski inequality and the generalized Minkowski
inequality in the penultimate and in the last inequality, respectively.

We estimate the above expression term-by-term in + and for each ¢ €
(0,1) separately. Hence we consider

H > Dg((1=)(-) + tj)

]EZ( )

g (2.18)

leaving out the factor of (1 —¢)*~1. Note that Z, = Z, if x € U + £. Hence
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we have for each t € (0,1) that (2.18) is at most the p-th root of

/(Z D7g(tj + (1 — t)a:)\)pdrz:

— ;/ZW (]EZZE IDYg(tj + (1 — t):z;)])pdx
-3 [ (Z D+ (- e =) de

< Z(2m)np||D79||€o,Zg+2mU
¢
<CY g
0

the last inequality being a simple consequence of the fact that {¢ + U}jczn
form a tiling of R".

Now, if assumption (2.16) on g holds, we obtain that the last expression
is bounded by a constant multiple of |g|} . We then take the p-th root to
obtain (2.15). If, instead, we apply condition (b), i.e., replace the usage of
(2.16) by using (2.5), we arrive directly at the desired result (2.7). O

p
k,00,0+U>

We remark that the various constants that appear in the proof of Theorem 2
depend on k, m, ||¥||s, n and p. These constants, however, do not rely on f.

Proof of Theorem 1. Before we begin the proof of this result, we point out
once again that there are many s that satisfy the assumptions of this theo-
rem which are linear combinations of radial basis functions (see, for instance,
Buhmann, 1989, and see in particular our example at the end of this note).

To embark on the proof, we first follow the argument in the proof of
Theorem 1, until (2.18) is reached. Here, due to the global support of 1, there
is no need to introduce the set Z,. Instead, we use the decay assumption (i)
on v, and obtain the bound

o g =l < | [(Zwte = ilaty —T<j>|>pdxf

<cy & 1<1—t>k1))2<1+||-—j||m>”w|mg<tj+<1—t><->>|det,

’yEZi
[v|=Fk

where we have used Minkowski’s inequality and its generalization as in the
previous proof. We observe that the integrand of this expression is for each
t € (0,1) less than or equal to

B =

(ZHZ(I 1 —dllee) " DV g(t] + (1 — t)<'))|HZ,U+i> . (2.19)
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P P

p,U

g 2.20
U (2.20)

< (Z (Z(% +1lloe) ™ | D7 g0 + 15 + ->Hoo,U)p) %7

i J

Expression (2.19) equals

[

(ZHZu 1 —dlloe) ™DV + 8+ (1= £)())]

=

< (ST + it e 10gti+ 1+ (0= 0O

where the last estimate depends on the triangle inequality for the uniform
norm and on ¢ € (0,1).

For t = 1, the last expression can be identified as ||B * G||, z», with
B(j) = (5 +ljlloe) ™, j € Z", and G(j) = | D7g(j + )| . y» € Z". For
that case, Young’s inequality can be invoked to yield

1B+ Gllpzn < [|B

1’Zn “GHP:Zn'

While for ¢t < 1 the expression in question is not a convolution product, it can
still be majorised by an appropriate convolution, as the following argument
shows. For each t € (0,1) fixed, we define the map N (j) := [(1—t)j|, j € Z",
with |- denoting (componentwise) the greatest integer less than (- + 1). We
can then write the above sequence B as the sum ), By of sequences of disjoint
supports defined as follows:

N ._ I B(), £=N(), : n
Be(7) = {0, otherwise, Jtezr.

By using the bound

1D7g(i +tj + .)||OO’U < ||[Dg(i+j - N(@j) + ')Hoo,zU’

defining é(j) = HD"Yg(j + )HOO oy J € 2", and using the nonnegativity of

the entries of the sequences B and é, we can bound the last expression in the
chain of inequalities (2.20) from above by

B*EﬂéH :H( E@)*GH ,
omerd],, = [(EFn)-4,,,

where E¢ : f — f (- — £). Therefore, Young’s inequality applies once again to
yield the upper bound

HZEEBEH nHG”p,Z” = [|Bll1,z"|Gllp,z» =
7 1,%Z

S+ lillee) ™™ (Z é(j)f’)

