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The exponentials in the span of the multiinteger translates
of a compactly supported function; quasiinterpolation and approximation order

Carl de Boor & Amos Ron

1. Introduction

Spaces spanned by integer translates of compactly supported functions have recently received
much attention in multivariate spline theory. The main aim was a detailed analysis of special cases
(primarily box spline and exponential box spline spaces); however, some of the fundamental issues,
like approximation orders and linear independence of the translates, have been studied intensively
in general settings as well.

The standard approach in the case of a single compactly supported ϕ : IRs → C can be
identified with the Strang-Fix conditions. These characterize the “controlled” and the “local”
approximation order from the dilates Sh of the span S(ϕ) of the integer translates of ϕ in terms
of the highest d for which the space Πd of polynomials of degree ≤ d lies in S(ϕ). This makes it
important to identify S(ϕ) ∩Π (with Π the space of all s-variate polynomials). With this space in
hand, one constructs bounded local linear maps into S(ϕ), the so-called quasiinterpolants, which
reproduce S(ϕ) ∩ Π (or at least Πd). Dilates of these maps provide approximations from Sh to
smooth functions whose error behaves like hd+1 (say, in the max norm). By now, the literature has
various different constructs of quasiinterpolants to offer, some of them seem to have only little in
common (compare, e.g., the “Neumann series approach” of [CD1] with the construction in [SF] or
[DM1]).

When the Sh are derived from S(ϕ) by processes other than dilation, the polynomials in S(ϕ)
cease to play the above decisive role. Specifically, the approximation order for exponential box
splines was established in [DR] by choosing the Sh in such a way that each contains the space
H(ϕ):= the space of all exponentials in S(ϕ), with an exponential being any linear combination of
products of polynomials with the pure exponentials

(1.1) eθ : x 7→ e〈θ,x〉, θ ∈ Cs.

This makes it possible to construct a sequence of uniformly bounded uniformly local quasiinter-
polants, each of which (maps into the associated Sh and) reproduces H(ϕ), and so allows to convert
the local approximation order (= the approximation order at the origin) of H(ϕ) into rates of ap-
proximation from {Sh}h.

In this paper we provide an analysis which unifies all these various approaches. Our starting
point (as it is for most quasiinterpolation arguments) is the semi-discrete convolution

(1.2) ϕ∗′ : f 7→ ϕ∗′f :=
∑

α∈ZZs

ϕ(· − α)f(α),

which is well-defined for every f defined (at least) on ZZs, since ϕ is of compact support. The
main idea is to replace this semi-discrete convolution operator by an ordinary (distributional)
convolution operator, i.e., to look for distributions λ such that λ∗ matches ϕ∗′ on some subspace
of (ϕ∗′)−1(H(ϕ)).
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In Section 2, we single out one natural choice for the distribution λ: the function ϕ itself. We
identify an exponential space Hϕ which is mapped by ϕ∗′ onto H(ϕ) and for which

(1.3) ϕ∗|Hϕ
= ϕ∗′|Hϕ

.

This leads to a simple characterization, in terms of the Fourier transform ϕ̂ of ϕ, of all admissible
distributions λ that satisfy

(1.4) λ∗|Hϕ
= ϕ∗′|Hϕ

.

It is also pointed out that the distribution λ = ϕ| defined by

ϕ| : f 7→
∑
α

ϕ(α)f(α)

satisfies (1.4), hence provides another natural choice.
The construction of quasiinterpolants is carried out in Section 3. Under a regularity condition

on ϕ, the two spaces H(ϕ) and Hϕ are known to coincide. To construct then a quasiinterpolant,
we replace ϕ∗′ by any λ∗ that satisfies (1.4), invert λ∗|H(ϕ)

with the aid of another compactly
distribution µ, and so obtain that λ∗µ∗ is the identity mapping on H(ϕ), and invoke the results of
Section 2 for a complete characterization of all possible µ (again in terms of their Fourier transform).
The quasiinterpolant Q is then defined as

Q : f 7→ ϕ∗′(µ∗f).

Computations are much simplified by the fact that standard distributional and Fourier transform
methods are available for the study of λ∗|H , in case of an exponential H. For example, general
recurrence relations that solve equations of form

λ∗? = f

for (almost) any exponential f can be easily derived, and these relations are also valid for the
equation

ϕ∗′? = f,

in case λ∗ and ϕ∗′ agree on f , i.e., in case f ∈ H(ϕ). We show that the concrete constructions of
quasiinterpolants now in the literature are covered by the two basic choices λ = ϕ and λ = ϕ|, and
the various ways for choosing the reciprocal µ can be seen to satisfy the above-mentioned conditions
for an admissible µ in terms of these λ.

In the last section, we consider approximation orders for a sequence of spaces (Sh)h, each of
which spanned by the hZZs-translates of a compactly supported function ψh and containing an
h-independent exponential space H. In order to make good use of the assumption that ψh has
compact support, it is essential to assume that diam suppψh shrinks to 0 linearly in h, as we do.
Under a further mild restriction on the sequence (ψh)h, we show that the local approximation
order of H provides the expected lower bound for the approximation order from {Sh}h to a smooth
function.
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2. Convolution and Semi-Discrete Convolution

Let ϕ be a compactly supported function defined on IRs. Given any (complex-valued) function f ,
defined (at least) on ZZs, we use the notation

(2.1) ϕ∗′f :=
∑

α∈ZZs

ϕ(· − α) f(α).

The special symbol ∗′ was selected to denote the above semidiscrete convolution, in order to distin-
guish this operation from the distributional convolution product λ∗µ, which, in case λ and µ are
distributions of function-type, is reduced to the standard convolution product

λ∗µ :=
∫

IRs

λ(· − x)µ(x)dx.

