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Radial basis function approximation:
from gridded centers to scattered centers

Nira Dyn & Amos Ron

1. Introduction

1.1. General

The terminology “Radial Basis Function Approximation” usually refers to approximation to
data defined on a set Ξ of scattered points in IRd, d > 1 (referred to as “centers”) by linear
combinations of a discrete set of translates (whose standard choice is the original Ξ) of “a radial
basis function” φ. Typical examples of a basis function φ are the bivariate thin-plate spline

x 7→ |x|2 log |x|,

and the Hardy’s multiquadric

x 7→ (|x|2 + c)1/2,

(where here and hereafter |x| stands for the Euclidean norm of the vector x ∈ IRd). The above
functions are, indeed, radially symmetric (i.e., obtained by composing a univariate function with the
map x 7→ |x|), a feature which greatly facilitates computations with such functions. However, the
title “radial basis functions approximation” is somewhat misleading: most of the radially symmetric
functions are not considered as candidates for the basis function φ, while, on the other hand, certain
classes of non-radially symmetric functions do fit in. We elaborate on the actual conditions required
of φ later on in the present paper, and also refer the reader to [R] (particularly, page 256 there).

While, as alluded to before, the major force of radial function approximation is in the area of
scattered data approximation (and particularly interpolation, cf. the surveys [D1,2], [P], [Bu4]),
M.J.D. Powell and I.R.H. Jackson (of Cambridge, England) initiated several years ago the study of
approximation from a principal shift-invariant space (PSI, for short) S generated by a radial
basis function φ. Such a space S is, by definition, the smallest closed (in some underlying topology)
space that contains all shifts (i.e., integer translates) of the basis function φ. Together with the
deepening of the understanding of the more mathematically accessible uniform case, emerged the
hope that the tools and observations that are found and made in that latter case will serve for a
better understanding of the practically important scattered situation. Indeed, the present paper is
one of the first applications of the now-established theory of the uniform grid case to the scattered
case.

The approximation properties of PSI and other shift-invariant spaces generated by radial basis
functions are analysed in detail in a sequence of papers written by Powell’s students I.R.H Jackson
and M.D. Buhmann, by the two of us and by several other authors (cf. the above mentioned surveys
and the references within. Specific results, hence references, which are relevant to this paper are
sketched in §3). Moreover, those results on approximation orders of PSI spaces generated by radial
basis functions served as one of the major forces behind the general results on approximation orders
of [BR] and [BDeR]. In fact, the totality of results, techniques and observations concerning the
approximation properties of PSI (and related) spaces can be fairly characterized as a “solid theory”,
at least from a qualitative point-of-view.
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While the present state-of-art in the area of approximation from PSI spaces is satisfactory, the
same cannot be said about the scattered case, (unless the spatial dimension is 1). As a matter of
fact, the recent paper [BuDL] contains the first successful application of tools and results from the
shift-invariant case to the scattered situation. It concerns the approximation by scattered shifts of
any one of the basis functions of [DJLR], and employs quasi-interpolation as the approximation
scheme. Apparently, the theory of the shift-invariant case is invoked in that paper only for the error
analysis part (more precisely, in the polynomial reproduction argument), and not for the (quite
involved) construction of the approximation map there, but, our post-analysis of the map from
[BuDL] reveals that that construction can be understood as a specific instance of the following
general three-step method. We use here, for some discrete Ξ ⊂ IRd, the notation

SΞ(φ)

to denote the “span” of {φ(· − ξ)}ξ∈Ξ, where the precise meaning of “span” is yet to be defined.

Step 1: For each α ∈ ZZd, the translate φ(· − α) is approximated by a combination φα of {φ(· −

ξ)}ξ∈Ξ. This gives rise to a linear map A from CΞ into CZZd (with δξ the sequence which is 1 at ξ
and 0 on Ξ\ξ, A(δξ)(α) is the coefficient A(ξ, α) of φ(· − ξ) in the definition of φα. A then extends
by linearity to the extent that this is possible).
Step 2: An approximation scheme L that is used to approximate from SZZd(φ) is modified to obtain
an approximation map LA into SΞ(φ) by simply replacing each appearance of φ(· − α) in L by φα.
Step 3: The L that corresponds to the specific LA of [BuDL] (the localization-quasi-interpolation
map of [DJLR]) employs, for computing the approximant Lf of f , the values of f on ZZd. Since,
presumably, the available information on f is f|Ξ , the map A (from (a)) is applied to f|Ξ , to obtain
approximations {fα}α∈ZZd to {f(α)}α∈ZZd . The actual approximation map of [BuDL] could then
be obtained from LA by replacing each appearance of f(α) by fα.

The main objective of this paper is to provide a general tool for extending approximation maps
that use uniform translates of a basis function, to the non-uniform case. We do that by showing
that Steps 1 and 2 above can be combined to provide a general method for converting a map L that
acts into the shift-invariant SZZd(φ) to a map LA that approximates from (i.e., maps into) SΞ(φ)
and has approximation power similar to that of L. This, quite certainly, cannot be achieved without
imposing some restrictions on the underlying basis function φ: we always assume throughout the
paper that the function φ, considered as a distribution in D′(IRd), is tempered, and that its Fourier

transform φ̂ coincides on IRd\0 with some continuous function (still denoted by φ̂) while having a
certain type of singularity (necessarily of finite order) at the origin. In turn, such an assumption
allows us to construct the map A of Step 1 independently of the specific φ involved. Indeed, instead
of approximating φ(· − α) by combinations of {φ(· − ξ)}ξ∈Ξ, we will actually approximate at the
origin the exponentials

eα : x 7→ eiα·x, α ∈ ZZd

by combinations of {eξ}ξ∈Ξ, under the requirement that A is bounded as a map from `∞(Ξ) to

`∞(ZZd). This imposes constraints on the geometry of the center set Ξ to which our method applies.
The problem of constructing such a map A is already considered in [BuDL].

As one should realize from the above description, we do not aim at establishing approximation
orders for spaces generated by scattered translates of a suitable basis function, nor do we intend
to introduce approximation maps especially designed for dealing with scattered approximation.
Instead, we present here a general method that allows us to convert any known approximation
scheme on uniform grids to the non-uniform case, while preserving (to the extent that this is
possible) the approximation orders known in the former case. In anticipation of future introduction
of new schemes for uniform grids, we made an effort to impose only few (mild) assumptions on
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φ (in addition to the basic one specified in the previous paragraph). Remarkably, our conversion
method based on Steps 1,2 above applies to a large number of cases presently in the literature, and
our error analysis is also quite unified. In one regard we sacrifice generality for the sake of brevity
and readability: only uniform-norm approximations are considered in the present paper. We also
mention that the tools developed here do not seem to apply to non-stationary approximations (such
as the ones that employ the Gaussian kernel, etc., cf. [MN], [BuD], [BR] and [BeLi]) that lead to
spectral approximation orders.

1.2. The setup and a typical result

All functions considered in this paper are either real- or complex-valued functions defined on
IRd, for some fixed d. Norms of such functions f are denote by ‖f‖..., with the default norm in this
paper is that of L∞(IRd), i.e.,

‖f‖ := ‖f‖∞ := ‖f‖L∞(IRd).

Norms on IRd itself are denoted by
|v|..., v ∈ IRd,

with the default norm is the Euclidean one:

|v|2 :=
d∑

j=1

v2
j .

Given an index set Ξ, and a function set {φξ}ξ∈Ξ, we set

φΞ := {φξ}ξ∈Ξ.

In the special case when Ξ ⊂ IRd, and the function set is the set of all translates of a fixed φ by
ξ ∈ Ξ, we use the more specific notation Ξ(φ):

Ξ(φ) := {φ(· − ξ) : ξ ∈ Ξ}.

Given a function set F , we let
SF

be the closure in the topology of uniform convergence on compact sets of the algebraic span of F .
For example, this, in particular, defines precisely the space SΞ(φ), which is previously introduced
in §1.1.

We are interested in approximating smooth functions, particularly in the space

W k
∞(IRd), k ∈ ZZ+

of all functions whose derivatives of orders ≤ k are bounded. Some of our results deal with
approximation to functions in the larger homogeneous Sobolev space

wk∞(IRd)

of all functions for which the semi-norm

|f |k,∞ :=
∑

|α|1=k

‖Dαf‖
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is finite.
As is almost always the case in approximation theory, polynomials and exponentials are heavily

employed here. We have already mentioned the symbol

eξ, ξ ∈ IRd,

for the complex exponential with frequency ξ. We use the symbol

Πk

to denote the space of all polynomials of degree ≤ k.
Finally, given f continuous on IRd\0, we say that f has a singularity of order k′ at the

origin if

| · |k
′

|f |

is bounded above and below by positive constants in some origin-neighborhood.