J J

=
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Finally, the sum () ; G(j)P ) VP can certainly be bounded by a constant multi-

ple of (Z] G(j)p)l/p, and this latter expression is bounded by C|f|x,p, by our
assumption (b) (or by C|g|x,p, if, instead of assuming (b), we adopt (2.16)).
The theorem is proved. O

If we apply Propositions 1 and 2, we arrive at the following

Corollary 1. If f € W}(IR"), if the assumptions (i)-(ii) of Theorem 1 hold

and if A € C*(R") satisfies (2.2) and (2.1), then (2.3), and thus (2.4) too,
hold. Furthermore, if f is k-times continuously differentiable and satisfies

1

(Z ’f‘g,oo,jJrU) < C‘f’k,pv
J

then

If —on(®@ ¥ o), < Ch¥|f

for h tending to zero. O

k,p

The second assertion in the above theorem says in particular that for suffi-
ciently smooth f one needs to know only the values f|;7z~» in order to compute
its LP-approximant. This is especially important from a practical point of
view, since computing the values on hZZ"™ of \ % f can be hard.

Our final note in this section concerns the conditions imposed on v in
Theorem 1. The decay condition (viz., (i)) is essential to the approximation
orders derived. Though approximation orders can be derived under weaker
decay conditions, such derivations either involve some complementary infor-
mation of the exact decay rates of ¢ (as in Buhmann, 1989, or in Dyn, Jackson,
Levin and Ron, 1992), or require a substantial modification of the approxi-
mation schemes as well as their error analyses (as is the case in (de Boor and
Ron, 1992a) and (de Boor, DeVore and Ron, 1993)). However, the second
condition, i.e., that ¥+” be the identity on IIx_; can be relaxed to (the more
standard one) that ¢*" induces a linear isomorphism on II;_;. An appropriate
approximation scheme in this case has the form

fro (pxAxf),

with A, as before, satisfying (2.2) and (2.1), and p, say, compactly supported
and satisfying
W+ (pxp)=p, pEIljr.

Such constructions are discussed in detail in the literature, and we refer the
reader to de Boor and Ron (1992b) where such schemes were thoroughly anal-
ysed for compactly supported 1. The modifications required in our arguments
in order to cover that more general setup are mostly straightforward. More-
over, one should notice that, if p is selected to have its support lying in ZZ",
then ¢ «" (p*-) = (¢ * p)*’, and, for the new function ¥ := 1) * p, Ux' is the
identity on II;_;. Therefore, our results apply directly to this important case.
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3. LP-approximation orders using scattered centres

We use the results of the previous section in the derivation of approximation
schemes that employ scattered translates of the basis function ¢. The ap-
proach as well as the error analysis follow the work of (Dyn and Ron, 1993),
where L*°-approximation orders were obtained.

We let 9/ be a linear combination

V= p, (3.1)

where ¢ is a given function in C(IR™) such as one of our radial basis func-
tions and where p : ZZ" — IR is such that the infinite sum in (3.1) con-
verges uniformly on compacta. We shall as before consider the approxima-
tion operator f — Lg := 9 ¥’ g, where ¢ = X\ * f with A\ € CF(R") sat-
isfying (2.2) and (2.1). We make assumptions according to those in (Dyn
and Ron, 1993): we always assume from now on that the thus constructed
L:C(R")NL>®(R") - C(R") N L>*(R") is a bounded operator without
further mention. As in the previous section, we use here stationary schemes,
i.e., define the h-refinement Lj by dilation:

Lh = O'hLO'1/h.
We shall further assume that

(0]
|9 (2)]

<COA+ |[so)" ", LeZi™,
< O+ )7 n Vus U > 1. (3.2)
<O+ |zllo)™™, zeR”,

We take, for a given set of (scattered) centres = C IR", approximations to
each translate ¢(- — j) of the form

i =Y Ajep(- = ),

£eE

where {A, ¢}ezn ce= are suitable coefficients which provide that

feita) = ol - <C+ o —sl)™ { TERT @3

holds for a v4 > n and a positive constant C' which is uniform in  and j. We
call the functions {¢,}; pseudo-shifts (as they are approximants to the “true”
shifts {¢(- — j)}; from our space), and use these pseudo-shifts to construct
another set of approximations, now to the localized functions {¢(- — j)};.
We carry out this second task by imitating the localization process of (3.1).
Precisely, we define

V=Y el = ). (3.4)
‘
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Finally, the approximation scheme L 4, that employs the scattered translates
{¢(- = &) }eex, is obtained from L by replacing each ¢ (- — j) by 1;:

La:fe Zf(jm.