In the sequel, we use D for the differentiation operator and E for the shift operator (i.e.,
for α ∈ ZZs, Dα =

∏s
j=1Dj

αj , with Dj the partial differentiation in the jth direction, and Eα :
f 7→ f(· + α) ), hence, for a polynomial p, p(D) and p(E) denote the evaluation of p at D and E

respectively, (for example, p(D) =
∑

α∈ZZs
+

Dαp(0)
α! Dα). As in the introduction S(ϕ) stands for the

space spanned by the integer translates of ϕ, and H(ϕ) denotes the set of all exponentials in S(ϕ).
Since S(ϕ) is closed under integer translates (E-invariant), so is H(ϕ). But, in general, H(ϕ) need
not be closed under differentiation (D-invariant), as e.g., Example 2.1 of [R1] shows. Since ϕ is
compactly supported, H(ϕ) is necessarily finite-dimensional, hence

H(ϕ) ⊂ ExpΘ :=
∑

θ∈Θ(ϕ)

eθΠ

for a minimal finite Θ := Θ(ϕ) ⊂ Cs, called the spectrum of H(ϕ) and denoted by specH(ϕ). If
H(ϕ) is D-invariant, then (cf. [BAR1; Lemma 3.1])

H(ϕ) =
⊕

θ∈Θ(ϕ)

eθPθ,

with each Pθ a (nontrivial) D-invariant polynomial space. In that case,

Θ(ϕ) = {θ ∈ Cs : eθ ∈ H(ϕ)}.

The goal of this section is to establish conditions which guarantee the equality

(2.2) ϕ∗f = ϕ∗′f

for f ∈ ExpT, with T a finite subset of Cs. We refer to [BrH] and [DM4] for prior results in this
direction with regard to a tensor B-spline and a polynomial box spline respectively, hence for a
polynomial f .
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Since
ϕ∗ExpT ⊂ ExpT,

an immediate necessary condition for (2.2) is that ϕ∗′f ∈ ExpT. It turns out that such a condition
is already (essentially) sufficient. For the proof of this claim, we need the exponential space

(2.3) Hϕ :=
⊕

θ∈Θ(ϕ)

eθΠθ(ϕ),

with Πθ(ϕ) the maximal D-invariant subspace of

{p ∈ Π : p(−iD)ϕ̂ = 0 on − iθ + (2πZZs\0)}
(cf. [B;Prop.2.2]).

The argument makes use of the following

(2.4) Decomposition Lemma. Let H =
∑

θ∈T eθQθ, where T ⊂ Cs is finite, and each Qθ a

finite-dimensional polynomial space. Then the condition

(2.5) (T − T) ∩ 2πiZZs = {0}
implies, for each θ ∈ T, the existence of a (θ-dependent) polynomial p so that the difference operator

p(E) projects all of H onto eθQθ. If Qθ 6= {0} for all θ ∈ T, then (2.5) is necessary as well.

Proof: The necessity of the condition is clear: if p(E) annihilates some non-trivial space
eθQθ, then p(E)eθ = 0 since eθ lies in the space generated by shifts (i.e., integer translates) of
eθQθ, and these shifts trivially commute with p(E). Also, we always have p(E)eθ = ceθ, for some
constant c, and for any ϑ ∈ θ + 2πiZZs, p(E)eϑ = ceϑ, with the same constant c. Therefore, if
p(E)eθ = 0, then also p(E)eϑ = 0, and hence p(E) cannot be the identity on eϑQϑ, unless Qϑ is
trivial.

For the sufficiency, we may assume without loss that the polynomial spaces Qθ are all E-
invariant (by replacing each Qθ by its E-closure, if need be). The argument used in the proof of
[BAR1; Lem. 3.1] then shows that under (2.5) one can find, for each θ, a difference operator q(E)
which maps H onto eθQθ. It follows that the operator A := q(E)|eθQθ

is invertible, hence its inverse
is representable as a (univariate) polynomial in A, therefore also as some (multivariate) polynomial
r(E) in E. With that, p(E) := q(E)r(E) is the required difference operator. ♠

Condition (2.5) plays an important role in the theorem below. Therefore, it is worthwhile to
note the following:

(2.6) Corollary. If the finite T ⊂ Cs satisfies (2.5), then HT := ExpT ∩H(ϕ) is D-invariant.

The converse of this corollary is not valid (cf. Example 7.1 in [BAR1]), yet is true for univariate
splines (cf. [R2; Proposition 4.6]).

Proof: Since H(ϕ) is finite-dimensional, we may consider the smallest polynomial spaces
Qθ (necessarily finite-dimensional) for which HT ⊂ ∑

θ∈T eθQθ. For each θ ∈ T, let pθ(E) be the
projector (provided by Lemma 2.4) which carries this sum onto its summand eθQθ. Then, for every
g =

∑
θ eθqθ ∈ HT, every θ ∈ T and every α ∈ ZZs,

Eα(eθqθ) = Eαpθ(E)g ∈ Eαpθ(E)HT ⊂ Eαpθ(E)H(ϕ) ⊂ H(ϕ).
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Using the definition of HT, the above shows that HT contains, for every α ∈ ZZs
+, Eα(eθQθ) and

that each Qθ is necessarily E-invariant, hence [B;§2] D-invariant. Therefore HT =
∑

θ∈T eθQθ and
this sum is D-invariant. ♠

We also note the following useful connection between the action of ϕ∗ and the structure of Hϕ:

(2.7) Proposition. Let ϕ be a compactly supported distribution, and eθp (θ ∈ Cs, p ∈ Π) an

exponential. Then, eθp ∈ Hϕ if and only if

(2.8) ϕ∗(eϑp) = 0, ∀ϑ ∈ θ + (2πiZZs\0).

