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Computing the Sobolev regularity of refinable functions by the Arnoldi Method

Amos Ron, Zuowei Shen and Kim-Chuan Toh

1. Introduction

We are interested in the computation of the smoothness parameter of refinable functions. Refinable
functions (known also as ‘scaling functions’) are solutions of special functional equations that are known as
refinement equations. The refinement equation expresses a dilate of the solution as the convolution product
of that solution with a discrete kernel, the latter being known as the mask (cf. (2.2) for the precise definition).
The smoothness of refinable functions is important in two subareas of analysis. In the area of subdivision
algorithms, it determines the smoothness of the limit curve/surface of the subdivision process; in the area
of wavelets, the smoothness of the refinable function is passed on to all wavelet systems that are derived
from it (via the multiresolution analysis vehicle). In most practical cases, the refinable function is not known
explicitly, and the available information consists, primarily, of the mask. Therefore, the determination of the
smoothness of the solution from properties of the mask is one of the key problems in the above-mentioned
areas.

Our efforts in this paper are focused on the study of the above problem via the transfer/transition
operator approach. The analysis of the regularity of refinable functions in terms the transfer operator was
developed by several authors (cf., e.g., [D], [DD], [E], and [V] for the univariate case, [RiS1], [CGV], [J],
[LMW], [RS1] and [R2] for the multivariate case). In the L2-case, the regularity estimates are in terms of
a specific eigenpair of an associated operator, hence seem to be computationally feasible. However, while
the smoothness parameter of some examples was successfully computed by some authors (see e.g. [HJ] and
[RS1]), there has not been (to best of our knowledge) a reliable (i.e., robust) numerical algorithm that works
without significant restrictions on the mask.

Our method is based on the characterizations of the L2-smoothness parameter given in [RS1], a detailed
account of which is given in §2. For the discussion here, it suffices to note that the characterization is given
in terms of the restriction of a certain linear operator (the transfer operator) to a finite-dimensional invariant
subspace H of it (the elements of H are trigonometric polynomials). In order to compute the smoothness
using this approach, one has to overcome four different obstacles, two of which are of theoretical nature and
the other two of numerical nature. First, one needs a characterization of the space H , a characterization
that applies to a wide range of refinement equations; specifically, one should avoid restrictions on the re-
finement equations that either cannot be verified numerically, or exclude examples of interest. Second, the
characterization of the invariant space H must be computationally verifiable; we found that in most practical
cases it is not feasible to compute a basis for H , hence one must have an alternative method for checking
whether a given function belongs to that invariant space. That alternative method employs a superspace
H0 of H which is also an invariant subspace of the transfer operator, and which has an easily computable
basis. The algorithm then finds in H0 eigenvectors of the transfer operator, and uses a subtle criterion to
determine whether the eigenvector found also lies in H . The success of this approach relies on the ability
to recover accurately many eigenvectors, and not only few dominant ones. Thus, our third obstacle is the
necessity of choosing and implementing carefully the eigen-solver. Fourth, a direct implementation of the
theory converts ‘small’ problems (measured, say, in terms of the support of the mask) to a huge numerical
mess, unless properly approached. For example, the matrix involved in computing one of the bivariate in-
terpolatory refinable functions constructed in [RiS1] has an order of about 4 × 103, leading, thereby, to a
numerically prohibitive eigenproblem.

We present our algorithm and its implementation in four stages. In the first (§2), we survey the results
of [RS1] on the regularity of refinable functions, results that serve as the main stimulus for the present
endeavor. As is seen there, the characterization of [RS1] can be implemented in many different ways, and
we carefully devise in the second stage (§3) what we consider to be the ‘winning algorithm’ (designed to be
fast for the average problem and robust for other cases). The algorithm requires a supplementary stable
method for computing eigenvalues of linear operators. In the third stage of the presentation (§4), we describe
a variation of the Arnoldi method [A] that is used to that end, and provide a rough sketch of our Matlab
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code. We document in §5 a sample of the numerical experiments. Finally, proofs of some results used in §3
are given in §6.

One must keep in mind that it is rather hard to devise a good universal numerical algorithm for this
problem, since the numerical challenge in computing the smoothness has many, conflicting, faces. For
example, in the construction of compactly supported bivariate interpolatory subdivision schemes, as well as
in the related construction of certain orthogonal and biorthogonal refinable functions (see e.g.[DGL], [DDD],
[CD], [CS], [RiS1-2], [JRS], [HL] [HJ], [KS], [BW]), one expects to have a relatively large mask, hence one
has to cope with the sheer size of the problem. In contrast, in the theory of wavelet frames, and in the
subsequent constructions of tight wavelet frames and bi-frames, (cf. [RS2-5] and in particular [GR]), good
wavelet systems (e.g., tight frames), are derived from a multiresolution analysis based on a refinable function
with unstable shifts. While that refinable function may be very attractive for applications (having many
alternative properties such as high smoothness, good approximation order and small support), the problem
of finding its smoothness without the stability assumption is a theoretical challenge (which was overcome
for the first time in [RS1]), and is also a computational challenge.

2. The Sobolev regularity of refinable functions

Since the main objective of this paper is to convert (some of) the results in [RS1] from theory to practice,
we naturally review first the pertinent results of that paper. The presentation here is confined to the setup
of the present paper. We only consider here scalar refinable functions (PSI case) in one or two variables
whose refinement masks are finitely supported. (The characterizations of [RS1] apply to the vector (FSI)
case, to any number of dimensions, and do not assume the mask to be finitely supported.) A complete list
of the assumptions made in this paper is provided in the sequel.

Let s be a d× d integer matrix that satisfies

(2.1) s∗s = λI,

for some λ > 1. We refer to such matrix s as a dilation matrix or, more precisely, as an isotropic dilation
matrix. Let φ be a compactly supported L2-function in d variables (or, more generally, a compactly supported
distribution). We say that φ is refinable with respect to the dilation matrix s, if there exists a finitely
supported sequence a such that

(2.2) φ(x) = | det s|
∑

j∈ZZd

a(j)φ(sx − j), x ∈ IRd.

The equivalent formulation of this condition on the Fourier domain is

(2.3) φ̂(s∗·) = âφ̂,

with â the symbol of the sequence a, i.e.,

â(ω) =
∑

j∈ZZd

a(j) exp (−ijω).

The sequence a (as well as its symbol â) is called the refinement mask of φ. The L2-regularity parameter
α(φ) of φ is defined by

α(φ) := sup{α ∈ IR : φ ∈ Wα
2 (IRd)}.

Here,
Wα

2 (IRd)

is the usual Sobolev space.
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As it turns out, the regularity of φ is determined by properties of a related function known as the
autocorrelation function φ# of φ, and which is defined as follows:

φ# : t 7→
∫

IRd

φ(x)φ(x − t) dx.