For a given Ξ ⊂ IRd, our interest is in approximation schemes from SΞ(φ) that are obtained
by modifying a known approximation scheme from SZZd(φ), and that preserve to the best possible
extent the approximation power of that latter scheme.

A typical approximation scheme considered here is of the form

LA : f 7→
∑

α∈ZZd

ψα Λ(f)(α),

where the functions (ψα)α∈ZZd are certain functions in SΞ(φ), known to satisfy (at least) the fol-
lowing “boundedness condition”

(1.2.1)
∑

α∈ZZd

|ψα| ∈ L∞(IRd).

Λ is always taken to be a bounded operator from L∞(IRd)∩C(IRd) into itself, hence, in particular,
the sequence ((Λf)(α))α∈ZZd is bounded, and, hence (due to (1.2.1)) LA is well-defined and bounded

from L∞(IRd) ∩ C(IRd) into SΞ(φ).
The actual construction of LA starts with a given a approximation scheme L from SZZd(φ) of

the form

L : f 7→
∑

α∈ZZd

ψ(· − α) Λ(f)(α),

with Λ as above, and with the function ψ being a linear combination of the shifts of the original
basis function φ:

ψ =
∑

α∈ZZd

φ(· − α)µ(α).

To simplify the discussion at this introductory stage, we assume that the sequence µ is of finite
support (the actual conditions imposed on µ in the paper are much milder). At a minimum, the
function ψ is assumed to satisfy the condition

(1.2.2)
∑

α∈ZZd

|ψ(· − α)| ∈ L∞(IRd),
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which guarantees the map L to be well-defined and bounded on L∞(IRd) ∩ C(IRd). The reader
should bear in mind that at the core of this paper is the assumption that the map L, hence the
sequence µ, the function ψ, and the operator Λ, are all given, and the approximation properties
of this map are known, too. Our goal is to find an appropriate selection method for the functions
(ψα)α∈ZZd so that LA has approximation properties similar to those of L. Since in many cases the
operator Λ is the identity, we simplify further our introductory discussion here, by adopting such
an assumption.

Our construction of the functions (ψα)α is done as follows. We first approximate each φ(·−α),
α ∈ ZZd, by a linear combination

(1.2.3) φα :=
∑

ξ∈Ξ

A(α, ξ)φ(· − ξ).

The reader who feels uneasy about the lack of discussion of the convergence of this last sum, may
assume without great loss that, for each α ∈ ZZd, the sequence (A(α, ξ))ξ∈Ξ is finitely supported.
We then define the functions (ψα)α by

ψα =
∑

β∈ZZd

φβ µ(β − α).

The basic criterion of the approximation properties of L and LA that we employ in this paper
is that of approximation orders. We say that a map L provides an approximation order k > 0
for a smoothness space W , if, for every f ∈W ,

(1.2.4) ‖σhf − L(σhf)‖ = O(hk),

with σh the scaling operator

σh : f 7→ f(h·).

Note that, since the uniform norm is invariant under dilations, we could write (1.2.4) equivalently
as

‖f − σ1/hL(σhf)‖ = O(hk),

which is more frequently used in the literature for defining the notion of approximation orders.
We present now a result which is a variant of Theorem 2.2.16, and which can be regarded as

a prototype for the main results of this paper.

Theorem 1.2.5. Assume that the basis function φ is tempered (as distribution) and that its
(distributional) Fourier transform is continuous on IRd\0, has a singularity at the origin, and does
not vanish identically on 2πZZd\0. Let ψ, (φα)α, (ψα)α∈ZZd , L, and LA be defined as above, with
Λ = identity. Assume that:
(a) µ is finitely supported.

(b) ψ satisfies (1.2.2), and ψ̂(0) 6= 0. (ψ̂ is continuous, hence well-defined pointwise, because of
(1.2.2).)

(c)
∑

α∈ZZd |φ(· − α) − φα| ∈ L∞(IRd).

Then (1.2.1) holds and the hence-well-defined LA provides (to sufficiently smooth functions) at
least the same approximation order as provided by L.

Here, “sufficiently smooth functions” are functions in W k
∞(IRd), with k depending on the

underlying approximation order.
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The outline of the paper is as follows. §2 is devoted to the developments of the general theory.
The core of its discussion are §2.1, §2.2, and §2.7. In §2.1 we impose conditions on µ, ψ and Λ which
are sufficient for the development of the method of this paper. The main issue in that subsection is
localization which amounts to the proper construction of the function ψ and the approximation map
L. §2.2 discusses the extension of L to the scattered case, i.e., the construction of the “pseudo-shifts”
φα and ψα, and the introduction of our approximation map LA. It also includes the basic error
analysis for LA (cf. Theorems 2.2.9 and 2.2.16). In §2.3, we modify the previous error analysis, in a
way that relaxes the requirements on µ imposed in §2.2, but applies to a smaller set of approximands
f . Since the standard results in the literature show that L is a good approximation scheme not
only for smooth bounded functions, but also to functions which are not bounded, but some of
their derivatives are bounded, we show in §2.4 that, under some additional assumptions, such
approximation properties are inherited by LA. The issue of polynomial reproduction is at the heart
of error analyses which are based on the quasi-interpolation argument, but plays no real role in the
present paper. However, we show in §2.5 that LA reproduces polynomials to the expected degree,
whenever such property can make sense. §2.8 suggests some relaxations in the various conditions
assumed in §2.2 under which the main theorems of §2.2 are still valid. Finally, in §2.7 the following
very important question is considered: what properties of the matrix A imply the satisfaction of
the crucial condition (c) in the above stated theorem.

Section 3 is mainly devoted to the application of the general theory to specific instances. In
§3.1, some of the approximation schemes and approximation order results of [BR] are extended
to the scattered case. The quasi-interpolation schemes of [DJLR] are extended in §3.3, while the
extension of the interpolation schemes of [Bu1,2] is the issue of §3.2. In addition, we provide in
§3.4 a detailed discussion of the scattered-center approximation schemes of [BuDL], in which we
approach those schemes via a course different from the original one suggested in that reference.
In this way, we provide an alternative error analysis of the [BuDL]-like schemes that is based on
the results of §2.2 here, thereby providing extensions for the [BuDL] results in several different
directions.

2. The approximation maps and their error analysis

2.1. Localization and approximation maps on uniform grids

As mentioned before, we assume that the Fourier transform φ̂ of the basis function φ is regular
and even continuous on IRd\0, but is singular at the origin, and such assumption implies that
φ(x) cannot decay fast to zero as |x| → ∞; for instance φ 6∈ L1(IR

d). In fact, in most examples
|φ(x)| grows polynomially as |x| tends to ∞. This makes it hard (although not impossible) to write
explicit approximation schemes which are based on shifts of φ. The standard way to circumvent
this difficulty is via a localization process, which uses the shifts of φ to construct a new function ψ
with favorable decay properties at ∞, and subsequently implements approximation schemes which
are based on the shifts of ψ.

Formally, the localization ψ can be written as a linear combination of shifts of φ with coefficients
µ : ZZd → C:

(2.1.1) ψ :=
∑

α∈ZZd

φ(· − α)µ(α).

Usually, the localization sequence µ decays fast at ∞ and the above sum converges uniformly
on compact sets (as a matter of fact, µ is frequently chosen to have finite support). Careful
attention is given in the literature to the rates of decay of ψ; in particular, the standard polynomial-
reproduction / quasi-interpolation argument requires ψ to decay at ∞ at a faster rate as the
attempted approximation order increases.
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For the purposes of this section, we require the localization process to satisfy the following
three conditions:

Localization Conditions 2.1.2. Given φ, µ, and ψ as above, we assume throughout this section
that:

(a) For some mµ > d,

(2.1.3) |µ(α)| = O(|α|−mµ), as |α| → ∞.

(b) For some mψ > d,

(2.1.4) |ψ(x)| = O(|x|−mψ), as |x| → ∞.

(c) The sum in (2.1.1) converges uniformly on compact sets.

Several comments concerning the above assumptions are in order. First, the above three
conditions should be regarded as very mild, and are satisfied by all specific localization processes
that we are aware of. Second, in many cases condition (c) imposes decay rates on µ higher than
those required in (a), making the latter condition redundant. Finally, condition (c) is not essential,
and other, sometimes weaker, notions of convergence can be assumed.