As before, there are functions f for which convolution with A need be per-
formed:

frLs(\xf).

The h-refinement here is the same as before for L, that is
Ly = 0opLlacyp.

One verifies that Lj 4 maps into the span of the hZ-translates of . We
remark that other, more flexible refinements may be allowed, too, and refer
the interested reader to the discussion of that point in §2.6 of (Dyn and Ron,
1993) and to the specific strategy suggested for the purpose of treating sets
of scattered centres becoming dense in the underlying space in the paper
(Buhmann, Dyn and Levin, 1993).

Theorem 3. Let ¢, u, 1, ¥, Ly and Ly s be as above. Assume that (3.2)
and (3.3) hold. Suppose also that

v,>n+k+e—1 foranee (0,1] (3.5)

and

e f— Zu(—@)f(f) satisfies pllp_q = {0}. (3.6)
¢

Then, for h € (0,1) and f € WF(R"),

I(Ln = L, a) A% )llp < CRE(|fle—1p + | f

he—1 ife <1,
kp) { —logh ife=1. (3:7)

Moreover, ife =1 and |1(5)]]7]¥ < oo, then

I(Zn = L)X % P)llp < CRF | flip- (3-8)

Implicit in the statement of theorem is the assertion that L4(\ x f) is well-
defined, i.e., that the series L4 (A % f) converges absolutely for every, say,
bounded f. This well-definedness has been established in Dyn and Ron (1993);
cf. Lemma 2.2.6 in that article.

Proof. We begin with establishing (3.8). We may consider L and L 4 instead
of Ly, and Ly 4, because, as we have pointed out earlier, the powers of h are
introduced by a suitable scaling. Set g := A % f. Since the series that define
L and L4 converge absolutely, we may sum (L — L4)g by parts to obtain

I = Ladally < | 2ol =) = | 3 n(=0ats + ]|
J ¢
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Since p annihilates T, _; by (3.6), we have, for each j € 72",
> (=09 +0) =D u(=0gl +0) - T;(G + 1)),
¢ ¢

with T; the (k — 1)-degree Taylor polynomial of g about j. Using, as in the
previous section, the integral remainder formula for the Taylor expansion,
followed by the triangle inequality and summation by parts, we obtain the
following upper bound on ||(L — La)g|p:

>

1 VAl
2 / (=01 \w(‘—j)—wlD”g(j+(1—t)£)’dt
e 0 v J

Iy|=k

p

Using the Minkowski inequality we can take the summations over ¢ and -~
out of the p-norm expression. Furthermore, using the generalized Minkowski
inequality we can also interchange integration over ¢t and the LP-norm. This
leaves us with the task of estimating the expression

(3.9)

p

HZ (- =) — soj!]D”g(j +(1- t)é))

Because of (3.3), we further can bound expression (3.9) by a constant multiple

of
[S2a+ 1 =il D9 + (1 = 0)0)

(3.10)

p

The estimation of expression (3.10) follows a similar estimation done in the
proof of Theorem 1, only the present case is in fact slightly simpler. Indeed,

p

[S 1 =ile) 41079 + (1 = )|

p

p,U+1

< (S il 107G -+ (- 00

J

=[S+ I =illee) 1D g + (1 - 1)0)

p

< CZ [D7g(i + (1= )0)”

(2
< CZ |g|z,oo,U+z'
i

S O|f|€;7p7

where we have used the Young inequality in the second estimate and Propo-
sition 2 in the last. Now we may use the fact that >, |u(—£)||¢|* is finite
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and take p-th roots to deduce the estimate (3.8) from the above chain of
inequalities.
The estimate (3.7) is proved similarly, but we can no longer rely on the

convergence of >, |u(—0)|| % |, and need to split the sum over ¢ into two partial
SUMS: Y pcynqp-1y and the remaining sum. The first sum is estimated exactly
as above, and the bound obtained then takes the form