It is easy to see that the Fourier transform of φ# is |φ̂|2. Hence, φ# is refinable with mask

b̂ := |â|2.

The 2π-periodization of the Fourier transform of φ#, i.e., the L1(TTd)-function

(2.4) Φ :=
∑

j∈ZZd

|φ̂(·+ 2πj)|2,

plays a pivotal role in our discussion. Since φ# is compactly supported (by the fact that φ is), the Poisson
summation formula implies that Φ is a trigonometric polynomial whose spectrum (i.e., frequencies) all belong
to the set

(2.5) (suppφ#) ∩ ZZd = (suppφ− suppφ) ∩ ZZd.

Next, we define the transfer operator. Let

(2.6) Γ

be any representer set of the quotient group 2π(s∗−1ZZd/ZZd). The transfer or transition operator T is
defined as:

(2.7) T : L2(TTd) 7→ L2(TTd) : f 7→
∑
γ∈Γ

(̂bf)(s∗−1 ·+γ).

For example, if the spatial dimension is 1, and the dilation is dyadic (i.e., s = 2I), Γ can be chosen as {0, π},
and T becomes

(T f)(ω) = (̂bf)(
ω

2
) + (̂bf)(

ω

2
+ π).

As was already alluded to in the introduction, the L2-smoothness of φ is characterized by the spectral
radius of the restriction of T to a certain invariant space H of it, with H finite dimensional and consisting
of trigonometric polynomials. In general, the space H does not have a simple structure. As a first step, we
would like to construct a finite dimensional superspace of H (made also of trigonometric polynomials) which
on one hand will be T -invariant, while, on the other hand, will have a simple structure.

To this end, let
Zφ := {j ∈ ZZd : ‖j‖2 ≤ r},

where r is any (fixed) number larger than or equal to

1√
λ− 1

max{‖j‖2 : bj 6= 0}

with λ defined in (2.1) and with (bj) being the mask coefficient of the autocorrelation function. Then, since

‖s∗−1x‖2 =
1√
λ
‖x‖2,

the space

(2.8) Hφ
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of all trigonometric polynomials whose band lies in that set (i.e., the space spanned by the exponentials
exp (ij·), j ∈ Zφ) is a T -invariant subspace, and that all eigenvectors of T that are trigonometric polynomials
must lie in Hφ. Moreover, given any trigonometric polynomial f , we have that T kf ∈ Hφ for all sufficiently
large k (see [LLS1]). This last property implies that Hφ must contain each eigenvector f of T , provided that
f is a trigonometric polynomial, and that its associated eigenvalue is non-zero. We use these basic facts in
the sequel without further notice.

Theorem 2.2 of [RS1] states that the regularity parameter α(φ) of φ is,

α(φ) = − logλ ρ

2
,

where λ is given by (2.1), and ρ = |µ| with µ an eigenvalue of the transfer operator (and with the associated
eigenvector being a trigonometric polynomial). Hence, the key to the numerical computation of the regularity
parameter α(φ) is to compute the eigenpair (µ, fµ) of T . We will describe in this paper a reliable and
numerically stable algorithm that computes this eigenpair of T , thereby finds α(φ). The algorithm is based
on the characterization of ρ as the spectral radius of the restriction of T to H , with H a certain T -invariant
subspace (that is defined below) of Hφ. One should note that H , as any subspace of Hφ, consists of
trigonometric polynomials, each of which can be finitely represented in terms of its Fourier coefficients.
However, in order to compute ρ directly from the above description, we also need a robust method for
constructing a basis for H ; since the methods we could find for constructing a basis for H are highly
unstable, we will study the action of T on the larger space Hφ, and we will actually find ρ by other means.
But, first, we recall the description of the space H from [RS1].

The space H is defined as H := Hφ ∩ Iφ, with Iφ an ideal of trigonometric polynomials defined below.
To this end, we set

Π

for the space of all d-variate (algebraic) polynomials, and Πφ for the following subspace of it:

Πφ := {p ∈ Π :
∑

j∈ZZd

p(j)φ#(· − j) ∈ Π}.

Definition 2.9: the ideal Iφ. Let φ be a compactly supported L2-function with φ̂(0) 6= 0. Let φ# be the
autocorrelation function of φ and let Φ be the 2π-periodization of the Fourier transform of φ# as given in
(2.4). The ideal Iφ is the collection of all trigonometric polynomials (in L2(TTd)) f that satisfy:
(i) f/Φ ∈ L∞(TTd).
(ii) f is annihilated by Πφ in the sense that p(−iD)f(0) = 0, for all p ∈ Πφ.

With the definition of Iφ, the results of [RS1] that are used in the present paper for computing the
regularity parameter α(φ) are summarized as follows:

Result 2.10. Let φ be a compactly supported refinable function corresponding to the isotropic dilation
matrix s, with φ̂(0) 6= 0 and let T be its associated transfer operator. Further, let the space Hφ and the
ideal Iφ be given as in (2.8) and Definition 2.9, respectively. Then:
(i) Iφ is T -invariant.
(ii) The regularity parameter α(φ) is

−(logλ ρ)/2,

where ρ is the maximal modulus of the eigenvalues of the restriction of T to Iφ.
(iii) For ρ in (ii), there is an eigenpair (µ, f) of T such that ρ = |µ| and f ∈ Hφ ∩ Iφ.

Indeed, the T -invariance of Iφ is proved in Theorem 2.4 of [RS1]. That theorem also shows that the
regularity parameter α(φ) is determined by any dominant eigenpair (µ, f) of T restricted on Hφ ∩ Iφ, in the
sense that α(φ) = −(logλ |µ|)/2. This gives (ii). Recalling that all the T -eigenvectors in Iφ are either in Hφ

or in kerT , we get (iii).
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3. An algorithm for computing the regularity parameter

Result 2.10 suggests that in order to compute the regularity parameter of the refinable function, we
‘merely’ need to find the spectral radius of the restriction of T to H , where H = Hφ ∩ Iφ. However, the
result cannot be implemented directly, due to the fact that there is no ‘good’ method for constructing a basis
for H .

Before we advance the discussion any further, we seek the following ‘terminological relief’: from now
on, given any linear space S, and any linear bounded operator T from S into a superspace of it, the notion
of the spectral radius of T is meant as the spectral radius of the restriction of T to the largest T -invariant
subspace of S.

Result 2.10 suggests the following ‘direct algorithm’:

A simple method for computing α(φ). Given the transfer operator T associated with the compactly
supported refinable φ, do the following:

(i) Choose a T -invariant superspace H0 of Hφ ∩ Iφ (one which is convenient for computations).