Thanks to the decay properties of ψ at ∞, it is easier to write explicit approximation maps in
terms of its shifts than in terms of the shifts of φ. Further, almost all analyses of approximation
orders require the basis function to decay at ∞. In general, a linear approximation scheme L which
explicitly employs the shifts of ψ has the form

(2.1.5) L : f 7→
∑

α∈ZZd

ψ(· − α) (Λf)(α),

with f 7→ {(Λf)(α)}α∈ZZd some linear assignment. At a minimum, one assumes that Λ is a bounded

map from L∞(IRd) ∩ C(IRd) (equipped with the uniform norm) to `∞(ZZd). In such a case, the
decay assumption imposed on ψ in Localization Conditions 2.1.2 guarantees the sum in (2.1.5) to
converge uniformly on compact sets. It is very convenient to assume further that Λ commutes with
integer shifts, i.e., that Λf(α) = Λ(f(·+α))(0). For our purposes, it is important to assume slightly
more: we need Λ to commute with differentiation or, equivalently, to be a convolution operator:

Uniform Scheme Condition 2.1.6. We assume that the approximation map L is of the form

Lf :=
∑

α∈ZZd

ψ(· − α) (Λf)(α),

with Λ a convolution operator which is well-defined and continuous from the subspace L∞(IRd) ∩
C(IRd) of L∞(IRd) into itself.

As a matter of fact (cf. §3), in the examples that we consider here, we have either Λ = identity,
or Λ = λ∗ for some band-limited L1-function λ.
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2.2. The map LA and its corresponding approximation orders

With L as above, we define our approximation operator LA that uses {φ(· − ξ)}ξ∈Ξ as follows.

First, recall from the introduction that for each α ∈ ZZd we have available a “pseudo-shift” φα of
the form

(2.2.1) φα =
∑

ξ∈Ξ

A(α, ξ)φ(· − ξ).

At the present stage, we do not discuss the exact type of the convergence in the definition of
φα. Moreover, our error analysis would not make any use of the fact that φα is a combination of
scattered shifts of φ, but only of the fact that φα is “close” in some sense to φ(· − α). Still, of
course, expressing φα as a combination of the appropriate scattered shifts of φ is pertinent to the
basic idea of approximating by scattered shifts of φ.

The new pseudo-shifts {φα}α∈ZZd are also localized, and by the same localization sequence µ
that is used in the uniform case. Precisely, we define

(2.2.2) ψα :=
∑

β∈ZZd

φβ µ(β − α), α ∈ ZZd,

and substitute these “localized pseudo-shifts” for the shifts of ψ in the definition of L:

(2.2.3) Definition of LA. With φ, ψ, L and {ψα} as above, we define the scattered-center variant
LA of L by

(2.2.4) LA : f 7→
∑

α∈ZZd

ψα Λf(α),

with Λ the same convolution operator that is used to define L.

Prior to any analysis of the scheme LA, we need to show that {ψα}α and LA are well-defined,
i.e., that the infinite series used in their definitions converges in some topology. This is done with
the aid of the following additional assumption, which is at the heart of our approach:

Central Condition 2.2.5. For some mA > d,

|(φβ − φ(· − β))(x)| ≤ c(1 + |x− β|)−mA , β ∈ ZZd,

with c independent of x and β.

We stress that none of the results of this section require the representation (2.2.1), but only
the above Central Condition.

Invoking this new condition, we settle in the next lemma the question of the well-definedness
of LA.

Lemma 2.2.6. Assume that the Localization Conditions 2.1.2 and the Central Condition 2.2.5
hold. Then, for α ∈ ZZd,

∑

β∈ZZd

|µ(β − α)(φβ − φ(· − β))(x)| ≤ c′(1 + |x− α|)−m
′

,

with m′ := min{mµ,mA}, and c′ some α-independent constant. Also

(2.2.7) |ψα(x)| ≤ c′′(1 + |x− α|)−m
′′

,
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with m′′ := min{mψ,mµ,mA} and c′′ some α-independent constant.

Proof: We consider the difference

|ψα(x) − ψ(x− α)| ≤
∑

β∈ZZd

|µ(β − α)(φβ(x) − φ(x− β))|.

Because of Condition 2.2.5, the above sum is majorized by

(2.2.8) c
∑

β∈ZZd

|µ(β − α)| (1 + |x− β|)−mA = c
∑

β∈ZZd

|µ(β)| (1 + |(y + α′) − β|)−mA ,

with |y|∞ ≤ 1/2, and α′ ∈ ZZd. By (b) of Localization Conditions 2.1.2, and for any fixed y, this
latter sum is the evaluation at α′ of the discrete convolution of sequences which decay at ∞ like
the mµth and mAth inverse power. Since y is restricted to a compact set, there exist constants
such that

c1(1 + |y − γ|)−mA ≤ (1 + |γ|)−mA ≤ c2(1 + |y − γ|)−mA ,

which allows us to bound the sum in (2.2.8) by

const(1 + |α′|)−m
′

≤ const′(1 + |y + α′|)−m
′

= const′(1 + |x− α|)−m
′

,

for m′ := min{mµ,mA}, and for some α-independent constants (cf. e.g., the argument in the
proof of Proposition 6 in [BuD]). Combining this with (b) of Conditions 2.1.2 we obtain the decay
assertion on ψα.

We are now ready to state and prove the main theorem of this section:

Theorem 2.2.9. Let φ, µ, ψ, and L be as above, and assume that the Localization Conditions
2.1.2, and the Uniform Scheme Condition 2.1.6 are satisfied. Let (φα)α∈ZZd be a collection of
functions that satisfy the Central Condition 2.2.5, and let LA be their associated map defined as
in (2.2.4). Assume further that for some positive integer k and 0 < ε ≤ 1 the following hold:
(a) |µ(α)| = O(|α|−d−k−ε), as |α| → ∞.
(b) The functional µ defined by

µp :=
∑

α∈ZZd

µ(−α)p(α)

annihilates Πk.
Then, for every f ∈W k+1

∞ (IRd) ∩ Ck+1(IRd),

‖(L− LA)(σhf)‖∞ ≤ const(|f |∞,k + |f |∞,k+1)

{
hk+ε, ε < 1,
hk+1| log h|, ε = 1.

Furthermore, if ε = 1, and (a) above is replaced by the stronger condition
∑

α∈ZZd |µ(α)||α|k+1 <∞,
then, for f as above,

‖(L− LA)(σhf)‖∞ ≤ consthk+1|f |∞,k+1.

Proof: We first prove the last (and simplest) case stated in the theorem, i.e., when∑
α∈ZZd |µ(α)||α|k+1 < ∞. We will then show how to modify the argument of that case to ob-

tain the results stated with respect to the other cases.
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Given f ∈W k+1
∞ (IRd) ∩ Ck+1(IRd), and x ∈ IRd, we first estimate

µ(f(x+ ·)) =
∑

α∈ZZd

µ(−α)f(x+ α).

With Txf the Taylor expansion of degree k of f about x, the fact that µ annihilates Πk implies
that µ(Txf) = 0. Since |f(x+ α) − (Txf)(x+ α)| ≤ const|f |∞,k+1 |α|k+1, we obtain the estimate

(2.2.10) |µ(f(x+ ·))| ≤ const|f |∞,k+1

∑

α∈ZZd

|µ(−α)||α|k+1 = const′|f |∞,k+1.

Now, we can write (L− LA)(σhf) as follows:

|(L− LA)(σhf)(x)| =|
∑

α∈ZZd

(ψ(· − α) − ψα)(x) Λ(σhf)(α)|

=|
∑

α∈ZZd

∑

β∈ZZd

(φ(x− β) − φβ(x))µ(β − α) Λ(σhf)(α)|.

By Lemma 2.2.6 and Condition 2.1.6, the above double sum converges absolutely, and summation
by parts yields that

(2.2.11) |(L− LA)(σhf)(x)| = |
∑

β∈ZZd

(φ(x− β) − φβ(x))
∑

α∈ZZd

µ(β − α)Λ(σhf)(α)|.