14
Clibw X (=05

LeZZ"Nh—1U

for each « with |y| = k. In the remaining sum, the zero at j of g(j + ¢) —
T;(j + £), though being of order k, is treated as being of order k — 1, thus
leading to a Taylor remainder formula of the form

S [0S S e - 0) - e[ - TG + (- 00 dr
vezy 70 T
lv|=k—1

Since DYT; = D7g(j) for all admissible 7, we can follow the argument that
was used to prove (3.8), to obtain a bound of the form

l
Clibry 3 -0l|5

(eZ" 4gh—1U

for each v with |y| = k£ — 1. (In the derivation of this latter estimate, one
invokes Proposition 2, with k there replaced by k — 1.) Now, we can use the
fact, that, whenever the required decay estimate on p holds for € € (0, 1),

> Iu(—ﬁ)l‘g—” < Che 1, (3.11)
LeEZ"Nh—1U v
14

) |u<—6>|)%\ < e, (3.12)

(eZm 0gh—1U

whereas if € = 1, the right-hand side of (3.11) has to be replaced by —C'log h.
All these estimates were proved for instance in (Buhmann, Dyn and Levin,
1993), and are also well-documented in Dyn and Ron (1993). In summary,
the total error bound for, say, ¢ < 1 takes the form

1L = L)X Hllp < COH Flrp + B fli-1,p). (3.13)

It is straightforward to insert the log h-term into this expression when € = 1.
When finally estimating (Lp — Lp 4)(X * f), we simply invoke (3.13) with f
replaced by o4, f for the given value of h, and then scale to obtain (3.7). O

In analogy to Theorem 2.3.1 in (Dyn and Ron, 1993) (where the case
p = oo was discussed) we establish the following result. Its purpose is to relax
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the decay conditions on p in the previous result which requires p to decay fast
enough so as to be summable against polynomials. It is now replaced by a
condition on the Fourier series of i, a condition that may be valid even when
1 decays in a milder fashion. Incidentally, we will see that the rates derived
in that result may be superior to those of Theorem 3.

In order to present the next theorem, we have to introduce some addi-
tional notation. Given 1 < p < oo, let W]f(]R”) be the space of all functions f

whose Fourier transform f satisfies (1+||-[|2)*f € L? (R"™), where %4— é =1.

The LP -norm of || - ||¥f is denoted by | fl) p- Note that, for a nonnegative
integer k and p > 2, the Hausdorff-Young Theorem shows that the space
WEF(R™) equipped with the norm £l = I+ - |2)% fll,s is continuously
embedded into sz (R™). Further, for p = 2 and any nonnegative integer k,
the two spaces coincide. We have the following

Theorem 4. Assume 1 < p < oo. Let all the assumptions of the previous
theorem be in force (including in particular (3.2)) except for (3.5) and (3.6).

Let f € Wf (R™) be bounded and assume that the inequality

wf] < Clf ey (3.14)

holds. Then the estimate

1L = La)fllp < Clflkyp (3.15)

holds as well. The estimate (3.15) remains valid even if we replace f on its
left-hand side by (X * f), provided that, in addition to all other requirements

on A\, A € L®(R").

Note that the dash-semi-norm |f |§€’p reacts to scaling in the correct manner:
upon scaling of approximand and approximant suitably by A, one does get in
(3.15) the power h* into the bound, as required. Note also that the smoothing
process f &~ Axf is permitted but not required in Theorem 4. It may, however,
actually be required for guaranteeing that the gridded centre approximant to
the function f approximates it to the best order established in Theorem 1.

We will discuss the nature of condition (3.14) after proving this theorem.
In particular, we will compare that condition to the polynomial annihilation
condition (3.6) assumed in Theorem 3.