(ii) Find all eigenvalues ν of T |H0
.

(iii) For each eigenvalue ν, find the corresponding eigenspace Vν , then check whether Vν ∩ Iφ 6= 0.

(iv) The desired ρ is max{|ν| : Vν ∩ Iφ 6= 0}.
Various improvements of this direct algorithm are possible. The most obvious one is to avoid finding all

the eigenvalues ((ii) above), and instead finding them one by one in decreasing modulus of the eigenvalue;
stop when the first eigenvector in Iφ is found. That approach suits the Arnoldi method of computing
eigenvalues and eigenvectors. However, even with that improvement, the above ‘direct method’ suffers from
the following drawbacks:

(a) If the critical eigenpair (µ, fµ) is preceded by many other eigenpairs (whose eigenvalues have greater
magnitudes), the approximation provided by the Arnoldi method for the critical eigenvector fµ may be
crude, and it may be hard to determine numerically whether fµ ∈ Iφ.

(b) The necessity to compute a bulk of eigenpairs makes the process relatively slow.

(c) Even if the eigenvector is computed with high accuracy, it may still be hard to determine whether it
belongs to Iφ. This problem (which exists in other approaches too, but to a lesser extent) is particularly
troubling in the case of a multiple eigenvalue, since then we must check whether Iφ has a non-zero inter-
section with the eigenspace, a task which is almost always a numerical challenge (unless the eigenspace
lies entirely in Iφ).

The above discussion reveals the following three different aspects that a successful algorithm has to deal
with:
Aspect I: the eigenproblem aspect. We need to recover an eigenpair of a linear operator. The eigenpair
that we look for may be dominated by many other pairs; nonetheless, we need a fast and accurate recovery
of the eigenpair. It would be best if all/many/most of the eigenpairs that dominate the critical one can
somehow be avoided. A fast implementation also requires a savvy conversion of the problem to matrix
computations.
Aspect II: Φ and Πφ. One of the key steps in any algorithm that computes the regularity parameter is to
determine whether a given trigonometric polynomial f is in Iφ. For this, one needs to (1) find the polynomial
Φ, and (2) find the space Πφ (see the definition of the ideal Iφ). The first task is relatively modest: once
we adopt a mild assumption (the E-condition, see below), it becomes truly simple to compute Φ accurately.
As to the second task, viz. computing a basis for Πφ, it is hampered by the fact that Πφ, in general, does
not have a simple structure (e.g., may not have a monomial basis), which makes it ‘unpleasant’ even under
some additional conditions (e.g., stability). To overcome this difficulty, we use subtle theoretical facts that
allow us to get away with only partial computation of Πφ. Moreover, under ‘favorable conditions’ (which
are far less demanding than stability), the approach yields a substantial shortcut in the search of the critical
eigenvalue.
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Aspect III: testing a given eigenvector. In order to check whether a given eigenvector f is in Iφ, one
needs to check whether both (i) and (ii) in the definition of Iφ are satisfied. As we will see, the algorithm used
here frees us from checking the second condition in the definition of Iφ. Furthermore, when the trigonometric
polynomial Φ is positive everywhere (a condition which is known as ‘the stability of the shifts of φ’), the first
condition in the definition of the ideal Iφ is automatically satisfied. Hence, under this stability assumption,
the process of checking whether the eigenvector in hand is in Iφ is fast and very robust. Without the stability
assumption, we have to check whether f/Φ is bounded or not. This problem is on par with the classical NA
problem: determining whether a small number is 0 or not. As said, this problem is particularly acute for
multiple eigenvalues.

The first and third aspects above are problems that belong to the area Numerical Algebra, and we will
discuss them in the next section, as a part of the discussion on the implementation and the code. To have
an optimal treatment of the second aspect, we need some additional discussion concerning the regularity of
refinable functions (beyond the general discussion of the previous section).

The discussion is divided into two parts: the first is about the computation of Φ and the second deals
with Πφ.

Computing the trigonometric polynomial Φ. We start with a finitely supported mask a. For a given
mask, we want to know whether there exists a compactly supported solution to the corresponding refinement
equation. If there is a solution, whether the solution is unique and whether the solution is in L2. The following
result provides satisfactory answers.

Result 3.1. Let a be a finitely supported mask, and let T be the associated transfer operator.
(i) If

∑
α∈ZZd a(α) = 1 (i.e. â(0) = 1), there exists a compactly supported distribution φ that solves the

refinement equation. It is the unique solution that satisfies φ̂(0) = 1.

(ii) If the restriction of T to Hφ has spectral radius 1, and if all the eigenvalues (of that restriction) that lie
on the unit circle are non-defective, then the corresponding solution of the refinement equation must lie
in L2.

(iii) If the solution φ of the corresponding refinement equation is in L2, then (1, Φ) is an eigenpair of T .

The first statement is proved by showing that the infinite expansion
∏∞

j=1 â(s∗−jω) converges, uniformly
on compact sets, to a tempered distribution. The last assertion is a straightforward exercise. The proof of
the second assertion can be found in [LLS2] as well as in [R2].

Corollary 3.2. Let a be a finite mask satisfying â(0) = 1. Assume that the corresponding transfer operator
T satisfies (ii) of Result 3.1. Then T must have an eigenpair (1, f), with f a non-negative trigonometric
polynomial.

Proof: By (ii) of Result 3.1, the corresponding refinement equation has an L2-solution φ. Assertion
(iii) in Result 3.1 then implies that (1, Φ) is an eigenpair of T . The polynomial Φ is obviously non-negative.

The condition that appears in part (ii) of Result 3.1 is not necessary for the solution φ to be in L2 (cf.
[RS1]), but refinable functions whose transfer operator violate this condition are quite ‘pathological’. In our
algorithm, we assume a bit more, namely that the eigenvalue 1 is simple:

Definition: the weak E-condition. Let a be a given finite mask with â(0) = 1 and let φ be the
corresponding compactly supported solution. Let T be the transfer operator associated with φ. We say
that a (or φ, or T ) satisfies the weak E-condition, if the restriction of T to Hφ has spectral radius 1, all the
eigenvalues on the unit circle are non-defective, and 1 (which is then necessarily an eigenvalue) is a simple
eigenvalue.

Remark. The previous discussion implies that, under the weak E-condition, the refinement equation has
a unique compactly supported solution, φ, that lies in L2 and satisfies φ̂(0) = 1. Further, Φ (i.e., the 2π-
periodization of the Fourier transform of the autocorrelation of the solution) is the unique eigenvector (up
to a constant) of the eigenvalue 1 of the transfer operator.
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Remark. If we add to the weak E-condition the additional assumption that T |Hφ
has a unique dominant

eigenvalue, we obtain a condition known as the E-condition (which is useful in the analysis of various
problems: for example, [LLS2] proves that the E-condition characterizes the L2-convergence of the cascade
algorithm; see also §3.1 of [R2]). This explains our usage of ‘weak E condition’. Finally, we point out that
it is not difficult to show that if T satisfies the weak E condition on Hφ, then it satisfies weak E condition
on any T -invariant superspace H0 of Hφ that consists of trigonometric polynomial (see [LLS2]).