Next, we identify the sum
∑

α∈ZZd µ(β − α)Λ(σhf)(α) in (2.2.11) as µ(Λ(σhf)(β + ·)), and
invoke (2.2.10) to estimate the latter expression as follows:

(2.2.12) |µ(Λ(σhf)(β + ·))| ≤ const|λ ∗ (σhf)|∞,k+1 ≤ consthk+1‖Λ‖|f |∞,k+1,

where, in the second inequality, the fact that convolution commutes with differentiation and that
dilation is an isometry on L∞(IRd) are used. Substituting (2.2.12) into (2.2.11), we arrive at the
bound

|(L− LA)(σhf)(x)| ≤ consthk+1|f |∞,k+1

∑

β∈ZZd

|φ(x− β) − φβ(x)|,

which completes the proof of the present case, since Condition 2.2.5 implies that the last sum is
majorized by a (periodic) bounded function.

In case (a) and (b) hold, but the stronger assumption
∑

α∈ZZd |µ(α)||α|k+1 < ∞ is not valid,

we modify the argument that leads to (2.2.12) as follows. We partition IRd to a ball Bh of radius
1/h centered at the origin and to the complement Bc

h of that ball. If α ∈ Bh, we estimate the
difference f(x+ α) − (Txf)(x+ α) as before, i.e., obtain that

|f(x+ α) − (Txf)(x+ α)| ≤ const|f |∞,k+1|α|
k+1.

However, for α ∈ Bch, we treat the zero f(x + ·) − (Txf)(x + ·) has at the origin as of order k
(though, it is of order k + 1). This leads to an estimate of the form

|f(x+ α) − (Txf)(x+ α)| ≤ const|f |∞,k|α|
k.
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Summing the first estimate over α ∈ Bh and the second one over α ∈ Bch, and invoking the decay
assumption (a) on µ, we get that

|µ(f(x+ ·))| ≤ const(|f |∞,k+1

∑

α∈Bh

|α|−d−ε+1 + |f |∞,k

∑

α∈Bc
h

|α|−d−ε).

According to Lemma 4.2 of [DJLR], the sum in the second summand above behaves like O(hε),
while the first one is O(hε−1) and O(| log h|) for 0 < ε < 1 and ε = 1, respectively. We thus obtain
an estimate analogous to (2.2.10), which, say for ε < 1 reads as

|µ(f(x+ ·))| ≤ const(|f |∞,k+1h
ε−1 + |f |∞,kh

ε).

Following the argument before (2.2.12), we obtain that

|µ(Λ(σhf)(β + ·))| ≤ consthk+ε‖Λ‖(|f |∞,k+1 + |f |∞,k).

The proof is now obtained as in the previous case, with (2.2.12) being replaced by the above bound.
The case ε = 1 is similar.

At a first look, it is not clear that the theorem allows us to draw conclusions on the approx-
imation orders provided by the map LA, and because of two reasons: first, the theorem assumes
that µ annihilates Πk, and one may suspect this further condition on µ to compete with other
requirements, or, at least, to exclude various localization processes which do not prepare for such
a condition. Second, the powers hk+ε and hk+1 that appear in the conclusion of the theorem seem
unrelated to the possible approximation order provided by the map L. The next two results are
meant to clarify these two important points. The first shows that the annihilation assumption on µ
is usually a by-product of the Localization Conditions 2.1.2. The second shows that in most cases
of interest the parameter k+ε that appears in Theorem 2.2.9 is no smaller than the approximation
order provided by L.

Lemma 2.2.13. Let k be a positive integer, and assume that φ̂ is continuous on IRd\0 and has a
singularity of order > k at the origin. Assume further that the Localization Conditions 2.1.2 hold,
and that the linear functional

µ : p 7→
∑

α∈ZZd

µ(−α)p(α)

is well-defined on Πk (i.e., the above sum converges absolutely for every p ∈ Πk). Then µ annihilates
Πk.

Proof: Condition (c) of Localization Conditions 2.1.2 allows us to compute the Fourier
transform of ψ in (2.1.1) term by term. Defining

(2.2.14) µ̂ :=
∑

α∈ZZd

µ(α)e−α,

we thus obtain that, pointwise on IRd\0, ψ̂ = φ̂µ̂. Due to (b) of Localization Conditions 2.1.2, ψ̂ is
continuous everywhere, and in particular at the origin, and hence µ̂ necessarily has a zero of order
> k at the origin. Since µ is well-defined on Πk, µ̂ is k-times differentiable at the origin (and, as
a matter of fact, everywhere), and can be differentiated term by term. Consequently, given any
p ∈ Πk, we obtain

0 = p(−iD)µ̂(0) =
∑

α∈ZZd

µ(α)p(−α) = µp,

as claimed.
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Lemma 2.2.15. Assume that
(a) The Localization Conditions 2.1.2 hold;

(b) φ̂ is continuous on IRd\0, has a singularity of order k′ at the origin, and satisfies, for some

j ∈ 2πZZd\0, φ̂(j) 6= 0;

(c) ψ̂(0) 6= 0.
Then the approximation order provided by L to W∞

∞ (IRd) is ≤ k′.

Proof: The proof follows from the general analysis of approximation orders of [BR], and
the claim is essentially proved in Theorem 4.2 there, hence is only sketched here. First, Theorem
2.17 of [BR] implies that if, for some θ ∈ IRd, L provides approximation order n to the exponential
function eθ, then, for any j ∈ 2πZZd\0, and in particular for the one specified in (b) above,

|ψ̂(j + hθ)| = O(hn).

Second, since 1/ψ̂ is bounded in a neighborhood of zero, the last condition implies that

ψ̂(j + hθ)/ψ̂(hθ) = O(hn).

Since ψ̂ = µ̂φ̂, and j is a period for µ̂, we obtain that

φ̂(j + hθ)/φ̂(hθ) = O(hn).

Since φ̂(j) 6= 0, we finally conclude that, in case L provides approximation order n for all exponen-
tials eθ, θ ∈ IRd,

1/φ̂(hθ) = O(hn), ∀θ ∈ IRd,

and since, by assumption, φ̂ has a singularity of order k′ at the origin, we conclude that n ≤ k′.

The following theorem, which is a direct consequence of Theorem 2.2.9 and the last two lemmas,
summarizes the results obtained for functions φ whose Fourier transform has a singularity at the
origin.

Theorem 2.2.16. Assume that:
(a) φ̂ is continuous on IRd\0, and has a singularity at the origin of exact order k′.
(b) The Localization Conditions 2.1.2 and the Uniform Scheme Condition 2.1.6 hold.
(c) For some integer k < k′, and ε ≤ 1, µ is either well-defined on Πk+ε, (ε = 1) or satisfies

|µ(α)| = O(|α|−(k+d+ε)), as |α| → ∞,

(ε < 1).
(d) The Central Condition 2.2.5 holds.
Then:
(i) LA provides the same approximation order as L provides to functions inW k+1

∞ (IRd)∩Ck+1(IRd),
unless this latter order exceeds k + ε.

(ii) If k + ε = k′, LA necessarily provides the same approximation order as provided by L (to the

space in (i)) in case φ̂ is non-zero at some j ∈ 2πZZd\0, and ψ̂(0) 6= 0.

Remark 2.2.17. Condition (c) in the above theorem distinguishes between an integral approxi-
mation order and fractional approximation order, and is more restrictive in the former case. Had
we merely assumed that, for ε = 1, |µ(α)| = O(|α|−(k+d+1)), Theorem 2.2.9 would have yielded an
approximation rate of O(h(k+1)| logh|), rather than the O(h(k+1)) obtained above. Though there
are situations (see §3) where only the slower decay rate is known about µ, the approximation rate
L is known to provide (in all such cases that we are aware of) is O(h(k+1)| log h|), so that LA still
inherits the approximation power of L.
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Remark 2.2.18. Part (ii) of the last theorem deals with “the worst case” showing that, for some
functions f , the approximation order provided by LA to f does not lag behind the one provided
by L. It does not exclude the possibility that, for other functions f ∈ W k+1

∞ (IRd) ∩ Ck+1(IRd), L
provides approximation order n > k′ to f , and for such f , LA may fail to provide approximation
order n for f , since it is guaranteed to provide only order k′. However, we expect such a situation
to be truly exceptional, and more precisely we conjecture that, under the assumptions of Theorem
2.2.16, no function f ∈ W k′

∞(IRd) ∩ Ck+1(IRd) other than the constants can be approximated to a
rate better than k′. In this regard, we mention that [R] proves that in the L2-analog of the present
situation no non-zero function in the potential space W k+1

2 (IRd) can be approximated to an order
> k′.