Proof: Since ϕ∗(eϑp) is in eϑΠ, it is analytic, and hence ϕ∗(eϑp) = 0 if and only if, for every
α ∈ ZZs

+,
ϕ∗(Dα(eϑp))(0) = Dα(ϕ∗(eϑp))(0) = 0.

Since the spaces {Dα(eϑp) : α ∈ ZZs
+} and {eϑD

αp : α ∈ ZZs
+} are identical, we conclude that

ϕ∗(eϑp) = 0 if and only if
ϕ∗(eϑD

αp)(0) = 0, α ∈ ZZs
+.

On the other hand (cf. (3.7) below), ϕ∗(eϑp) = eϑp(· − iD)ϕ̂(−iϑ), and the desired result now
follows from the definition (2.3) of Hϕ. ♠
(2.9) Theorem. Let ϕ be a compactly supported distribution, and let f ∈ ExpT, for some finite

T ⊂ Cs. Consider the following conditions:

(a) f ∈ Hϕ;
(b) ϕ∗′f = ϕ∗f ;
(c) ϕ∗′f ∈ ExpT.

Then (a) =⇒ (b) =⇒ (c). If, in addition, (T − T) ∩ 2πiZZs = {0}, then (c) =⇒ (a) as well.

For simplicity, we first prove the complete theorem for a polynomial f (i.e., for T = {0}).
(2.10) Lemma. The conditions in Theorem 2.9 are equivalent in case T = {0}, i.e., in case f ∈ Π.

Proof: Since the original argument that we had for the proof was already sketched in [B2], we
feel free to present here a newer proof, based on the argument given in the recent paper [RS]. This
proof relies on the fact [RS] that, for any compactly supported ϕ and any infinitely smooth f ,

(2.11) ϕ∗′f =
∑

α∈2πiZZs

ϕ∗(eαf),

where both sides are interpreted as (limits of) elements in the space D′ of s-dimensional complex
valued distributions. Here is, for completeness, a proof of (2.11): By Poisson’s summation formula
[F; p. 104], the sum

∑
α∈2πiZZs eα converges in D′ to

∑
α∈ZZs δα (with δα being point-evaluation at

α). Thus, since multiplication by f ∈ C∞ as well as convolution with a compactly supported ϕ are
continuous operations in D′, we obtain

ϕ∗′f =
∑

α∈ZZs

f(α)ϕ∗δα =
∑

α∈ZZs

ϕ∗(fδα) = ϕ∗(f
∑

α∈ZZs

δα)

=ϕ∗(f
∑

α∈2πiZZs

eα) = ϕ∗(
∑

α∈2πiZZs

eαf) =
∑

α∈2πiZZs

ϕ∗(eαf).

5



Now let
F (f) :=

∑
α∈2πiZZs\0

ϕ∗(eαf).

We see from (2.11) that (b) holds if and only if F (f) = 0, and (given that f ∈ Π) that (c) holds
if and only if F (f) ∈ Π, while, by Proposition 2.7, (a) holds if and only if ϕ∗(eαf) = 0 for all
α ∈ 2πiZZs\0. It thus follows that (a)=⇒(b)=⇒(c), and further, that the implication (c)=⇒(a) is
equivalent to

(2.12) F (f) =
∑

α∈2πiZZs\0
ϕ∗(eαf) ∈ Π =⇒ ϕ∗(eαf) = 0 ∀α ∈ 2πiZZs\0.

For the proof of (2.12), assume that F (f) ∈ Π. Since f ∈ Π, the infinite sum F (f) converges in the
topology of tempered distributions, while the supports of the Fourier transforms of its summands
{ϕ∗ (eαf) : α ∈ 2πiZZs\0} are pairwise disjoint and also disjoint of the support of the Fourier
transform of any particular p ∈ Π. Thus F (f) fails to be in Π unless all its summands vanish. ♠

We start the proof of Theorem 2.9 with the implication (a)=⇒(b). This implication follows
from Lemma 2.10 by shifting in the frequency domain, using the fact that (a) implies that T ⊂ Θ(ϕ),
hence that f =

∑
θ∈Θ fθ with fθ = eθpθ for some pθ ∈ Πθ(ϕ). It follows that each such pθ lies in

Π0(e−θϕ). Therefore, by Lemma 2.10,

ϕ∗′fθ = eθ ((e−θϕ)∗′pθ) = eθ ((e−θϕ)∗pθ) = ϕ∗fθ

for each θ ∈ Θ, and (b) follows.
The implication (b) =⇒ (c) is immediate, since, as mentioned before, ϕ∗ExpT ⊂ ExpT.
Finally, we show that, under the additional assumption (2.5), (c) =⇒ (a). Decompose f =∑

θ∈T fθ into its various frequency components fθ = eθqθ, as before. Assuming (2.5) and (c),
Lemma 2.4 provides, for each θ ∈ T, a polynomial p = pθ so that p(E)f = fθ and p(E)(ϕ∗′f) ∈ eθΠ.
Therefore

eθΠ 3 p(E) (ϕ∗′f) = ϕ∗′p(E)f = ϕ∗′fθ.

But this says that r := e−θ(ϕ∗′fθ) ∈ Π, i.e., (e−θϕ)∗′qθ = r ∈ Π, therefore qθ ∈ Π0(e−θϕ) = Πθ(ϕ)
by Lemma 2.10, i.e., fθ ∈ Hϕ. ♠

It should be emphasized that (2.5) is essential for the derivation of (a) from (c): If θ, ϑ ∈ T
and θ − ϑ ∈ 2πiZZs\0, then f := eθq − eϑq vanishes on ZZs for any q ∈ Π, hence ϕ∗′f = 0, yet
f 6= 0, hence does not belong to Hϕ if q has sufficiently high degree.

