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Abstract. Some loose ends in Shadrin’s remarkable paper are tied up.

Shadrin’s theorem [S] settles a problem posed first in [B73] in the following setting.
For k ∈ N, let t := (ti : i ∈ Z) be nondecreasing with ti < ti+k, all i, and set

a := inf
i

ti, sup
i

ti =: b.

For each i, let

Nik(x) := (ti+k − ti)∆(ti, . . . , ti+k)(x − ·)k−1
+ = (∆(ti+1, . . . , ti+k) − ∆(ti, . . . , ti+k−1))(x − ·)k−1

+

be the ith L∞-normalized B-spline of order k for the knot sequence t. For an arbitrary coefficient
sequence c = (ci), the biinfinite sum

∑

i Nikci makes sense pointwise, i.e.,

∑

i

Nik ci : R → R : x 7→
∑

Nik(x) 6=0

Nik(x)ci

is well-defined since the last sum is finite due to the fact that suppNik lies in the interval [ti . . ti+k]. Any
such function

∑

i Nikci is called a polynomial spline of order k with knot sequence t. I’ll denote the
collection of all such functions by

$kt.

In particular, with
ℓ∞ := ℓ∞(Z), L∞ := L∞(a . . b),

the map

Nkt : ℓ∞ → L∞ : c 7→
∑

i

Nik ci

is wellknown to be well-defined, of norm 1, and bounded below, hence boundedly invertible on its range

$kt∞ := $kt ∩ L∞.

Now consider the linear map

Mt
kt : L∞ → ℓ∞ : f 7→ (

∫

Mikf : i ∈ Z)

with

Mik :=
k

ti+k − ti
Nik

the ith L1-normalized B-spline of order k for the knot sequence t, so called because

∫

Mik = ‖Mik‖1 = 1,

hence ‖Mt
kt‖ = 1.
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Now consider least-squares approximation to g ∈ L∞ from $kt∞. To be sure, g ∈ L∞ need not have
finite L2-norm, hence it makes, offhand, no sense to talk about least-squares approximation to such g. But
we can look for f ∈ $kt∞ for which

Mt
kt(g − f) = 0,

a condition that characterizes f as the unique least-squares approximation to g from $kt∞ for g ∈ L2(a . . b).
This raises the question whether the data map Mt

kt is 1-1 on $kt∞ which, in turn, raises the question whether
the biinfinite matrix

(1) Akt := Mt
ktNkt = [Mik : i ∈ Z]t[Njk : j ∈ Z] = (

∫

MikNjk : i, j ∈ Z)

is invertible on ℓ∞. If it is, then the linear map

Pkt := Nkt(Akt)
−1Mt

kt

is a well-defined linear projector on L∞ with range $kt∞ and, for any g ∈ L∞, Pktg is the unique element f
of $kt∞ for which g − f is orthogonal to $kt∞ in the sense that Mt

kt(g − f) = 0. For this reason, I will call
Pkt an L2-spline projector and note that

‖Pkt‖ ≤ ‖Nkt‖ ‖(Akt)
−1‖∞ ‖Mt

kt‖ = ‖(Akt)
−1‖∞,

hence the L∞-boundedness of Pkt is assured once we know that Akt is boundedly invertible as a map on ℓ∞.

To be sure, while [B73] starts in this general setting, it considers L2-spline projectors only in the finite-

dimensional setting in which t is a finite knot sequence and, correspondingly, the invertibility of the Gramian
is a standard result, and conjectures that

(2) ∀{k ∈ N} sup
t

‖(Akt)
−1‖∞ < ∞,

with the supremum taken over all finite knot sequences t.

It is this conjecture that Shadrin settles in [S] in the sense that he proves the following

Shadrin’s Theorem ([S]). For all k ∈ N,

sk := sup
t

‖(Akt)
−1‖∞ < ∞,

with the supremum taken over all finite knot sequences t that are k-complete, meaning that the first and

the last knot appear with maximal multiplicity k.

Shadrin [S] also considers, in his Corollary II, the biinfinite case described above and deduces (2) for
that case from the finite-dimensional case, using the observation that, therefore, all principal submatrices of
Akt are uniformly boundedly invertible, hence so must Akt be, and with the same bound. It is the purpose
of the present note to clarify this argument.

There are two points of concern.