Proof of Theorem 4. The proof follows the argument used in Theorem 3, but
is much simpler. In Theorem 3, we bounded the error by

le(-—j)—%\

> u(=0fG +0)| (3.16)
£

Since no smoothing is required, we replaced g by f in (3.16). We bound the
error in the same fashion in the present proof, and remark that, since f is
bounded and p € ¢1(Z") by (3.2), the sum pu(f(- + 7)) = >, (=) f(j + ¢)
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converges absolutely. By our assumption (3.14) in the theorem and the fact
that the semi-norm |- [}  is translation-invariant, we have |u(f(- + 7)) <
C|fl. - We thus obtain the bound

Clflep Y lo(- = 1) = #5l-
j

The desired result is now a consequence of the assumption (3.3). The proof
so far also provides that

I = Za)A* f)llp < CIA* flipy < ClA ool 15 (3.17)

thus showing that the difference (L — L 4)(\ * f) is bounded to the asserted
order too. The first inequality in (3.17) is a consequence of (3.15) and the
second one is a consequence of the definition of our dash-semi-norm. The
theorem is proved. O

Of course, Theorem 4 is useful only if one can establish verifiable condi-
tions on f which ensure (3.14). In this regard, we remind the reader that, if
f fails to satisfy the conditions of the theorem, for instance because f is not
bounded, we may still invoke the result with respect to a mollified g := A * f,
and combine (3.15) with an inequality

9kp < Clf i p (3.18)

to obtain the desired estimate. This is of course what we already did at the
end of the above proof, where (3.18) was a consequence of the boundedness
of AN’s Fourier transform.

The crucial bound (3.14) holds under a variety of possible conditions on
f, k and u, and it is beyond the scope of this article to discuss all possible
versions. The following seems to be the most useful variant:

Proposition 3. Assume f is bounded and f € LY(R™) N Wf(]R”) If
I-1I5"8 € LP(R™), (3.19)
[ being the Fourier series of u, then (3.14) holds.

Proof. Recall that p € ¢1(7ZZ"), which renders puf well-defined. The crux in
the proof is the identity

uf = / af (3.20)

This can be derived as in (Dyn and Ron, 1993) (cf. the proof of the lemma in
Theorem 2.3.1 in that article), where the Poisson Summation Formula (Stein
and Weiss, 1971, p. 252) is the salient ingredient to the proof and which else
requires only f € L'(R™) and boundedness of f. Now it follows from an
application of Holder’s inequality that

1
7

url < ([ (-147)) % (far-unm)". (3.21)
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Combining (3.19) and (3.21) leads to (3.14). O

The assumption f € LY(R") is not very restrictive. Indeed, for k > n/p
that condition is implied by the requirement f € WF(IR"). When k is too

small and f§£ LY(R™), we still have )\/*\f € L1(IR") if \ is sufficiently smooth.
This smoothness requirement of A can be shown to be mild, and it decreases
with the increase of p. For example, if p > 2, we only need A to be in L?(IR")
which we assume anyway. In short, for an appropriately chosen A and under
the conditions assumed in Theorem 4, save the boundedness of f and the
inequality (3.14), the bound

I(L = La)X* f)ll, < CLf

;C’p (3.22)

is valid, as soon as (3.19) holds.

We see that the important assumption in the proposition is the one with
respect to u, and we would like to compare it to the polynomial annihilation
condition (3.6) assumed in Theorem 3. If p decays fast enough to satisfy,
say, the condition . |u(j)]] j|F < oo which was assumed in Theorem 3, then
1t is k-times continuously differentiable everywhere and in particular at the
origin. It follows easily that (3.6) implies that i has a zero of order k at
the origin. If & > n/p, this certainly implies (3.19). Moreover, this latter
condition is valid for || - Hz_klﬁ, with &' < k 4+ n/p. By choosing n/p < k' <
k + n/p, we therefore obtain from Theorem 4 the bound (3.22), which yields
that, upon scaling, the difference between the scattered centre approximant
and the gridded approximant decays to zero with order R, This is very
satisfactory, since the approximation order we expect L to provide (in the
best circumstances) is only k& (not to mention the fact that we had relaxed
the decay condition on p). On the other hand, we should mention that, for
example, when p > 2, the space of approximands to which Theorem 4 applies
(viz., WF(IR")) is only a proper subspace of the Sobolev space W} (IR") to
which Theorem 3 applies.