In the first step of the algorithm, we select a convenient T -invariant superspace H0 of Hφ. Then, the
algorithm checks whether T satisfies the weak E-condition. If the weak E-condition is satisfied, it computes
the eigenvector associated with the eigenvalue 1. The (normalized) symbol of that eigenvector is the function
Φ.

Doing without Πφ. We now elaborate on the second condition in the definition of Iφ. Let Z be some
finite, fixed, subset of ZZd, and let HZ be the span of the exponentials ω 7→ exp(ij ·ω), j ∈ Z, endowed with
the L2(TTd)-inner product 〈·, ·〉. Given any (algebraic) polynomial p and any f ∈ HZ , one observes that
p(−iD)f(0) =

∑
j∈Z p(j)fj , with (fj)j the Fourier coefficients of f . Hence, the linear functional (in H∗

Z)
f 7→ p(−iD)f(0) is represented by the trigonometric polynomial tp(ω) :=

∑
j∈Z p(j) exp(ij · ω), i.e.,

(3.3) p(−iD)f(0) = 〈tp, f〉 =
∑

j∈HZ

p(j)fj , ∀f ∈ HZ .

We now connect the above abstract discussion to our concrete problem. In this discussion, we use, for
a given subspace Q ⊂ Π of algebraic polynomials, the notation

PQ

for the orthogonal projector from HZ onto {tp : p ∈ Q}.
When Z above is Zφ (see (2.5)), the space HZ becomes Hφ (of (2.8)). Furthermore, by choosing Q

above to be Πφ, the second condition in the definition of Iφ simply says that the critical eigenvector lies in
the orthogonal complement (in Hφ) of {tp : p ∈ Πφ}. Thus, if we set

Pφ := PΠφ

for the orthogonal projection of Hφ onto {tp : p ∈ Πφ}, condition (ii) in the definition of Iφ will be
automatically satisfied if we iterate (in the search for the critical eigenvector) with the operator (1− Pφ)T ,
instead of iterating with the transfer operator itself. This allows us to restate Result 2.10 in the following
equivalent (yet more practical) way:

Restatement of Result 2.10. In the notations and assumptions of Result 2.10, let I ′φ be the ideal of

all trigonometric polynomials of the form tΦ, t ∈ L∞(TTd) (i.e., those that satisfy the first condition in the
definition of Iφ). Then the spectral radius ρ in Result 2.10 is the same as the spectral radius of the restriction
of (1− Pφ)T to Hφ ∩ I ′φ.

The discussion still leaves us with the need of finding a basis for Πφ (in order to compute the projector
Pφ). As we alluded to before, this can be partially circumvented: suppose that Q is some subspace of Πφ,
and suppose that we replace the operator (1 − Pφ)T by the operator (1 − PQ)T . The latter one will fail
to suppress some of the eigenvalues that the former one does; however, that apparent fault is harmless if
we know that all these ‘unsuppressed’ eigenvalues are smaller than the critical one. But, do we have such a
space Q, which, in addition, has a simple basis?

In order to answer the above question, we define

(3.4) mφ := max{m ∈ IN : Πm ⊂ Πφ},

where Πm is the space of d-variate algebraic polynomials with degree ≤ m. We will show that we can replace
the space Πφ by the space Πmφ

, and, moreover, we can sometimes do with Πm, for m < mφ. In addition,
we show a way to compute mφ from the given data, viz., the mask a and the trigonometric polynomial Φ.
We begin with that latter issue.
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Proposition 3.5. Let φ be a refinable compactly supported L2-function with mask a. Let Γ be the set
defined as in (2.6). Then Πm ⊂ Πφ if and only if b̂Φ (= |â|2Φ) has a zero of order m+1 at each of the points
in Γ\0.

The spaces Πm, m ≤ mφ, are certainly subspaces of Πφ and have a simple structure. The next result
studies the suitability of the choice Q := Πm. For notational convenience we set, for any non-negative integer
m,

Pm := PΠm .

Proposition 3.6. Let φ be a refinable functions with corresponding mask a and transfer operator T . Let
ρm be the spectral radius of the restriction of (1− Pm)T to Hφ ∩ I ′φ. Then:
(a) ρmφ

= ρ.
(b) For an odd m ≤ mφ, we still have ρm = ρ, unless ρm ≤ λ−m−1.

We prove the above propositions in the last section, hence are ready to present here our algorithm.

Algorithm: Step I. Compute the T -invariant space Hφ. Then, check whether T satisfies (on Hφ) the
weak E-condition. If 1 is not an eigenvalue of T , return the message ‘‘There is no L2-solution to
the refinement equation’’, and quit. If, otherwise, the weak E-condition is still violated, give another
appropriate rejection message (that indicates that the solution may still not be in L2) and quit. If the weak
E-condition is satisfied, compute the eigenvector associated with the eigenvalue 1. Check (for consistency
only) that the eigenvector is non-negative (or non-positive). The (normalized) symbol of that eigenvector is
the function Φ.

Algorithm: Step II. Set mφ,γ + 1 to be the order of the zero that |â|2Φ has at γ, and set

mφ := min{mφ,γ : γ ∈ Γ\0}.

Algorithm: Step III. Find the eigenpairs (in Hφ) of (1 − PΠmφ
)T , one by one, ordered according to

the eigenvalue modulus. Stop when finding the first eigenpair (µ, fµ) for which fµ/Φ is bounded. The
L2-regularity of α(φ) is then − logλ(|µ|)

2 .

Remark. We note that no differentiation is really conducted in Step II. Instead, one uses the fact that

p(−iD)f(γ) = 〈p exp(iγ·), f〉

(compare with 3.3). Further, since the maximal order of zeros of b̂Φ is even, mφ is odd.

Remark. We note that if Φ does not vanish at Γ\0, then the space (1−PΠmφ
)Hφ is T -invariant. In contrast,

if Φ vanishes at a point of Γ\0, (1− PΠmφ
)Hφ may not be T -invariant any more. Nonetheless, Proposition

3.6 always holds. Its proof relies on the fact that the subspace (1 − PΠmφ
)(Hφ ∩ Iφ) is always T -invariant.