2.3. A complementary error analysis of the approximation order of LA

Theorem 2.2.16 asserts that, under various conditions, the approximation order provided by
LA is no smaller than the one provided by L. Most of the assumed conditions are acceptable in
the sense that they hold in all the examples that are analysed in the next section. However, one of
the conditions assumed in Theorem 2.2.16 may appear to be too restrictive, and excludes several
examples of interest: we assume that µ decays fast enough to be absolutely summable against
polynomials in Πk. This condition can be relaxed by using Fourier analysis alternatives, as we
discuss in the present subsection.

In the next theorem we use the notation

W̃ k
∞(IRd)

to denote the space of all functions f that (i): their Fourier transform f̂ is a Radon measure, and

(ii): the total mass ‖(1 + | · |)kf̂‖1 of (1 + | · |)kf̂ is finite. The norm ‖(1 + | · |)kf̂‖1 coincides with

the L1(IR
d)-norm of (1 + | · |)kf̂ , whenever f̂ is a function. It induces a norm on W̃ k

∞(IRd) which
we denote by ‖ · ‖′∞,k, i.e.,

‖f‖′∞,k := ‖(1 + | · |)kf̂‖1.

Similarly, we use

|f |′∞,k

to denote the total mass ‖| · |kf̂‖1 of | · |kf̂ . Note that, for integer k, W̃ k
∞(IRd) is continuously

embedded into W k
∞(IRd) ∩ Ck(IRd).

Theorem 2.3.1. Assume that Central Condition 2.2.5, Localization Conditions 2.1.2, and Uniform
Scheme Condition 2.1.6 hold and that the convolution function λ of 2.1.6 satisfies λ̂ ∈ L∞(IRd).

(a) If, for some positive k, | · |−kµ̂ is bounded, then, for every f ∈ W̃ k
∞(IRd),

‖(L− LA)(σhf)‖∞ ≤ consthk|f |′∞,k.

In particular,

(b) LA provides to functions in W̃ k′

∞(IRd) the same approximation order provided by L in case φ̂ is
continuous on IRd\0, has a singularity of exact order k′ at the origin, does not vanish at some

j ∈ 2πZZd, and ψ̂(0) 6= 0.

Proof: We first claim that:
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Lemma. Under the conditions of part (a) of Theorem 2.3.1,

|µg| ≤ const|g|′∞,k, g ∈ W̃ k
∞(IRd).

Proof of the Lemma. We first assume that g ∈ W̃ k
∞(IRd) is compactly supported, and denote

g| := g|
ZZd

. Then, with ĝ| the Fourier series of g|,

(2.3.2) µg =
∑

α∈ZZd

µ(−α)g(α) = (µ ∗ g|)(0) = (2π)−d
∫

[−π,π]d
µ̂(t)ĝ|(t) dt.

Since g ∈ W̃ k
∞(IRd) and is compactly supported, ĝ ∈ L1(IR

d), and therefore we may invoke Poisson’s
summation formula to obtain that

∑

α∈2πZZd

ĝ(· + α) = (2π)−d
∑

β∈ZZd

g(β)e−β = (2π)−dĝ|.

Combining the above with (2.3.2), we arrive at

(2.3.3) µg =

∫

[−π,π]d
µ̂(t)

∑

α∈2πZZd

ĝ(t+ α) dt =
∑

α∈2πZZd

∫

[−π,π]d
µ̂(t)ĝ(t+ α) dt =

∫

IRd
µ̂ĝ.

(The summation by parts in the second equality can be justified by dominated convergence argu-
ments, since µ̂ is bounded and the sum there is L1-convergent.)

Next, we extend (2.3.3) to a general g ∈ W̃ k
∞(IRd). For that, we take (ηh)h to be a band-limited

rapidly decaying approximate identity, with η̂1 equals 1 around the origin, and define gh := gη∨h .
By (2.3.3),

µgh =

∫

IRd
µ̂ĝh = (2π)−d

∫

IRd
µ̂(ĝ ∗ ηh) = (2π)−dηh ∗ (ĝ ∗ µ̂(−·))(0).

Clearly, µgh → (2π)−dµg as h→ 0. Also, since ĝ∗ µ̂(−·) is continuous and bounded, its convolution
with the approximate identity converges pointwise to itself, and hence

ηh ∗ (ĝ ∗ µ̂(−·))(0) → (ĝ ∗ µ̂(−·))(0) =

∫

IRd
µ̂ ĝ, as h→ 0,

and the desired extension of (2.3.3) easily follows.

Since, by assumption, |µ̂| ≤ const| · |k, we can deduce now that

|µg| = |
∑

α∈ZZd

µ(−α)g(α)| ≤ const

∫

IRd
| · |k |ĝ| = const|g|′∞,k.
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We now continue with the proof of Theorem 2.3.1. Similarly to the proof of Theorem 2.2.9,
we estimate µ(Λ(σhf)(β + ·)). Invoking the lemma with g := Λ(σhf)(β + ·), we obtain from the
translation invariance of the semi-norm | · |′∞,k that

|µ(Λ(σhf)(β + ·))| ≤ const|λ ∗ (σhf)|′∞,k.

Since λ̂ is bounded, λ∗ can be easily seen to be continuous on W̃ k
∞(IRd), and hence, by elementary

properties of Fourier transform

|µ(Λ(σhf)(β + ·))| ≤ const|σhf |
′
∞,k = consthk|f |′∞,k.

The rest of the proof of (a) is identical with its counterpart in Theorem 2.2.9.
In the proof of (b), we employ Lemma 2.2.15. Note that the lemma is stated with respect

to W k
∞(IRd) ∩ Ck(IRd), but is valid also with respect to the smaller space W̃ k

∞(IRd), since the

exponential functions eθ, θ ∈ IRd that are used in the proof there are contained in W̃ k
∞(IRd), too.

Under the further assumption in (b), we can use an argument as in the first part of the proof of
Lemma 2.2.13 to conclude that µ̂ has a zero of order k′ at the origin, and therefore the conditions,
hence the consequences of part (a) here are valid, for the choice k := k′. Combining part (a) with
Lemma 2.2.15, we obtain (b).

2.4. Approximation to unbounded functions

The kind of approximation which is considered in the previous section is stationary. That
means, by definition, that the space from which our approximant to σhf is selected does not change
with h. On uniform grids, stationary approximation have the following important advantage: in
many cases the approximation map L can be extended in a natural way to a map L that acts from

(2.4.1) Nk := {f : IRd → C : ‖f‖Nk := ‖(1 + | · |)−kf‖L∞(IRd) <∞}

into SZZd(φ), and still provides to k-time continuously differentiable functions in

wk∞(IRd) := {f ∈ Nk : |f |k,∞ <∞}

the same approximation order as provided by L to W k
∞(IRd)∩Ck(IRd). If L has the form assumed

in Uniform Scheme Condition 2.1.6, i.e.,

(2.4.2) L : f 7→
∑

α∈ZZd

ψ(· − α)(Λf)(α),

the “natural extension” L still satisfies the same rule, and one then needs to ensure that λ∗ is
well-defined and continuous on Nk, and that the sum in (2.4.2) is meaningful (i.e., converges in
some reasonable sense) even for f ∈ Nk.

In case L is well-defined and is known then to provide approximation order k not only to
k-time differentiable functions in W k

∞(IRd), but also in the larger space wk∞(IRd), it is desirable to
extend LA appropriately. However, for such an extension, we need to assume slightly more than the
assumptions made in Theorem 2.2.9. The modifications are mainly concerned with the imposition
of faster decay rates on µ and ψ in Localization Conditions 2.1.2, and on φα − φ(· − α) in Central
Condition 2.2.5. It is worth mentioning that, at least as far as the decay rates of ψ are concerned,
the modification seems to be right in place: for some f ∈ wk∞(IRd), we expect the coefficients
{Λ(f)(α)}α∈ZZd to grow like |α|k, hence need the faster decay rates for the convergence of the series

(2.4.3) Lf :=
∑

α∈ZZd

ψ(· − α)(Λf)(α).
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Theorem 2.4.4. Assume that Localization Conditions 2.1.2, as well as Central Condition 2.2.5
hold for

(2.4.5) mµ,mψ,mA > d+ r,

for some positive r. Assume further that Λ of (2.1.5) extends continuously to a convolution map
from Nr into itself. Then, the series (2.2.4) that defines LAf converges absolutely and uniformly
on compact sets, for every f ∈ Nr. Further, assume that conditions (a) and (b) in Theorem 2.2.9
hold, with k there ≥ r. Then, the assertions made in Theorem 2.2.9 about (L−LA)(σhf) hold for
functions in wk+1

∞ (IRd) ∩ wk∞(IRd) ∩ Ck+1(IRd) ∩Nr.