As an application of our results, we consider the orthogonal projection
on a space spanned by translates of a radial basis function. A comprehensive
analysis of the best least squares approximations onto radial functions spaces
and their approximation orders can be found in Ron (1992), but we will
use our theorems in this paper to deduce LP-convergence orders of best least
squares approximations. We take ¢ to belong to a class specified in (Buhmann
and Micchelli, 1992) which contains all the functions that are mentioned in
the current literature, see, e.g., the survey by Buhmann (1993). We do not
state here the full set of assumptions required for ¢ to be in that class, but
mention the salient condition that ¢ must have a singularity at the origin,
viz., §(t) ~ ||t]|7*17° for small ||t||2, where § € (0,1] and k is a positive
integer. It must also satisfy a decay condition |p(t)| = O(]|t||3""°) for e > 0
and |[|t||2 — oo. The space of approximants is then defined as
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i) = { X ol =)

J

|d;| < CllFI1=FH 99" for some positive 5’} N L2(IR™).

In fact, spaces other than the above S3(¢) can be used as the underlying
approximation space but we restrict attention to S(¢) in this example for
the sake of simplicity. We have set the notations in such a way that k£ here
can be identified with the k£ of Theorem 1. The approximation scheme we use
is the orthogonal projector P : L2(IR™) — Sa(¢). It follows from the required
properties of ¢ that P can be written as

Pf= Z(f,w(- —iNY(—3),  feL*R"Y), (3.23)

as we shall explain in the sequel. The inner product in (3.23) is the standard
inner product

(f1, f2) = /fl?Qa f1, f2 € L*(R™). (3.24)

Further, the function % in (3.23) is a function in S2(p) whose multiinteger
translates are mutually orthonormal with respect to (3.24) and which can be
defined by its Fourier transform

W= d . (3.25)
V25 I8¢ —2m)l2

The orthonormality property we claim v to have is easily verified. Further,
it is established in Theorem 3.1 on p. 330 and Theorem 3.3 on p. 333 of the
same paper by the first author and Micchelli that for ¢ from the said class
of radial basis functions, i satisfies the decay assumption on 1 imposed in
the statement of Theorem 1 for vy, = n + 4. It therefore decays fast enough
to admit actually any f € LP(R"), p € [1,00], in (3.23), namely, for every
f € LP(IR™), the series in (3.23) converges unconditionally and uniformly on
compacta to an LP(IR"™) function. The sum in (3.23) can be rearranged so
that the coefficients associated with the multiinteger translates of the radial
function ¢ decay fast enough to satisfy the requirement in the definition of
our space Sa(y), cf. Theorem 3.2 on p. 332 in the mentioned paper. Therefore
it is settled that (3.23) is indeed the desired projection operator.

We need to verify that the remaining conditions on 1) of Theorem 1 and 3
hold and that (3.23) is actually of the form of the approximation operators we
study in this work. To begin with, we observe that the coefficients p that form
Y as the semi-discrete convolution 1 = ¢ *” u satisfy the decay assumptions
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of Theorem 3 for ¢ = §, and the singularity of @ at the origin implies (3.6)

because )

= :
VI 186 —2m)l2

Next, we need to know that the coefficients of ¥(- — j), 7 € ZZ", in the
present approximation scheme (3.23) are derived from a convolution process
with an appropriate convolutor A. Indeed, taking A := t¢(—-), we certainly
have (f,9¥(-—j)) = (A* f)(j). Also, as proved in Theorem 3.1 on p. 330 of
the mentioned paper, 1 decays in such a way to provide (2.1). It satisfies the
moment conditions (2.2) for the present k due to @’s singularity at the origin

and due to 12’5 form (3.25). Consequently, Theorems 1 and 3 are applicable
to the present case as soon as we show that vx’ is the identity on II,_;.
That final requirement follows, by a standard argument, from the fact that v
satisfies the so-called Strang-Fix conditions, namely

D$(27B) = 6p00a0, B E L, |al < k.

These conditions can be verified directly from the definition of ¢ in (3.25)
and from the singularity of the radial function’s Fourier transform at the
origin. Therefore, our Theorems 1 and 3 apply to this example and provide
the desired LP-approximation orders.
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