(2.13) Corollary. For any f ∈ Hϕ and p ∈ Π,

p(D) (ϕ∗′f) = ϕ∗′p(D)f.

Proof: Since Hϕ is D-invariant, p(D)f ∈ Hϕ; hence by Theorem 2.9

p(D) (ϕ∗′f) = p(D) (ϕ∗f) = ϕ∗p(D)f = ϕ∗′p(D)f. ♠

The implication (a) =⇒ (c) in Theorem 2.9 shows that Hϕ is mapped by ϕ∗′ into H(ϕ). When
we want to study specific H(ϕ), it is important to know whether Hϕ is mapped onto H(ϕ):
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(2.14) Theorem. Let H be a D-invariant subspace of H(ϕ). Then H ⊂ ϕ∗′Hϕ. Furthermore,

H(ϕ) = ϕ∗′Hϕ if and only if H(ϕ) is D-invariant .

Proof: Since H is D-invariant, it is the direct sum of spaces of the form eθP , so for the
proof we may assume without loss that H = eθP , for some D-invariant polynomial space P . We
now invoke [BR2; Corollary 5.5] to conclude that there exists a polynomial space Q such that
ϕ∗′eθQ = eθP , and the implication (c) =⇒ (a) of Theorem 2.9 then shows that indeed H ⊂ ϕ∗′Hϕ.

If now H(ϕ) is D-invariant, then, with H = H(ϕ), we conclude that H(ϕ) ⊂ ϕ∗′Hϕ, and
since the converse inclusion holds unconditionally (by the implication (a)=⇒(c) in Theorem 2.9),
equality holds. The equality H(ϕ) = ϕ∗′Hϕ cannot hold when H(ϕ) is not D-invariant, since, by
Corollary 2.13, ϕ∗′Hϕ is always D-invariant. ♠

In cases of interest, one may not know a priori whetherH(ϕ) or a subspace of it areD-invariant.
In such a case, the following corollary, which follows directly from Theorem 2.14 when combined
with Corollary 2.6, is of interest.

(2.15) Corollary. For every T ⊂ Cs satisfying (2.5), H(ϕ) ∩ ExpT ⊂ ϕ∗′Hϕ.

We now explain in a more precise form some of the motivation for the above discussion.
Theorem 2.9 allows us to represent T := ϕ∗′|Hϕ

by the convolution operator ϕ∗, hence to employ
standard techniques (such as the Fourier transform) for the investigation of T . As a matter of fact,
any compactly supported distribution λ for which

(2.16) λ∗|Hϕ
= ϕ∗′|Hϕ

may be used for that purpose. The distributions λ that satisfy (2.16) can be characterized in the
following simple way:

(2.17) Proposition. A compactly supported distribution λ satisfies (2.16) if and only if

(2.18) p(−iD)λ̂(−iθ) = p(−iD)ϕ̂(−iθ), ∀eθp ∈ Hϕ.

Proof: By Theorem 2.9, (2.16) is equivalent to

(2.19) λ∗(eθp) = ϕ∗(eθp), ∀eθp ∈ Hϕ,

while the equivalence of (2.19) and (2.18) is obtained along the lines of the proof of Proposition
2.7. ♠

Assuming ϕ to be a function (and not merely a distribution), as we do from now on, a specific
distribution λ satisfying (2.16) is

ϕ| : f 7→
∑

α∈ZZs

ϕ(α)f(α),

as we now show. The convolution operator ϕ|∗ associated with ϕ| is the difference operator

ϕ|∗ : f 7→ ϕ|∗f =
∑
α

f(· − α)ϕ(α).
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The Fourier transform of ϕ| is the symbol (or the discrete Fourier transform)

(2.20) ϕ̃ :=
∑
α

ϕ(α)e−iα

of ϕ. To see that λ = ϕ| satisfies (2.16), we first invoke Theorem 2.9 to conclude that ϕ∗′f ∈ eθΠ
for f := eθp ∈ Hϕ. It follows that indeed

ϕ∗′f = ϕ|∗f,
since they both lie in eθΠ and they coincide on ZZs. (We are using the fact that no non-trivial
polynomial vanishes on ZZs). We may now appeal to Proposition 2.17 to conclude

(2.21) Corollary. The operator ϕ|∗ agrees with ϕ∗′ on Hϕ, hence

p(−iD)ϕ̃(−iθ) = p(−iD)ϕ̂(−iθ), ∀eθp ∈ Hϕ.

3. Quasi-Interpolation

We are interested in constructing quasiinterpolants for S(ϕ). These are linear maps into S(ϕ)
which are the identity on some D-invariant subspace H of H(ϕ). Following [BH], it has become
standard to construct such maps in the form

(3.1) Gν : f 7→
∑

α∈ZZs

ϕ(· − α) (νf)(· + α)

for some suitable compactly supported distribution ν which is well-defined and continuous on a
given translation-invariant superspace F of C∞ (e.g., F = Ck(IRs) with k the order of ν). The
idea is to choose ν as an extension of the linear functional ν0 given on H by

ν0(f) =
(
T−1f

)
(0)

with
T := ϕ∗′|H .

Of course, we should require T to be injective. As a matter of fact, it is known [B], [R1], that T
becomes an automorphism in case ϕ is assumed to be regular with respect to H, which means
that H is D-invariant and

(3.2) ϕ̂(θ) 6= 0 , ∀θ ∈ −i specH.

If, indeed, we choose ν as some extension of the above ν0, then, taking into account that T−1

commutes with integer translates (since ϕ∗′, and hence T , do, and H is E-invariant), we see that,
for f ∈ H,

ν(Eαf) =
(
T−1(Eαf)

)
(0) =

(
Eα(T−1f)

)
(0) = (T−1f)(α),

and therefore
Gνf = ϕ∗′(T−1f) = f

for every f ∈ H. We note that the above regularity assumption also implies (2.5) for T := specH
(cf. [R1;Corollary 2.1]). Therefore, the implication (c)=⇒(b) in Theorem 2.9 provides the following.
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(3.3) Corollary. Assume ϕ is regular with respect to H(ϕ). Then

ϕ∗|H(ϕ) = ϕ∗′|H(ϕ).