The algorithm checks for possible shortcuts; stability. In many cases of interest, the shifts of the
refinable function are stable. A convenient way to define the stability here (which is entirely equivalent to
the more standard definitions) is that Φ > 0 (everywhere). Since our algorithm computes Φ in any event,
it checks whether Φ is everywhere positive. In that event, it performs two shortcuts. The major one is that
the first condition in the definition of Iφ becomes superfluous, and hence the iterations with (1 − PΠmφ

)T
search for a dominant eigenvalue. This not only accelerates the algorithm, but also results in a dramatic
improvement of its numerical stability. Indeed, in this case we do not need to determine whether a large
value of f/Φ should be interpreted as finite or infinite. Note that, since Φ is the dominant eigenvector, we
are able to compute Φ with great accuracy. Hence, it is possible to have stable numerical algorithm to check
whether Φ > 0.
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In the case of stability, another, less important, shortcut occurs: in the computation of mφ, we look in
general for the order of the zeros of b̂Φ on Γ\0. If Φ vanishes nowhere, these zeros coincide with those of b̂,
and we do not need to compute b̂Φ (i.e., to convolve their Fourier coefficients.) For that shortcut, we only
need Φ to be non-zero on Γ\0 (and indeed we implement that shortcut under that mere latter condition).

4. Numerical implementation details

In the actual numerical implementation, we treat the transfer operator as acting on sequences, i.e., we
use the operator T defined by

T c := (T ĉ)∨.

The sequence c is always defined on ZZd and has finite support. We use the pairing

(4.1) 〈θ, c〉 :=
∑

j∈ZZd

θ(j)c(j),

in which c is finitely supported and θ is any sequence defined on ZZd, or more generally, a function in C(IRd).
Next, we provide some details about the steps in the algorithm given in the previous section.
For the first step, we find the set Zφ as in Section 2. We then compute, via the deflated Arnoldi method,

a basis for the dominant eigenspace of the transfer operator T : `2(Zφ) −→ `2(Zφ). Then, we check whether
the transfer operator T satisfies the weak E-condition. If the weak E-condition is satisfied, we compute the
eigenvector corresponding to the eigenvalue 1: its Fourier series is the function Φ; else, the weak E-condition
is violated, and we quit.

For the second step, we first check whether Φ vanishes on Γ\{0}. If it does not, we find the largest
integer m such that

(4.2) 〈exp(iγ·) p, a〉 = 0, ∀ p ∈ Πm, γ ∈ Γ\{0},

where a is the refinement mask of φ. We then set mφ := 2m + 1. If Φ vanishes on Γ\{0}, then we find the
largest integer m such that

(4.3) 〈exp (iγ·) p, c〉 = 0 ∀ p ∈ Πm, γ ∈ Γ\{0},

where c = b ∗ h, b is the mask of the autocorrelation function φ#, and h is the Fourier coefficients of Φ, i.e.,
ĥ = Φ. We then set mφ := m.

For these, it is sufficient to check that (4.2) or (4.3) holds for a basis of Πm. However, it is important
to choose a well-conditioned basis. The usual monomial basis of Πm is very ill-conditioned, therefore is
inappropriate for our purpose. We choose here instead a suitable orthonormal basis. That orthonormal
basis is described in the sequel.

For the third step, if Φ vanishes nowhere, we compute the dominant eigenvalue µ of (I − PΠmφ
)T via

the deflated Arnoldi method as detailed below. Then, set α(φ) = − logλ |µ|
2 .

If Φ vanishes anywhere (in [−π, π]d as this function is 2π-periodic), then we proceed as follows:
(i) We compute the next group of the distinct dominant eigenvalues of (I−PΠmφ

)T via the deflated Arnoldi
method. Then we order the eigenvalues according to decreasing magnitudes of their values as

|µ1| ≥ |µ2| ≥ · · · .

(ii) We compute a basis for the eigenspace associated with each of the eigenvalues computed in (i) via the
deflated Arnoldi method. Denote them as {f1, . . . , fL}.

(iii) If there exists scalars t1, . . . , tL not all zero such that

L∑
i=1

tif̂i/Φ
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is bounded, then set α(φ) = − logλ |µk|
2 ; stop. Otherwise, go back to step (i).

We discuss now the following numerical methods used to implement the algorithm.

The action of T on a vector.
Let c be an arbitrary sequence in `2(Zφ). The action of the transfer operator T on c is as follows. First,
generate a new sequence b ∗ c by convolution, then reparameterize the sequence (b ∗ c)j∈ZZd to a sequence
defined on s−1ZZd. Finally, the image T c is the restriction to ZZd of the sequence (b ∗ c)j∈s−1ZZd . The
resulting sequence T c is still supported in Zφ. Once T c ∈ `2(Zφ) is obtained, it is relatively easy to compute
orthogonal projections of it onto various subspaces, provided that we also have an orthonormal basis for
these subspaces.

Construction of an orthonormal basis for Πn.
The standard construction of an orthonormal basis (ON) for Πm is done by applying the Gram-Schmidt
process to the monomial basis {(jβ)j∈Zφ

: |β| ≤ m}. However, this standard construction is numerically
unstable. A more stable process (known as the modified Gram-Schmidt) can be devised by modifying the
Gram-Schmidt process, which we describe now in the bivariate case. Set N := #Zφ.

Modified Gram-Schmidt:
Let v(0,0) = 1√

N
(1)j∈Zφ

.
for k = 1, 2, . . . , m

for β1 = 0, 1, . . . , k
if β1 = 0

w = (j(2) v(0,k−1)(j))j∈Zφ
.

else
w = (j(1) v(β1−1,k−β1)(j))j∈Zφ

.
Orthogonalized w against all previously generated ON vectors v to get w′.
Set v(β1,k−β1) = w′/‖w′‖2.

Let

(4.4) Bm := {v(β) : |β| ≤ m}.

Now, we describe here how to apply the Deflated Arnoldi Method [S] to our case. The method may
not be as robust as other more sophisticated methods for the same purpose, such as the implicitly restarted
Arnoldi [LSVY], [LS], the Jacobi-Davidson Method [SV], and the truncated RQ iteration [SY]. Nonetheless,
as our examples in the next section show, even with this relatively simple method, our proposed algorithm
works well. Of course, for a more robust implementation, one should replace the Deflated Arnoldi Method
by one of the more robust dominant eigenspaces solvers just mentioned.

The Deflated Arnoldi Method.
We first note that the operator (I −Pφ)T can be viewed as an operator on IRN with N = |Zφ|; we just need
to order the points in Zφ, and identify `2(Zφ) with IRN , the latter equipped with the standard inner product
on IRN . Let A be an arbitrary linear endomorphism of IRN . The Deflated Arnoldi Method is described in
the following steps:

(1) Choose an initial vector v1 ∈ IRN with ‖v1‖2 = 1. Set k = 1. Select the number m of Arnoldi iterations
to be performed in each pass.