Remark. The standard choice for r above is r = k. The fact that we allow here r < k as well, is
aimed at deriving partial improvements of Theorem 2.2.9 for the case when the decay rates mψ,mA

are only partially improved.

Proof: Since we are assuming that mµ,mψ,mA > d + r, we conclude from Lemma 2.2.6
that

(2.4.6) |ψα(x)| ≤ const(1 + |x− α|)−m

with m > d+ r, and since, further, Λf ∈ Nr, the map LA is well-defined on Nr.

We may then follow the proof of Theorem 2.2.9 verbatim, with straightforward modifications
of some of the justifications of the various steps. For example, the fact that dilation is an isometry
on L∞(IRd) is still effective in (2.2.12), since the estimate of |λ ∗ σhf |∞,k involves the convolution
of λ with bounded functions only (despite of the fact that f itself is not necessarily bounded). As
another instance, the summation by parts, which is applied to the double sum in the (2.2.11), is
also justified by the modified decay assumptions on |φ(· − β) − φβ | combined with the fact that
Λ(σhf) ∈ Nr.

Theorem 2.4.4 leads to an improvement of Theorem 2.2.16 by extending the range of approx-
imants from W k+1

∞ (IRd) ∩ Ck+1(IRd) to wk+1
∞ (IRd) ∩ wk∞(IRd) ∩ Ck+1(IRd) ∩ Nr. We omit these

straightforward details.

2.5. Polynomial reproduction

With ψ as in Localization Conditions 2.1.2, and L as in (2.1.5), we say that L reproduces Πr

(r ≥ 0), if L|Πr
is the identity. Embedded in this is the requirement that mψ of Conditions 2.1.2

would be no smaller than d+ r. The polynomial reproduction property is an essential ingredient in
the error analysis of the so-called quasi-interpolation schemes, and in turn, makes the approximation
orders that can be established by such schemes restricted by the decay rate of ψ.

In our context here, we do not need to know the argument used for the derivation of the
approximation order of L, and more significantly, do not need a corresponding polynomial repro-
duction property from LA. This is very important because of the following: if L is proved to
provide approximation order k via a polynomial reproduction argument, then we know that the
localization ψ employed by L satisfies mψ ≥ d+ k − 1. In order to show that LA also reproduces
polynomials, we need to know that LA is well-defined on Πk−1, which, if Lemma 2.2.6 is used for
that, will require further assumptions, primarily that mA of Condition 2.2.5 would satisfy, at a
minimum,

mA ≥ d+ k − 1.
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This, by all means, is not a minor requirement, since it makes the construction of the matrix A
more involved (see §2.7). Fortunately, even though the approximation orders of L might have been
derived via polynomial reproduction, our conversion results (Theorem 2.2.9 and Theorem 2.2.16) do
not require LA to reproduce polynomials, and hence we are not forced to look for A that improves
upon the basic condition mA > d.

However, it is worth mentioning that the polynomial reproduction property of L is inherited
by LA if the various decay rates mψ,mµ,mA are known to be large enough:

Corollary 2.5.1. Under the notations and assumptions of Theorem 2.4.4, if L reproduces Πr

(r ≤ k) so does LA.

Proof: Let p ∈ Πr. Had we known that deg p < k, the conclusion would have been
immediate, since, by Theorem 2.4.4, ‖(L− LA)p‖ ≤ const(|p|∞,k + |p|∞,k+1) = 0. The argument,
however, for the case deg p = k, is not much more involved: since we assume that µ annihilates
Πk, hence Πr (that assumption is made in Theorem 2.2.9, and is adopted in Theorem 2.4.4, hence
here), we may derive from the proof of Theorem 2.2.9 (cf. (2.2.11) and its following line) that

(2.5.2) (L− LA)p =
∑

β∈ZZd

(φ(· − β) − φβ)(µ(Λp)(· + β)).

Since Λ is convolution, Πr is an invariant subspace of it, and therefore Λp ∈ Πr. Since µ annihilates
Πr, (2.5.2) implies that LAp = Lp = p, the second equality by the polynomial reproduction
assumption made with respect to L.

The crucial assumptions in the above corollary are (a) and (b) of Theorem 2.2.9, stating that
µ is well-defined on Πr and annihilates it. It is possible to replace these two assumptions by the
condition mµ > d+ r, if we assume, as we do in the present paper, that φ̂ is continuous on IRd\0,

and that φ̂ does not vanish identically on 2πZZd\0. Indeed, it is well-known then, that the Πr-

reproduction property of L implies that | · |rφ̂ is singular at the origin, which means that, if φ̂ has
a singularity of some order at the origin, that order is > r. Consequently, Lemma 2.2.13 implies
that µ annihilates Πr.

The argument used in the proof of Corollary 2.5.1 supports also the following stronger claim.

Corollary 2.5.3. Let P be a translation-invariant space of polynomials, which is reproduced by
L and is annihilated by µ. If, further, the double sum

∑

α,β∈ZZd

(φ(· − β) − φβ)µ(β − α)Λp(α)

(cf. (2.2.11)) converges absolutely, for every p ∈ P , then LA reproduces P , as well.

2.6. Remarks on the location of the centers

In actual approximation schemes, we do not dilate the approximand f . Instead, we dilate the
space SΞ(φ) from which the approximants are selected. Thus, the “true” error to be considered
should have been

f − σ1/hL(σhf).

The change to the study of σhf −L(σhf) is due to technical convenience and is made available by
the invariance of the max-norm under dilation.
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However, in order to understand the nature of our approximants as h changes, it is instructive
to look closer at the approximant σ1/hL(σhf) and its scattered center analogue. First, we see that,
adopting the convolution assumption on Λ (cf. Uniform Scheme Conditions 2.1.6),

σ1/hL(σhf) =
∑

α∈hZZd

(σ1/hψ) (· − α)(Λhf)(α),

where
Λh : f 7→ h−d(σ1/hλ) ∗ f.

The scattered center version σ1/hLA(σhf) is obtained by replacing each (σ1/hψ)(· −α) by σ1/hψα.
Finally, the function σ1/hψα is obtained by an application of the same matrix A to the scattered
shifts of σ1/hφ, only that the center set Ξ is replaced by the scaled set hΞ. Thus, in summary, the
scattered center approximant σ1/hLA(σhf) makes use of the hΞ-translates of σ1/hφ.

The fact that at the h-level the dilated center set hΞ is employed should not be regarded as an
essential ingredient of our approach and arguments. As a matter of fact, one might employ at the
h-level a center set Ξh which may resemble no relation to hΞ. This, in turn, forces the search of
different matrices Ah for different values of h. Applying Ah to Ξh(φ), one obtains a set of functions
{φα,h}α∈ZZd , and the Central Condition 2.2.5 should then be modified to

|(σhφα,h)(x) − φ(x− α)| ≤ const(1 + |x− α|)−mA , α ∈ ZZd,

with const independent not only of α and x but also of h.
Another remark is concerned with the stationary nature of the approximation schemes dis-

cussed in this section. That notion refers to the fact that the sequence of approximants {L(σhf)}h
to {σhf}h employs translations of the same function φ at all h-levels. There are important sit-
uations in spline theory when such simplification in the construction is unacceptable (primarily
exponential box splines, cf. [DR]). But, in the context of radial basis function approximation the
only presently known case when non-stationary schemes are used is concerned with spectral approx-
imation (cf. [BeLi], [BuD], [BR], [R]), a case that cannot be covered by the approach developed
here.

2.7. On the Central Condition 2.2.5

Condition 2.2.5 is the major condition that is assumed in both Theorem 2.2.9 and Theorem
2.2.16. As a matter of fact, any set {φα}α that satisfies Condition 2.2.5 can be used to define
the approximation map LA. However, since our interest is in approximating from the span of the
scattered translates of φ, we certainly restrict our attention to functions {φα} which are expressed
in the form (2.2.1).