In particular, if f ∈ H(ϕ) ∩ ExpT, then so is ϕ∗′f .

For notational convenience, we choose H = H(ϕ), and simply use “regular” in the sense of
“regular with respect to H(ϕ)”.

Quasiinterpolants are discussed in great detail in the literature ([SF], [BH], [DM1−3,5], [BJ],
[CJW], [CD1,2], [CL], [B], [DR], [R1,3], [J1,2], [BAR2]), and various concrete constructions of ν
are suggested.

We want to take here a different tack, based on the fact (Corollary 3.3) that ϕ∗′ agrees with
ϕ∗ on H(ϕ). For, this result suggests that we construct the quasiinterpolant in the form

(3.4) Qµ := ϕ∗′µ∗
with µ∗ any convenient convolution which agrees with T−1 onH. We recover the earlier formulation
with the choice µ : f 7→ νf(−·) (since µ∗f(x) = ν(Exf)), but find the formulation (3.4) so much
more straightforward that we abandon (3.1) and concentrate instead on the problem suggested by
the formulation (3.4): For given D-invariant H ⊂ H(ϕ), find distributions µ (of some desirable
form) so that µ∗|H = (ϕ∗′|H)−1 = (ϕ∗|H)−1. In fact, there is useful additional freedom here: It is
sufficient to construct µ so that µ∗ = (λ∗|H)−1 for some distribution λ for which λ∗ = ϕ∗ on H.
For example, one might choose to use the particular distribution

ϕ| : f 7→
∑
α

ϕ(α)f(α)

in place of ϕ (as discussed at the end of the last section).
We now describe some concrete approaches to the construction of suitable µ.
(i) Matching of Fourier transform In effect, we are looking for a solution to the convo-

lution equation

(3.5) λ∗? = f

with f some exponential. We would like to express ? in terms of λ̂ and f for an arbitrary exponential
f , and then, for a fixed finite-dimensional exponential space (i.e., the underlying H), would like
to write (λ∗)−1 in the form µ∗. Substituting ? = µ∗f for ? in (3.5), and Fourier transforming, we
obtain

λ̂µ̂f̂ = f̂ ,

which shows that we could use here any µ for which λ̂µ̂ − 1 vanishes to sufficiently high order on
the (necessarily finite) spectrum of the exponential f . We now make this observation precise.

Equation (3.5) has a well-known solution in case the space in question is the single exponential
space eθP for someD-invariant polynomial space P . For, one computes for the normalized power
function [[]]α : x 7→ xα/α! that

(3.6) λ∗(eθ[[]]
α) = eθ ((λe−θ)∗[[]]α) = eθ[[ · −iD]]αλ̂(−iθ) = eθ

∑
γ

[[]]α−γ [[ − iD]]γ λ̂(−iθ).

9



Given that P is D-invariant, this implies that, for any polynomial p ∈ P ,

(3.7) λ∗(eθp) = eθp(· − iD)λ̂(−iθ) = eθ

∑
γ

Dγp [[−iD]]γ λ̂(−iθ) ∈ eθ(λ̂(−iθ)p+ P ∩ Π<degp).

In particular, λ∗ maps eθP into itself, and is invertible on eθP if and only if λ̂(−iθ) 6= 0. Further,
since p(· − iD)1 = p, the first equality in (3.7) (with λ replaced by λ∗µ) shows that λ∗µ∗ = 1 on
eθP if and only if p(· − iD)(λ̂µ̂ − 1)(−iθ) = 0 for all p ∈ P . This last condition is equivalent to
λ̂µ̂− 1 having a P (−i·)-fold zero at −iθ (i.e., p(−iD)(λ̂µ̂− 1)(−iθ) = 0 for all p ∈ P ), since

p(· − iD) =
∑

γ

[[]]γ(Dγp)(−iD)

and P is D-invariant. This proves the following.

(3.8) Proposition. If the compactly supported distribution λ satisfies λ̂(−iθ) 6= 0, and the finite-

dimensional polynomial space P is D-invariant, then λ∗ maps eθP 1-1 onto itself, and any convo-

lution µ∗ with

(3.9) p(−iD)µ̂(−iθ) = p(−iD)(1/λ̂)(−iθ) ∀p ∈ P

provides the inverse of λ∗ on eθP .

In applications, the polynomial space P is often not known precisely, but its degree can be
ascertained, i.e., a k with P ⊂ Πk can be found. In that case, one would satisfy (3.9) for Πk rather
than P , i.e., one would make certain that all derivatives of order ≤ k of µ̂ at −iθ match those of
1/λ̂ there.

By choosing µ so that (3.9) is satisfied with λ = ϕ and with P = Pθ for every θ ∈ Θ(ϕ) =
specH(ϕ), one obtains a suitable distribution µ and a quasiinterpolant ϕ∗′µ∗. For example, if we
choose µ∗ to be a differential operator q(−iD) for some polynomial q, then µ̂ = q, while if we choose
µ∗ to be a finite difference operator q(E), we get the ‘trigonometric’ polynomial µ̂(w) = q(eiw). In
these cases µ can be chosen by requiring the polynomial q or the trigonometric polynomial q(eiw)
to provide an osculatory interpolation to 1/ϕ̂ at −iΘ(ϕ). In the first case, µ is a linear combination
of values and derivatives at the origin, while, in the second case, µ employs only function values at
some points from ZZs. More generally, one could use µ of the form µ : f 7→ ∑

x∈X qx(−iD)f(x),
where X is some finite subset of IRs, and each qx ∈ Π; for this case, the polynomials qx are to be
chosen so that the exponential µ̂ =

∑
x∈X qxe−ix osculates to 1/ϕ̂ appropriately at −iΘ(ϕ).