(2) Arnoldi iteration:

for j = k, k + 1, . . . , m
compute w = Avj

for i = 1, 2, . . . , j

10



hij = 〈w, vi〉
w = w − hijvi

hj+1,j = ‖w‖2
vj+1 = w/hj+1,j

Let Vm be the matrix whose kth column is the vector vk and Hm = (hij) be the m×m upper Hessenberg
matrix constructed above. The vectors vj generated by the Arnoldi iteration satisfy the following relation:

AVm = VmHm + hm+1,m vm+1e
T
m.

Suppose (µ, y) is an eigenpair of Hm. Then (µ, Vmy) is an approximate eigenpair of A.
(3) Compute a basis, say {y1, y2, · · · , yt}, for the eigenspace associated with the dominant eigenvalue µ of

Hm. Let ρk = ‖AVmyk − µyk‖2, for k = 1, . . . , t. Suppose we order the basis such that the residual
norms ρk satisfy ρ1 ≤ ρ2 ≤ · · · ≤ ρt. If {y1, y2, . . . , yr} (where r ≤ t) are the vectors such that the
corresponding residual norms are small enough, then {u1 = Vmy1, u2 = Vmy2, · · · , ur = Vmyr} are
approximate eigenvectors of A associated with the dominant eigenvalue µ.

(4) Deflation: Suppose {y1, y2, . . . , yr} are eigenvectors of Hm corresponding to converged eigenvectors
{u1, u2, . . . , ur} of A associated with the dominant eigenvalue µ. This step is to deflate these converged
eigenvectors from the Arnoldi iteration so that additional eigenvectors of A associated with the eigenvalue
µ can be found, whenever they exist.

(i) Compute the QR factorization of the matrix (y1, . . . , yr) using Householder matrices:

(y1 . . . yr) = Q

(
Rr

0

)

where Q is an m×m orthogonal matrix and Rr is an r × r upper triangular matrix.
(ii) Update the factorization

Hm ← QT HmQ

Vm ← VmQ.

It can be shown that the matrices Vm and Hm satisfies the relation

AVm = VmHm + hm+1,m vm+1e
T
m + hm+1,m vm+1w

T ,

for some vector w such that ‖w‖2 is close to the machine epsilon if the condition number of Rr is modest.
Furthermore, the columns of Vm together with vm+1 form an orthonormal set, and the first r vectors of
Vm lie in the eigenspace of A associated with µ. That is, the first r vectors of Vm are Schur vectors for
the eigenspace of A associated with µ. The r × r principal minor of Hm is the upper triangular matrix
Rr.

(iii) Exit Step 4. Discard the vectors vr+1, · · · , vm in Vm. Set k = r + 1 and vr+1 = vm+1, repeat Step 2
through Step 4; stop if a basis for the eigenspace of A associated with µ has been found. Note that
this process is equivalent to applying a new deflated Arnoldi iteration with initial vector vr+1 to the
operator (I−Pr)A, where Pr is the orthogonal projector onto the subspace spanned by the Schur vectors
{v1, · · · , vr} of A.

Remark. For simplicity, our discussion above focused on finding the dominant eigenspace of A, but this
restriction is not necessary. In practice, one can find the eigenspaces associated with several dominant
eigenvalues simultaneously.

Checking the boundedness of f/Φ
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The major and the most difficult substep of Step III is to check the boundedness of f/Φ, with f a given
trigonometric polynomial. When Φ > 0 (i.e., when the shifts of φ are stable,) f/Φ is always bounded, and
this substep is omitted. Thus, under the stability assumption, our algorithm (and code) is very robust, for
both univariate and bivariate cases. As a proof of evidence, our code successfully computed the regularity
of the (8, 8, 8) bivariate interpolatory mask of [RiS1], whose autocorrelation mask is support on the square
[−31, 31]× [−31, 31]. The matrix representation of the associated transfer operation has an order of about
4000, and a brute force calculation of the regularity using the transfer operator would require one to find
hundreds of eigenvalues of a huge matrix and decide later which of the eigenvalues is the critical one. In
contrast, since our algorithm does not use the matrix representation of the transfer operator explicitly, the
size of the memory we need is only a small fraction of that required by a direction calculation. Also, by
suppressing a priori hundreds of eigenvectors corresponding to polynomial reproduction, we need only to
calculate the dominant eigenvalue of the operator (I − Pφ)T instead of a multitude of eigenvalues of T .

For the univariate case, since the function Φ only has finitely many isolated zeros and the multiplicity
of each zero is relatively easy to find, the boundedness of f/Φ can be completely settled. Consequently, the
algorithm and the derived code provide in this case the exact regularity parameter.

For the bivariate case, it is much more difficult to compute numerically the multiplicity space of the zeros
of Φ. The current version of the code can only handle the case when Φ has finitely many zeros (which we find
as an acceptable assumption: refinable functions with unstable shifts may be very useful in the construction
of framelets with ‘customized’ properties (cf. [R1], [DRS]). It is very unlikely that any of these constructs
will violate the ‘finitely many zeros’ condition). Already for this case, the reliability of our code depends
on (i) the number of the zeros and their distribution, (ii) the ‘degree’ of the multiplicity space of each zero.
However, for all of the interesting examples we tested, we did obtain reliable smoothness parameters. Even
for an ‘extremely bad’ refinable function (i.e., whose Φ vanishes at many points and to high degrees) the
code is able to provide ‘good’ lower bounds on the regularity, much better than the lower bound obtained
by ignoring the dependence relation effect.

Given a trigonometric polynomial f , in order to check whether f/Φ is bounded in [−π, π]d, one needs
only to check whether it is bounded in local neighborhoods of the zeros of Φ.

Let ξ be a zero of Φ in [−π, π]2 of exact order m. (The number m can be computed numerically.) Thus,
all the derivatives of Φ up to order m − 1 vanish at ξ, but some derivatives of order m do not. The Taylor
expansion of Φ at ξ has then the form

Φ(ξ + η) =
∑

|β|=m

DβΦ(ξ)
β!

ηβ + O(‖η‖m+1).

Now, if f/Φ were to be bounded in a local neighborhood of ξ, then it would be necessary for f to satisfy the
condition:

(4.5) Dβf(ξ) = 0 ∀ |β| ≤ m− 1.

Hence, we can reject those eigenvalues whose eigenspace contains no eigenvectors that satisfy (4.5) (for all
ξ).

Next we discuss how the condition (4.5) can be checked numerically in our algorithm.
Suppose {g1, . . . , gL} is a basis for the eigenspace associated with an eigenvalue µ. Consider the eigen-

vector g =
∑L

i=1 cigi, where not all the coefficients are zero. The condition that Dβ ĝ(ξ) = 0 for all |β| ≤ m−1
is equivalent to

〈g, Sξ〉 = 0,

where
Sξ = {p exp (iξ·) : p ∈ Πm−1} .