(i) The bounded invertibility of Akt is deduced from the uniformly bounded invertibility of its finite
principal submatrices, but no reference is given for this (nontrivial) result.

(ii) Shadrin’s Theorem is proved only for k-complete finite knot sequences hence says, offhand, nothing
about finite principal submatrices of Akt since there is no reason for any finite section (ti, . . . , tn+k) of t to be
k-complete. This was completely overlooked by me twelve years ago and only recently realized by Shadrin
while trying to make the point that his paper [S] covers the periodic case.

Point (i) is taken care of by the following proposition which, while not explicitly stated, is established
in [B82] during the proof of Theorem 4.1 there.
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Proposition. Let A be an ℓ∞-bounded bi-infinite matrix that maps the closed subspace

c0 := {a ∈ R
Z : lim

|i|→∞
ai = 0}

of the ‖ · ‖∞-normed space ℓ∞ = ℓ∞(Z) of bounded bi-infinite sequences into itself.

If for some r and for all sufficiently large integer intervals J , the submatrix

AJ := (Ai,j : i ∈ J, j ∈ r + J) ∈ R
J×(r+J)

is invertible and

s := lim sup
J→Z

‖(AJ )−1‖∞ < ∞,

then also A is boundedly invertible as a map on ℓ∞; in fact, ‖A−1‖∞ = s.

Settling Point (ii) was the start of the present note. The argument given here for it also provides a
proof of the Proposition for a totally positive matrix A.

It is well-known that the Gramian Akt is totally positive (or tp, for short), meaning that all its minors
are nonnegative. A good up-to-date reference regarding total positivity is [P]. We need only one of the many
properties of invertible totally positive matrices A of order n, namely that their inverse is a checkerboard
matrix, meaning that,

(3) (−1)i−jA−1(i, j) ≥ 0, i, j = 1, . . . , n.

This follows at once from Cramer’s rule which gives

A−1(i, j) = (−1)i−j detA(\j, \i)/ detA, i, j = 1, . . . , n.

Here, and in the following, it is convenient to denote the (i, j)-entry Ai,j of the matrix A MATLAB-fashion
by A(i, j), and use the notation A(\j, \i) for the matrix obtained from A by omitting the jth row and ith
column.

The checkerboard nature of the inverse of a tp matrix implies the following remarkable property of tp
matrices which was stated in [BJP] as a known fact, but without a reference and only a hint for how to
prove it. Because of the importance of this property in the present context, I give a detailed and elementary
proof.

Lemma ([BJP]). If B ∈ R
n×n is invertible and tp, then, for any integer interval m ⊆ {1, 2, . . . , n}, so is

the principal submatrix C := B(m,m) ∈ R
m×m of B involving only the rows and columns of B with index

i ∈ m, and

(4) 0 ≤ (−1)i+jC−1(i, j) ≤ (−1)i+jB−1(i, j), i, j ∈ m.

Proof: By the generalized Hadamard inequality for tp matrices (see, e.g., Theorem 1.21 of [P]),

detB ≤ detC detB(\m, \m),

with B(\m, \m) the principal submatrix of B complementary to C; hence the invertibility of B implies the
invertibility of its principal submatrix C. The inequalities (4) follow by repeated application of the special
case m = {1, 2, . . . , n − 1} which in turn, by the checkerboard nature of the inverse of a tp matrix, follows
from the formula

(5) C−1 = B−1(m,m) −
B−1(m, n)B−1(n,m)

B−1(n, n)
,

valid for that choice of m. Finally, (5) for such m can be proved as follows. Since

[

idm 0
0 1

]

= BB−1 =

[

C B(m, n)
B(n,m) B(n, n)

] [

B−1(m,m) B−1(m, n)
B−1(n,m) B−1(n, n)

]

,
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therefore,
CB−1(m,m) = idm − B(m, n)B−1(n,m)

and
CB−1(m, n) = −B(m, n)B−1(n, n),

hence, with D the right side of (5),

CD = C
(

B−1(m,m) − B−1(m, n)B−1(n,m)/B−1(n, n)
)

= CB−1(m,m) − CB−1(m, n)B−1(n,m)/B−1(n, n)
= idm − B(m, n)B−1(n,m) + B(m, n)B−1(n, n)B−1(n,m)/B−1(n, n)
= idm

which verifies (5) since it shows the right side of (5) to be a right inverse of C, hence necessarily its inverse
since C is square.