If µ∗ is chosen to be a difference operator, (i.e., if µ is a linear combination of point-
evaluations from ZZs), then it commutes with ϕ∗′ and thus

ϕ∗′(µ∗f) = µ∗(ϕ∗′f) = (µ∗ϕ)∗′f.
This provides us with a quasiinterpolant of the simple form ψ∗′, with ψ = µ∗ϕ ∈ S(ϕ), and with
the support of ψ not exceeding the sum of the supports of µ and ϕ. In fact [R1], the support of
the difference operator µ∗ can be chosen so that

diam suppψ ≤ 2 diam suppϕ,

in contrast to the minimal polynomial procedure below in which the inverting difference operator
is supported on a relatively large domain.

We summarize the Fourier transform approach in the following

10



(3.10) Theorem. Let ϕ be a regular compactly supported function, H a D-invariant subspace of

H(ϕ), and µ a compactly supported distribution. Then

Qµ := ϕ∗′µ∗
is an H-quasiinterpolant (i.e., is the identity on H) if and only if

p(−iD)µ̂(−iθ) = p(−iD)(1/λ̂)(−iθ), ∀eθp ∈ H,

where λ is any (every) compactly supported distribution whose associated convolution operator λ∗
coincides with ϕ∗′ on H. Suitable choices for λ are λ = ϕ and λ = ϕ|.

(ii) Minimal polynomial Here, one would choose an ‘easily computable’ distribution λ for
which λ∗ = ϕ∗ = ϕ∗′ on H and observe that, since T = (ϕ∗′)|H is invertible, we can represent T−1

as q(λ∗) for some univariate polynomial q (i.e., obtain the inverse of the operator λ∗|H as a linear
combination of powers of λ∗). We obtain such a polynomial (up to a normalizing factor) in the
form

(3.11) q(t) := (mT (0) −mT (t))/t

with mT the minimal (annihilating) polynomial for T . It may be hard, in general, to produce
this polynomial, particularly if the space H(ϕ) is not known precisely. But, we conclude from (3.7)
that, for θ ∈ specH, ϕ∗, and hence any λ∗ which coincides with ϕ∗ on H, is degree-preserving
on the exponential space eθΠ, in the sense that, for any polynomial p,

λ∗eθp ∈ eθ(λ̂(−iθ)p+ Π<degp).

In fact, (3.7) implies that
λ∗eθp ∈ eθ(λ̂(−iθ)p+ Πdegp−k)

in case λ̂− λ̂(−iθ) has a zero of order k at −iθ. For example, if λ is a radially symmetric function,
i.e., λ(−x) = λ(x), then

∫
IRs pλ = 0 for any homogeneous polynomial p of odd degree and hence in

particular

(3.12) λ∗p ∈ λ̂(0)p+ Πdegp−2

in that case, as was already pointed out in [CD1]. In any case, the map Mθ defined by

Mθ : f 7→ λ̂(−iθ)f − λ∗f,
is degree-reducing on eθΠ, and thus, for any H in eθΠ, there is a suitable power Mn

θ of Mθ

which annihilates H. Also, writing Mn
θ as a linear combination of powers of λ∗, we observe that

the constant term here is λ̂(−iθ) 6= 0 (since T is assumed to be invertible), and thus we can use the
facts that (a) on H, 1 −Mn

θ /λ̂(−iθ) is the identity, and (b) 1 −Mn
θ /λ̂(−iθ) = λ∗..., to write T−1

as a polynomial in λ∗. For a general finite-dimensional H ⊂ ExpT, one can take M =
∏

θ∈TM
nθ

θ ,
for sufficiently high powers nθ. The resulting extension of T−1 is an operator of large support
(as compared to the support of ϕ or ϕ∗′), especially when the spectrum of H is a large set (e.g.,
when H is spanned by pure exponentials), yet results in a very explicit and easily computable
quasiinterpolant (provided that λ is easily computable, which is not always the case). For the
choice λ = ϕ|, this type of quasiinterpolation has been first suggested in [CD1] for a polynomial H.
It has also been used in [DR] (for an exponential H) in the derivation of the approximation order
for exponential box splines, and more recently in [R3].
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(iii) Recurrence Equation (3.7) suggests the solution of the equation λ∗? = f ∈ eθP by
backsubstitution, i.e., by recurrence, since it implies that, for f = eθp ∈ eθP ,

λ∗f =
∑
γ≥0

(eθD
γp) [[−iD]]γ λ̂(−iθ),

therefore (using the invertibility of λ∗ on eθP and the D-invariance of eθP )

f =
∑
γ≥0

(λ∗)−1(eθD
γp) [[−iD]]γ λ̂(−iθ),

hence

(3.13) (λ∗)−1(eθp) = (λ∗)−1f =


f −

∑
γ 6=0

(λ∗)−1(eθD
γp) [[−iD]]γ λ̂(−iθ)


 /λ̂(−iθ).

For a general exponential f , the resulting solution depends of course on the choice of λ∗,
but necessarily, since λ∗|H = ϕ∗′|H , this solution is independent of λ for f ∈ H (as it is simply
(ϕ∗′)−1f).

WhenH is a polynomial space, it is sufficient to know how to solve the equation λ∗? = f for the
normalized powers, and these solutions are provided by the Appell polynomials (pα) for λ. By
definition, pα is characterized by the fact that (λ∗Dβpα)(0) = δα,β . Since both differentiation and
convolution map polynomials to polynomials and since differentiation commutes with convolution,
we have the equivalent characterization of pα as the unique polynomial solution of the convolution
equation

λ∗? = [[]]α.