Since g is supported on Zφ, the functions in Sξ may be regarded as sequences defined on that domain, too.
Thus, we may interpret the above condition as saying that g lies in the null space of B∗

ξ , for a suitable matrix
Bξ (whose columns span Sξ). Thus, if G is a corresponding matrix representation for the basis {g1, · · · , gL},
we need to find the null space of B∗

ξ G.
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If Φ has more than one zero, say ξ(1), . . . , ξ(K), then in order to find g such that ĝ/Φ is bounded on
[−π, π]d, we seek a non-trivial null space for

G :=
[
Bξ(1) · · · Bξ(K)

]∗
G.

In our implementation, we find c in the null space of G by computing the SVD (singular value decomposition)
of G. If the minimal singular value σmin(G) of G is sufficiently small, then we conclude that the null space of
G is non-trivial and take c to be a minimal singular vector of G.

Suppose that f satisfy (4.5), and that d = 2. If, in addition, the following two polynomials

(4.6) t 7→
∑
|β|=q

DβΦ(ξ)
β!

tβ2 , t 7→
∑
|β|=q

DβΦ(ξ)
β!

tβ1 ,

are strictly positive on the interval [−1, 1], then f/Φ is bounded. To see this, we analyze the ratio

(4.7)
f(ξ + η)
Φ(ξ + η)

=

∑
|β|=q

Dβf(ξ)
β! ηβ +O(‖η‖q+1)∑

|β|=q
DβΦ(ξ)

β! ηβ +O(‖η‖q+1)
,

for sufficiently small non-zero vector η. Suppose |η2| ≤ |η1|. Then η2 = t η1 for t ∈ [−1, 1], and substituting
this into (4.7) would lead to

f(ξ + η)
Φ(ξ + η)

=

∑
|β|=q

Dβf(ξ)
β! tβ2 +O(η1)∑

|β|=q
DβΦ(ξ)

β! tβ2 +O(η1)
.

Hence, whenever the polynomials in (4.6) are strictly positive on [−1, 1], f/Φ is bounded in a neighborhood of
ξ (the above argument applies to the case |η2| ≤ |η1|, and the complementary case is obtained by symmetry.)
Finally, we remark whether the polynomials in (4.6) are strictly positive can be checked numerically.

It must be emphasized that multiplicity of the zero of Φ at a given point ξ, while necessarily of finite-
dimension (since the zero is isolated), is not always of a total degree form. The present version of our code,
however, computes only the total degree subspace of that multiplicity space, hence provides in such cases
lower bounds on the smoothness parameter.

5. Examples

We record some of our numerical experiments that we conducted as a test for the code.
The first class of examples are taken from the bivariate interpolatory refinable functions that were

constructed by [RiS1] (‘interpolatory’ means that φ(j) = δj, j ∈ ZZd and is a stronger property than stability).
These examples demonstrate that the code can handle very large masks of stable refinable functions.
Example 5.1. The mask ar of an interpolatory refinable function φr in [RiS1] is obtained by convoluting
the mask mr of a centered three directional box spline with mask qr of a carefully chosen distribution. The
symbol of mr (for an even r) is

m̂r(ω) =
(

cos
(ω1

2
)
cos

(ω2

2
)
cos

(ω1 + ω2

2
))r

.

The mask mr is of a box spline that lies in C2r−2(IR2). The smoothness of φr also increases with r, but not
at the same rate as its box spline factor. The distribution factor qr, while having a negative effect on the
smoothness, is necessary in order to achieve the interpolatory property of φr. For r = 2, the corresponding
q2 is:

q̂2(ω) =
(
5− cos(ω1)− cos(ω2)− cos(ω1 + ω2)

)
/2,

The L2-regularity of φ2 is 2.440765. We computed the smoothness αr of the other interpolatory refinable
functions φr, r = 3, 4, . . . 8. They are as follows:

13



r 3 4 5 6 7 8
αr 3.175132 3.793134 4.344014 4.862018 5.362768 5.852746

As a second test class, we tested four directional box splines. It is well-known (cf. [BHR]) that the shifts
of the four directional box spline are not stable. At the same time, their smoothness is explicitly known.
Example 5.2. The symbols of the masks of the four direction box splines considered here are:

m̂r(ω) =
(

cos
(ω1

2
)
cos

(ω2

2
)
cos

(ω1 + ω2

2
)
cos

(ω1 − ω2

2
))r

.

Our code computed, for r = 1, 2, 3, 4 the corresponding smoothness of

2.5, 5.5, 8.5, 11.5.

These are, indeed, the exact smoothness parameters of these splines.

The third set of examples is taken from [JS]. The pertinent refinable functions are univariate, interpo-
latory, and correspond to dilation s = 3, 4. The shifts of these functions form an orthonormal system.
Example 5.3. The mask an of interpolatory refinable function φn whose shifts form an orthonormal basis
is obtained by convoluting a B-spline of order n with the mask qn of some distribution. The smoothness of
the examples in [JS] with dilation s = 3, and with B-spline factor of order 2 and 3 are 0.963825 and 1.098068
respectively. The smoothness of the examples in [JS] with dilation s = 4 and a B-spline factor of order 2, 3, 4
are 0.890339, 1.21178, and 1.303449.

Example 5.4. The next example is a univariate refinable function whose shifts are unstable, with mask
given by

m̂(ω) = cosj
(ω

2
) (

2 cos(ω)− 1
)k

.

For (j, k) = (4, 3) and (j, k) = (4, 2), the smoothness of the refinable functions computed is 3.5. This agrees
with the fact that both functions are cubic splines. We note that for this examples the lower bound estimates
(that ignore the first condition in the definition of Iφ) fail to yield the correct smoothness.

The last example shows the difficulties in getting the exact regularity of refinable functions, in the
case the corresponding dominant eigenvector Φ of T has many zeros. However, a good lower bound of the
regularity is still possible to obtain.
Example 5.5. The mask is

m̂r(ω) = cos
(ω1

2
)
cos

(ω2

2
)
cos

(ω1 + ω2

2
)
cos

(ω1 − ω2

2
) (1 + ei(6ω1+5ω2)

2

) (1 + ei(−3ω1+5ω2)

2

)
.

The operator (I − Pφ)T has the following dominant eigenvalues

µ = 2−6 with the dimension of eigenspace = 6;

µ = 2−7 with the dimension of eigenspace = 12;

µ = 2−8 where dimension of eigenspace = 52.