In the present subsection, we briefly discuss the following important (and natural) question:
what sufficient conditions on the coefficient matrix A imply Condition 2.2.5? Here we show that,
under some basic assumptions that we adopt here with respect to the structure of the Fourier
transform of φ, one should aim at approximating (around the origin) the constant function 1 by
exponentials of the form

e∗α =
∑

ξ∈Ξ

A(α, ξ)eα−ξ,

for each α ∈ ZZd. The (formal) derivatives of e∗α are of the form

Dβe∗α =
∑

ξ∈Ξ

i|β|1(α− ξ)βA(α, ξ)eα−ξ,
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and therefore, given an integer j, if the sequence ξ 7→ (1 + |α − ξ|j)A(α, ξ) is in `1(Ξ), then e∗α
is j-times boundedly differentiable, can be differentiated term by term, and its W j

∞(IRd)-norm
satisfies

‖e∗α‖W j
∞(IRd) ≤ cj‖((1 + | · −α|j)A(α, ·))‖`1(Ξ).

Theorem 2.7.1. Let A = (A(α, ξ))ZZd×Ξ be the coefficient matrix of (2.2.1), and assume that each
of the rows of A is in `1(Ξ). Let e∗α be defined as above. Suppose the following conditions hold:
(a) The set

{Ξ 3 ξ 7→ (1 + |ξ − α|j)A(α, ξ) : α ∈ ZZd}

lies in `1(Ξ) and is bounded there, for all j ≤ s, for some non-negative integer s.
(b) For each α ∈ ZZd, all derivatives of 1 − e∗α of orders ≤ m vanish at the origin, for some

non-negative integer m < s.
(c) For yet another positive integer r, φ̂ is r-times differentiable on IRd\0, and each Dαφ̂, |α|1 ≤ r,

is summable around ∞.
(d) Each Dαφ̂, |α|1 ≤ r, (calculated on IRd\0) has a singularity of order k′ + |α|1 at the origin, for

some positive k′ := k′(φ), and for the same r of (c).

(e) The distribution φ̂ is of order ≤ m.

Then, Condition 2.2.5 is satisfied with mA = m− [k′] + d, with [k′] the greatest integer ≤ k′, and
provided that this mA exceeds neither r nor s.

Roughly speaking, r can be regarded as a smoothness parameter for φ̂. Thus, in these terms,
the threshold for the “order of matching” m (in (b) above), in order to achieve mA > d, is the

order of the singularity of φ̂ at the origin. Above that threshold, a better matching (i.e., higher m)
would result in a larger mA in Condition 2.2.5 (which might be important, e.g., if we approximate
unbounded functions, cf. §2.4), but overmatching, i.e., matching which exceeds r + [k′] − d, may
not yield any improvement in mA.

Proof: Condition 2.2.5 is equivalent to the statement that {(1 + | · |)mA(φ − φα(· + α)) :
α ∈ ZZd} is bounded in L∞(IRd). Instead, we prove that the Fourier transforms of these functions
are bounded in L1(IR

d). Since mA = m − [k′] + d, it suffices, for that latter purpose, to prove
that, for each integer j ≤ m− [k′] + d, the Fourier transforms of | · |j(φ − φα(· + α)), α ∈ ZZd are

bounded in L1(IR
d). Since the Fourier transform of φ− φα(· + α) is (1 − e∗α)φ̂, we may prove that

the functions

{Dβ((1 − e∗α)φ̂) : α ∈ ZZd, |β|1 ≤ m− [k′] + d}

are bounded in L1(IR
d). By applying Leibnitz’ rule, we, finally, may replace this last set of functions

by

(2.7.2) {Dγ(1 − e∗α)Dβ−γφ̂ : α ∈ ZZd, γ ≤ β, |β|1 ≤ m− [k′] + d}.

Since m− [k′] + d ≤ r, by assumption, condition (c) implies that Dβ−γφ̂ is summable around
∞. In addition, since m− [k′]+d ≤ s, condition (a) implies that {Dγ(1−e∗α)}α (|γ|1 ≤ m− [k′]+d)
are bounded in L∞(IRd). Thus, we obtain that the functions in (2.7.2) are bounded in L1(Ω), for
some neighborhood Ω of ∞, uniformly in α ∈ ZZd.

Next, we show that the functions in (2.7.2) are bounded in L1(B), for some origin-neighborhood
B. Here, recall first that, on IRd\0, the Fourier transform of φ− φα(· + α) is

(2.7.3) (1 − e∗α)φ̂.
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Since, by (b), 1−e∗α has a zero of order m+1 at the origin, while, by (e), the order of the distribution

φ̂ at the origin is ≤ m, it follows that the representation (2.7.3) for the Fourier transform of
φ− φα(· + α) extends to the entire IRd.

Assumptions (d) and (b), when combined, prove that Dγ(1 − e∗α)Dβ−γφ̂ is bounded around
the origin as long as |β|1 ≤ m− k′ + 1, and has a singularity of order k′ + |β|1 −m− 1 for larger β.

This implies that, as long as |β|1 ≤ m− [k′]+d, Dγ(1−e∗α)Dβ−γφ̂ has a singularity at the origin of
order < d, and hence is integrable there. The required uniformity in the L1(B)-norm follows from
the uniformity in assumption (a).

Under a slightly stronger assumption on the behaviour of φ̂ around the origin, the assertions
of the last theorem can be improved as follows.

Corollary 2.7.4. Let A = (A(α, ξ))ZZd×Ξ be the coefficient matrix of (2.2.1), and assume that
each of the rows of A is in `1(Ξ). Let e∗α be defined as before. Suppose the following conditions
hold:

(a,b,c,d) Same as in Theorem 2.7.1, only that we require m < s− 1.

Around the origin, φ̂ can be represented as a sum ρ0 + ρ1, such that
(d0) On IRd\0, ρ0 is continuous and is a homogeneous function of order −k′, i.e., for every t > 0,

the support of the distribution σtρ0 − t−k
′

ρ0 is the origin.
(d1) Each Dαρ1, |α|1 ≤ r, (calculated on IRd\0) has a singularity of order k′(ρ1)+ |α|1 at the origin,

for some positive k′(ρ1) < [k′].
(e) Each ρi is a tempered distribution of order ≤ m.

Then Condition 2.2.5 is satisfied with mA = m− k′ + d+ 1, provided that mA ≤ r, s.

The improvement here can be observed as follows: assumptions (d0), (d1) imply that our

function φ̂ has a singularity of order k′ at the origin. Therefore, a direct application of Theorem
2.7.1 can establish Condition 2.2.5 only for mA := m − [k′] + d. However, the present corollary
asserts that the Central Condition is valid also for the larger mA := m− k′ + d+ 1.

Proof: Let η be a compactly supported C∞(IRd)-function, which is 1 around the origin,

and such that the decomposition φ̂ = ρ0 + ρ1 is valid on supp η. We write

φ̂ = ηρ0 + ηρ1 + (1 − η)φ̂.

One easily checks that the inverse transform τ of ηρ1+(1−η)φ̂ satisfies conditions (c-e) of Theorem
2.7.1, with k′(τ) = k′(ρ1), and hence with [k′(τ)] < [k′]. Defining τα, α ∈ ZZd by

τα :=
∑

ξ∈Ξ

A(α, ξ)τ(· − ξ),

we may appeal to Theorem 2.7.1 to conclude that Condition 2.2.5 is satisfied by τ , and with
mA(τ) = m− [k′(ρ1)] + d ≥ m− [k′] + d+ 1 ≥ m− k′ + d+ 1.

Consequently, in order to prove the corollary, we may assume without loss that φ̂ = ηρ0, as
we do in the rest of the proof. This trivially implies that φ satisfies condition (c) of Theorem 2.7.1

for all r, (since φ̂ is now compactly supported) and also satisfies (e) and (d) there, with k′(φ) = k′

by the assumptions on ρ0. This, however, would lead us to an unsatisfactory estimate for mA, and
thus, a finer analysis is required.

We let Tα be the homogeneous polynomial of degree m+ 1 in the Taylor expansion of 1 − e∗α
around the origin, and write

(1 − e∗α)φ̂ = (1 − e∗α)ηρ0 = Tαηρ0 + (1 − e∗α − Tα)ηρ0.
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Since ρ0 is a distribution of order ≤ m, and is homogeneous of order −k′, and since Tα is homo-
geneous of order m + 1, the product Tαρ0 is a homogeneous function of order m + 1 − k′. Thus,
its inverse transform g decays at ∞ like O(| · |−(m+1−k′+d)). As (Tαηρ0)

∨ = η∨ ∗ g, and η∨ decays
rapidly, we conclude that (Tαηρ0)

∨ = O(| · |−(m+1−k′+d)).