It follows that Dβpα = pα−β and that, for any polynomial p, the solution of the equation λ∗? = p

is given by ∑
α

pα D
αp(0),

thus reducing the problem of solving the equation λ∗? = p to solving it for the specific righthand
sides [[]]α. For these, the recurrence (3.13) reads

(3.14) pα =


[[]]α −

∑
γ 6=0

pα−γ [[−iD]]γ λ̂(0)


 /λ̂(0),

since, for f = p = [[]]α, we have Dγp = [[]]α−γ , hence (λ∗)−1Dγp = pα−γ . The derivatives at zero of
λ̂ needed here can be calculated directly from λ because of the identity

[[−iD]]γ λ̂(0) = (λ∗[[]]γ)(0).
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4. Approximation order for piecewise-exponentials

In this section, we make use of the earlier discussion of quasiinterpolants to provide lower
bounds for the approximation order of a family (Sh) of approximating spaces, each of which is
spanned by the hZZs-translates of one locally supported function, i.e.,

Sh = Sh(ψh) := ranψh∗′h

for some ψh, with
ψh∗′hf :=

∑
α∈ZZs

ψh(· − αh)f(αh).

The discussion is novel in that we allow the scaled function ψh(h·) to depend on h. We do assume,
though, the existence of a fixed (h-independent and necessarily) D-invariant space H contained in
each Sh and show that, under mild conditions on the ψh, the local approximation order of H is a
lower bound for the approximation order of the family (Sh).

Concrete results of this nature were already obtained in [DR], using quasiinterpolant schemes
based on the Neumann series approach outlined in the preceding section. By contrast, the approach
presented here deviates but slightly from the standard quasiinterpolant argument, hence seems more
direct.

In the spirit of the preceding section, the quasiinterpolant setup for approximation from Sh =
Sh(ψh) is as follows. A function ψh with bounded support is given and approximation maps of the
form

Q := ψh∗′hµ∗
are sought. Although ψh may vary with h in quite an arbitrary way, the constants in the associated
bounds depend essentially only on h−1 diam suppψh, and hence it is desirable to assume that

suppψh ⊆ hrB,

with B the unit ball and r independent of h. (Otherwise, one needs to make assumptions on the
rate at which ψh decreases away from the origin.) The (h-dependent) distribution µ is chosen so
that Q reproduces a given space H and so that it is of small support; e.g.,

suppµ ⊂ hnB,

for some h-independent n. In addition, we find it convenient to restrict µ to be a continuous linear
functional on C(IRs) or L∞(IRs), and, correspondingly, denote the norm of this linear functional
(which in effect is a measure) by ‖µ‖1. It then follows that Q is local in the sense that

Qf(x) =
∑

α∈ZZs

ψh(x− αh)(µ∗f)(αh) ≤ |Q| ‖f|x+(r+n)hB‖∞,

with
|Q| := ‖ψh‖h‖µ‖1, ‖ψh‖h := ‖

∑
α∈ZZs

|ψh(· − αh)| ‖∞.
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This implies that, for any p ∈ H,

|(f −Qf)(x)| = |(f − p)(x) −Q(f − p)(x)| ≤ (1 + |Q|)‖(f − p)|x+(r+n)hB‖∞,

hence allows the conclusion that

(4.1) |(f −Qf)(x)| ≤ (1 + |Q|) dist∞,x+(r+n)hB(f,H),

where, for Ω ⊂ IRs,
dist∞,Ω(f,H) = inf

g∈H
‖(f − g)|Ω‖∞.

This shows that the approximation order of Q, as a function of h, is bounded below by the local
approximation order of H, provided the product |Q| = ‖ψh‖h‖µ‖1 can be bounded independently
of h.

Here, the local approximation order (at the origin) of the space H of functions analytic at
the origin is defined as the largest d for which there is, for each smooth f , some p ∈ H for which

‖(f − p)|tB‖ = O(td) as t→ 0

(with ‖ · ‖ the max norm, say). The local approximation order of H is characterized [BR1] as the
maximal d for which Π<d ⊂ Td(H), with Tdf being the Taylor expansion of order d (i.e., degree
d− 1) of f about the origin. The local approximation order of H at an arbitrary x ∈ IRs is defined
analogously, and is independent of x in case H is translation-invariant. Furthermore, in this case
dist∞,x+tB(f,H) ≤ cf t

d, with cf independent of x, and finite whenever f and all its derivatives
up to order d are bounded.

In order to derive conditions which provide h-independent bounds for |Q|, we normalize the
situation by rescaling, i.e., by considering the quasiinterpolant Qh := σ1/hQσh, as this leaves
|Qh| = |Q| and unscales the scaled semi-discrete convolution. Here, σt is the scaling map (σtf) :
x 7→ f(x/t). We compute that

(4.2) Qh := σ1/hQσh = ϕh∗′µh∗,

with
ϕh := hsσ1/hψh, µh := σ1/hµ.

Since diam suppϕh ≤ h−1 diamhrB = r, we see that

(4.3) |Q| = |Qh| = O(‖ϕh‖∞)‖µh‖1.

Thus the point is to show that, under certain conditions on ψh, the µh can be chosen with support
bounded independently of h and so that ‖ϕh‖∞‖µh‖1 = O(1).

For this, recall that Q is supposed to reproduce a certain finite-dimensional space H. This is
equivalent, by (4.2), to having Qh reproduce the space

Hh := σ1/hH.
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If we further assume that H is a D-invariant exponential space, then so is Hh. Finally, if we assume
that H ⊂ Sh(ψh), then Hh ⊂ S(ϕh) and, by Corollary 3.3, ϕh∗′ = ϕh∗ on Hh, provided that ϕh is
regular with respect to Hh, i.e.,

(4.4) ϕ̂h(θ) 6= 0, ∀θ ∈ −i specHh = −ih specH.