Thus, a straightforward lower bound on the smoothness is 3. The function Φ has about 79 zeros in [−π, π)×
[−π, π). In our computations, we were able to compute accurately the following zeros

(−π,−π) ± (2π/3, 0) ± (0, 0.8π) ± (0, 0.4π) ± (2π/3, 0.8π).

Each is verified to have total order 4. Based on these zeros, we were able to reject the eigenvalues 2−6 and
2−7 as ‘false’ eigenvalues. Thus a lower bound on the regularity is 4. The refinable function is this case is a
box spline whose exact L2-smoothness is α = 4.5.
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6. Proofs of Propositions 3.5 and 3.6

Proof of Proposition 3.5: Approximation Theory basics (cf., e.g., [BDR] and [BR]) imply that Πm ⊂ Πφ

if and only if |φ̂|2 has a zero of order m+1 at each j ∈ 2πZZd\0. Set L := 2π(ZZd\(s∗ZZd)) (to get a feeling for
that set: in one dimension, dyadic dilations, this is the set of 2π-odd integers). Given a non-zero 2π-integer
j, we write it as j = s∗kj′, j′ ∈ L, and use k times the refinement equation to conclude that

φ̂(ω + j) = φ̂(s∗−kω + j′)
k∏

n=1

â(s∗−n(ω + j)).

This means that |φ̂|2 has a zero of order m + 1 as each point of 2πZZd\0 if and only if it has such a zero at
each point of (the smaller set) L.

We proceed by stating the following lemma, whose proof is postponed until after the proposition is
proved:

Lemma. Let φ be a compactly supported L2-function. Let γ ∈ IRd. Then |φ̂|2 vanishes to order m at each
j ∈ γ + 2πZZd if and only if its 2π-periodization Φ has such zero at γ.

In order to complete the proof of the proposition, note that L is the disjoint union of the cosets
s∗(γ + 2πZZd), γ ∈ Γ\0. For j ∈ 2πZZd, the 2π-periodicity of b̂ implies that |φ̂(s∗(γ + j))|2 = b̂(γ)|φ̂(γ + j)|2.
The 2π-periodization of the right-hand-side is b̂(γ)Φ(γ), thus the lemma applies to show that |φ̂|2 has a zero
of order m + 1 at each of s∗(γ + 2πZZd) if and only if b̂Φ has such a zero at γ. Varying that conclusion over
all γ ∈ Γ\0, we obtain the desired result.

It remains now to prove the lemma. One implication here is trivial: since |φ̂|2 is non-negative, its
2π-periodization can have a zero of a certain order at γ only if each of the summands has a corresponding
zero.

Assume conversely that |φ̂|2 has a zero of order m at each γ + j, j ∈ 2πZZd, and note that (since φ̂ is
smooth) m must be even. Let Ω be a small neighborhood of γ. Since φ is compactly supported, we have
that φ̂ ∈W ρ

2 (IRd) for any ρ. Now, since φ̂ has a zero of order m/2 at γ + j, we have (with Dβ, β ∈ ZZd, the
usual partial differentiation)

(6.1) |φ̂(ω + γ + j)| ≤ c|ω|m/2 max
|β|=m/2

‖Dβφ̂‖L∞(Ω+j), for ω ∈ Ω.

Choosing ρ > m/2+d/2, the Sobolev embedding theorem implies that W ρ
2 (Ω+ j) is continuously embedded

in the Sobolev space W
m/2
∞ (Ω + j). Thus,

max
0≤|β|≤m/2

‖Dβφ̂‖L∞(Ω+j) ≤ c1‖φ̂‖W ρ
2 (Ω+j),

with c1 independent of j (since all the Ω + j sets are translates of each other). Substituting this into (6.1)
we obtain that

|φ̂(ω + γ + j)| ≤ c2|ω|m/2‖φ̂‖W ρ
2 (Ω+j), ω ∈ Ω, j ∈ 2πZZd.

Squaring the last inequality and summing over j ∈ 2πZZd (and assuming, for simplicity and without loss,
that ρ is an integer) we obtain that

Φ(ω + γ) ≤ c3|ω|m‖φ̂‖2W ρ
2 (IRd).
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Proof of Proposition 3.6: Statement (a) follows from (b): choosing in (b) m to be (the odd number)
mφ, we get (a) unless ρmφ

≤ λ−mφ−1. However, in the event that this latter inequality holds, we get that
ρ ≤ ρm ≤ λ−mφ−1, implying thereby that α(φ) ≥ mφ+1

2 . This implies (cf. [R1]) that the shifts of φ span
all polynomials of degree mφ+1

2 , hence that the shifts of φ# span all polynomials of degree mφ + 1, in
contradiction to the very definition of mφ.

In order to prove (b), let f ∈ Hφ ∩ I ′φ be an eigenvector of the operator (1− Pm)T , with an associated
eigenvalue µ. Assume also that |µ| > λ−m−1.

We first prove that f is actually an eigenvector of T . For that, we first observe that b̂f has a zero of
order m + 1 at each of the points of Γ: for γ ∈ Γ\0, this follows from the fact that b̂f = b̂Φt, for a bounded
t (since f ∈ I ′φ), together with Proposition 3.5. For γ = 0, this follows from that fact that, by assumption,
(1 − Pm)T f = µf , hence that f lies in the range of (1− Pm) (and every function in that range vanishes to
order m + 1 at the origin). Thus, indeed, b̂f vanishes to order m + 1 on Γ. We conclude from the definition
of T that T f vanishes to order m + 1 at the origin, hence that µf = (1− Pm)T f = T f.

We will now establish (b) by a chain of (in)equalities. First, by our assumptions on µ,

m + 1 < logλ(|µ|).

Second, once we know that (µ, f) is an eigenpair of T , we can write

logλ(|µ|) = lim
k→∞

logλ ‖T k(f)‖L1(TTd)

k
.

Since |T f | ≤ T |f | (regardless of the nature of f), we get that

(6.2) lim
k→∞

logλ ‖T k(f)‖L1(TTd)

k
≤ lim sup

k→∞

logλ ‖T k|f |‖L1(TTd)

k
.

Let

u : ω 7→ (
d∑

j=1

sin2(ωj/2))(m+1)/2.

Then, our assumptions here imply that the function

g := |f |/u

is bounded, and that, moreover, g/Φ is also bounded. Invoking (b) of Corollary 2.10 of [RS1] (with g there
being our g here, and with ` there being (m + 1)/2 here; the corollary requires that the right hand side of
(6.2) is greater than m + 1, something that we have already proved), we get that

lim sup
k→∞

logλ ‖T k(|f |)‖L1(TTd)

k
≤ −2α(φ).

Finally,

−2α(φ) = logλ ρ.

We thus conclude that logλ |µ| ≤ logλ ρ, hence that ρm ≤ ρ. The converse inequality is trivial.
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