Corollary. For all k ∈ N, and all finite knot sequences t,

(6) ‖(Akt)
−1‖∞ ≤ sk < ∞.

Proof: Any finite knot sequence t can be embedded in a k-complete knot sequence r (in many
ways), and, for any such choice, Akt = Akr(m,m) for some integer interval m, hence

‖(Akt)
−1‖∞ ≤ ‖(Akr)

−1‖∞ ≤ sk,

by (4) and Shadrin’s Theorem.

Such reasoning also obviates the discussion in [S: p. 70] of the case N < 2k therein.
Note that Shadrin conjectures that

∀{k ∈ N} ‖Pkt‖ ≤ 2k − 1 ≤ ‖(Akt)
−1‖∞ .

We even have (6) for arbitrary infinite or biinfinite knot sequences t, as the following theorem, applied
to Akt in conjunction with the Corollary, implies.

Theorem. Let A ∈ R
I×I with I equal to N or Z, and assume that A is tp, and banded in the sense that

h := max
A(i,j) 6=0

|i − j| < ∞.

If, for some finite s and all finite integer intervals m ⊂ I, the corresponding principal submatrix Am :=
A(m,m) is invertible and ‖(Am)−1‖∞ ≤ s, then also A is boundedly invertible as a linear map on ℓ∞(I),
and ‖A−1‖∞ ≤ s.

Proof: For any finite integer interval m ⊂ I, let

A−1
m

(i, j) :=

{

A(m,m)−1(i, j), i, j ∈ m,
0, otherwise.

Then, by the Lemma, we know that, for any integer intervals m1 ⊂ m2,

0 ≤ (−1)i−jA−1
m1

(i, j) ≤ (−1)i−jA−1
m2

(i, j), i, j ∈ m1,

which shows that, for any strictly increasing sequence m1 ⊂ m2 ⊂ · · · of integer intervals and any i, j ∈ I,

0 ≤ (−1)i−jA−1
mr

(i, j), r = r0, r0 + 1, r0 + 2, . . .
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is a monotone increasing sequence bounded by s, hence converges monotonely to some limit value

(−1)i−jD(i, j).

The resulting biinfinite matrix D has
‖D‖∞ ≤ s

and is necessarily the inverse of A which can be worked out using the assumed bandedness of A, as follows.
Since, for any i ∈ I, there is an ri ∈ N so that |ν − i| ≤ h implies ν ∈ mri

, therefore

(AD)(i, j) =
∑

|ν−i|≤h

A(i, ν) lim
ri≤r→∞

A−1
mr

(ν, j)

= lim
ri≤r→∞

∑

|ν−i|≤h

A(i, ν)A−1
mr

(ν, j)

= lim
ri≤r→∞

{

δi,j , j ∈ mr

0, otherwise

}

= δi,j .

Analogously, for any j ∈ I, there is an rj ∈ N so that |ν − j| ≤ h implies ν ∈ mrj
, therefore

(DA)(i, j) =
∑

|ν−j|≤h

lim
rj≤r→∞

A−1
mr

(i, ν)A(ν, j)

= lim
rj≤r→∞

∑

|ν−j|≤h

A−1
mr

(i, ν)A(ν, j)

= lim
rj≤r→∞

{

δi,j , i ∈ mr

0, otherwise

}

= δi,j .

Note that, by the Lemma, it is sufficient to assume that ‖(Am)−1‖∞ ≤ s for all sufficiently large m.
Note also that the conclusion is unchanged if Am := A(m, r + m) for some fixed r. Note finally that the
argument would even work for a matrix A that is the norm-limit of banded matrices, something [L] calls
band-dominated.

The Theorem is complementary to Theorem 1 of [BJP] which asserts that, for any ℓ∞-invertible tp
matrix A ∈ R

I×I , there exists r (necessarily unique) so that, for all finite intervals m ⊂ I, Am := A(m, r+m)
is invertible and (Am)−1 converges, monotonely in each entry, to A−1 as m → I.

Finally, the Lemma implies that, for any knot sequence t,

(7) ‖(Akt)
−1‖∞ ≥ 1/ inf

i

∫

MikNik.
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