In such a case, Qh reproduces Hh if and only if µh∗ agrees on Hh with the well-defined

(ϕh∗|Hh
)−1.

Since ϕh∗ commutes with translations, so does (ϕh∗|Hh
)−1, thus it is a convolution operator, namely

there exists a linear functional µ0
h on Hh such that µ0

h∗ = (ϕh∗|Hh
)−1.

We wish to extend µ0
h to a suitably bounded linear functional µh on C(IRs) or L∞(IRs) and

with support in an h-independent ball nB. This task is relatively simple if we assume that H ⊂ Πk

for some k. Making the normalizing assumption that ϕ̂h(0) = 1, we recall from (3.7) (with θ = 0)
that then (1 − ϕh∗)|Π is degree-reducing and therefore (1 − ϕh∗)k+1 = 0 on Πk. This implies
that 1 − ϕh∗(q(ϕh∗)) = 0 on Πk, with q(t) the univariate polynomial (1 − (1 − t)k+1)/t of degree
k. Consequently, (ϕh∗|Πk

)−1 = q(ϕh∗|Πk
). This suggests viewing ϕh∗ as a map from C(mB) to

C((m− r)B), since in these norms (and for any m > r) ‖ϕh∗‖ ≤ const‖ϕh‖∞, and so that one can
view q(ϕh∗) as map from C((kr+ 1)B) to C(B) which is bounded by constk‖ϕh‖k

∞. Therefore, we
obtain the bound

(4.5) ‖τh‖ ≤ constk‖ϕh‖k
∞,

with τh := (ϕh∗|Πk
)−1 considered as a map from Πk ⊂ C((kr + 1)B) to Πk ⊂ C(B), and where

constk depends on k and r. With this, we have

µ0
hf = (µ0

h∗f(−·))(0) = (τhf(−·)) (0),

and thus,
‖µ0

h‖ ≤ ‖τh‖ ≤ constk‖ϕh‖k
∞.

We can therefore obtain the functional µh in (4.3) with support in krB and with norm bounded
by constk‖ϕh‖k

∞. Substituting this into (4.3), we obtain for an unnormalized ϕh the inequality

(4.6) |Q| ≤ constk(‖ϕh‖∞/|ϕ̂h(0)|)k+1,

where constk may increase with r (in effect in diam suppϕh = h−1 diam suppψh), but does not
otherwise depend on ϕh.

In order to extend this observation to a general H, we recall from [BR1] that, as h → 0,
Hh converges to a certain polynomial space H↓, in the sense that any given basis {bj}j for H↓ is
associated with a corresponding basis {bj,h}j for Hh so that, for each j, bj,h converges to bj , as
h → 0, uniformly on compact sets. Choosing k so that H↓ ⊂ Πk, this means that, for sufficiently
small h and for the constk of (4.6), we have

(4.7) ‖(ϕh∗|Hh
)−1‖ ≤ 2constk(‖ϕh‖∞/|ϕ̂h(0)|)k+1,

where “sufficiently small” depends only on H and r (since it is related to the convergence of Hh to
H↓ on (kr + 1)B).

We arrived at the following
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(4.8) Theorem. Assume that ψh is a compactly supported function with ψ̂h(0) 6= 0, and that

H is a finite-dimensional D-invariant exponential space in Sh(ψh) := ran(ψh∗′h), for which ψh∗′h|H
is 1-1. Then there exists a continuous linear functional µ on L∞(IRs), with support in a ball of

diameter O(diam suppψh) so that Q := ψh∗′hµ∗ reproduces H and so that, for h sufficiently small,

(4.9) |Q| := ‖
∑

α∈ZZs

|ψh(· − αh)| ‖∞‖µ‖1 ≤ const(hs‖ψh‖∞/|ψ̂h(0)|)m,

with the positive integer m dependent only on H, const depending on H, increasing

in h−1 diam suppψh, but otherwise independent of ψh and h, and “sufficiently small” depending

only on H and h−1 diam suppψh. Consequently, as h→ 0, we have

(4.10) ‖f −Qf‖ = O(hd),

provided that diam suppψh = O(h), that hs‖ψh‖∞/ψ̂h(0) = O(1), that H has local approximation

order d, and that f has bounded continuous derivatives up to order d.

Proof: We may assume, without loss, that ψ̂h(0) = 1, hence also ϕ̂h(0) = 1, with ϕh := hsσ1/hψh.
Then (4.9) is equivalent to

(4.11) ‖
∑

α∈ZZs

|ϕh(· − α)|‖∞‖µh‖1 ≤ const‖ϕh‖m
∞.

This has been obtained by the previous arguments, with m = k + 1.
The equation (4.10) follows directly from (4.9) and (4.1), provided that we confirm the regu-

larity of ϕh (for small h), i.e., that

ϕ̂h(θ) 6= 0, ∀θ ∈ −i specHh = −ih specH.

Since by the assumption here diam suppϕh = O(1), this follows from the fact that, for any fixed
θ, ehθ converges uniformly to 1 on suppϕh (as h→ 0), since it implies that for any fixed θ (and in
the current normalization)

ϕ̂h(hθ) − 1 = ϕ̂h(hθ) − ϕ̂h(0) = [(e−ihθ − 1)ϕh ]̂ (0) → 0,

using the fact that, in this normalization, ‖ϕh‖∞ = hs‖ψh‖∞ = O(1), by assumption. ♠
In reaction to a preprint of the present paper, [LJ] show that Theorem 4.8 is sharp, in the

sense that the approximation order from a piecewise H-space cannot be better than the local
approximation order from H.
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