The other term in the representation of (1 − e∗α)φ̂ is (1 − e∗α − Tα)φ̂. Here, all derivatives of
1 − e∗α − Tα of orders ≤ m + 1 < s vanish at the origin. Therefore, the argument used in the

proof of Theorem 2.7.1 can be followed (with (1 − e∗α)φ̂ replaced by (1 − e∗α − Tα)φ̂) to yield that

((1 − e∗α − Tα)φ̂)∨ decays at ∞ like O(| · |−(m+1−[k′]+d)), which is (at worst) the required rate.

The uniformity required in Condition 2.2.5 follows, once again, from the uniformity in condition
(a) here.

Theorem 2.7.1 as well as Corollary 2.7.4 require the matrix A to satisfy conditions that may
impose constraints on the distribution of Ξ, and may be hard to obtain. However, it is shown in
[BuDL] (see also §3.4) that, for every fixed m, and for all sufficiently small c ≤ c0(m) if each ball of
radius c in IRd intersects with Ξ, there exists a matrix A that satisfies conditions (a-b) of Theorem
2.7.1.

2.8. On the decay rates mA, mψ, mµ

The derivation of the main results of this section required us to assume decay rates on the
localization sequence µ, the localization function ψ, and the difference φ(·−α)−φα (cf. Conditions
2.1.2 and 2.2.5). We preferred to write these assumptions in terms of theO(|·|−k) (for an appropriate
k) since that allows us to derive quantitative results concerning the behaviour of (ψα)α∈ZZd at ∞ (cf.
Lemma 2.2.6), which is important in several places, especially in §2.4. However, as Theorem 1.2.5
actually asserts, Theorems 2.2.9, 2.2.16, and 2.3.1 remain valid under slower decay rates. These
improvements are not very important with respect to the decay rates of µ (for example, the decay
rates on µ assumed in Theorem 2.2.9 are more restrictive than those assumed in the Localization
Conditions 2.1.2). Also, such improvements do not seem to be very significant with respect to the
decay rates of ψ (in 2.1.2), since, in the known examples, ψ decays at ∞ at faster rates. However,
as far as the behaviour of φ(·−α)−φα is concerned, every relaxation of the Central Condition 2.2.5
is important, since it might simplify the construction of the matrix A, hence eventually simplify the
actual approximation scheme LA. Therefore, we devote the present subsection to a brief discussion
of these relaxations.

Our modified conditions are as follows:

(a) In lieu of (a) in Conditions 2.1.2, we assume only that µ ∈ `1(ZZ
d).

(b) In lieu of (b) in Conditions 2.1.2, we assume only that
∑
α∈ZZd |ψ(· − α)| ∈ L∞(IRd).

(c) In lieu of Condition 2.2.5, we assume that
∑

α∈ZZd |φ(· − α) − φα| ∈ L∞(IRd).

The new variant of Lemma 2.2.6 then reads as follows:

Lemma 2.2.6∗. Assume that conditions (a-c) above hold. Then

∑

α∈ZZd

|ψα| ∈ L∞(IRd),

and, hence, the operator

c 7→
∑

α∈ZZd

ψα c(α)
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is bounded from `∞(ZZd) to L∞(IRd).

Proof: By the definition of ψ and ψα,

|ψα(x) − ψ(x− α)| ≤
∑

β∈ZZd

|µ(β − α)||φβ(x) − φ(x− β)|.

Therefore,

∑

α∈ZZd

|ψα(x)−ψ(x−α)| ≤
∑

α,β∈ZZd

|µ(β−α)||φβ(x)−φ(x−β)| ≤ ‖µ‖`1(ZZd)
∑

β∈ZZd

|φβ(x)−φ(x−β)|.

Consequently, by (a) and (c) above,
∑

α∈ZZd |ψα − ψ(· − α)| ∈ L∞(IRd), and combining that with
(b) above we obtain the lemma’s claim.

The results of Theorems 2.2.9, 2.2.16, and 2.3.1 remain unchanged, and with the same proofs.
In fact, one observes that Condition 2.2.5 is not invoked in the proof of Theorem 2.2.9 in its full
power, and only the L∞-boundedness of

∑
α∈ZZd |φα − φ(· − α)| is used there.

3. Examples

3.1. The approximation schemes of [BR]

The reference [BR] contains a general study of L∞(IRd)-approximation orders from spaces
generated by the shifts of one basis functions ψ. It assumes ψ to decay fast enough at ∞ to make
the map

ψ∗′ : c 7→ ψ ∗′ c :=
∑

α∈ZZd

ψ(· − α)c(α)

well-defined and continuous from `∞(IRd) to L∞(IRd) (see (1.2.2)). Note that such a condition
implies that ψ ∈ L1(IR

d), and is implied by (b) of Localization Conditions 2.1.2. After establishing
upper bounds on approximation orders from the “span” of the shifts of ψ (cf. Theorem 2.8 there, and
also Lemma 2.2.15 above), [BR] attempts to realize these bounds by employing the approximation
map

(3.1.1) L : f 7→ ψ ∗′ Λ(f)|
ZZd
,

where Λ is the convolution map λ ∗ f , with

(3.1.2) λ̂ = η/ψ̂.

Here, η is any smooth compactly supported function which is 1 around the origin. Results which
are relevant to the basis functions of this paper are obtained in Theorems 3.6 and 4.2 of [BR]. In
particular, the following result follows from Theorem 4.2 there:

Result 3.1.3. Assume that ψ∗′ is bounded, ψ̂(0) 6= 0, and that, on IRd\0, ψ̂ = µ̂φ̂, with µ̂

continuous and 2π-periodic and φ̂ continuous on IRd\0. Assume further that for some neighborhood
Ω of the origin and some positive k,

∑

α∈2πZZd\0

‖φ̂(· + α)‖L∞(Ω) <∞,
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and
‖| · |−k/φ̂‖L∞(Ω) <∞.

Then L provides approximation order (at least) k for every f ∈ W̃ k
∞(IRd).

In order to extend Result 3.1.3 to non-uniform grids, we want to apply Theorem 2.3.1, hence
need to verify its various conditions. First, Λ of the present L is indeed a convolution operator λ∗.
Since the result assumes ψ̂ to be non-zero at 0, and ψ̂ is continuous (since ψ ∈ L1(IR

d) by virtue

of the boundedness of ψ∗′), we conclude that λ̂ is bounded. Furthermore, around the origin

| |x|−kµ̂(x)| = |(|x|−k/φ̂(x))ψ̂(x)| ≤ const,

and hence | · |−kµ̂ is bounded (on IRd). Therefore, among the various conditions assumed for (a) of
Theorem 2.3.1, we need only assume the Localization Conditions 2.1.2 and the Central Condition
2.2.5:

Corollary 3.1.4. Let L be defined as in (3.1.1) and (3.1.2), and assume that ψ satisfies the
assumptions of Result 3.1.3. If, in addition, the Conditions 2.1.2 and 2.2.5 are fulfilled, the corre-
sponding LA provides approximation order at least k to every f ∈ W̃ k

∞(IRd), with k as in Result
3.1.3.

Under the further assumption that φ̂|
2πZZd\0

6= 0, [BR] proves that (3.1.1) attains the highest

possible approximation order. Thus, the above corollary shows that, under all the assumptions
made there, we are able to realize in the scattered case the best possible approximation orders
available in the uniform case.

3.2. Interpolation Schemes

Approximation via cardinal interpolation that employs radial basis functions is studied in
Buhmann’s thesis (cf. [Bu1,2]). The interpolation operator is of the form

Lf =
∑

α∈ZZd

ψ(· − α)f(α),

with ψ the fundamental solution of the cardinal interpolation problem, i.e., a function that van-
ishes on ZZd\0, and assumes the value 1 at the origin. The function ψ is obtained as an infinite
combination of shifts of the original basis function φ:

ψ =
∑

α∈ZZd

φ(· − α)µ(α).

The sequence µ, though not constructed for the mere sake of localization, is indeed a localization
sequence since ψ is shown to decay at ∞, in contrast with the original φ.

The existence of the above fundamental solution is proved in [Bu1,2] under certain condi-

tions on the Fourier transform φ̂ of the basis function φ. In particular, φ̂ is assumed to be ra-
dially symmetric, to be smooth and positive on IRd\0, to have derivatives that decay at ∞ at a
O(|·|−(d+ε))-rate, and, most importantly, to have a singularity of a certain type and of some positive
order k′ at the origin. The sequence µ is then proved there to decay at ∞ at a rate O(| · |−(d+k′)),
and the same decay rate is then established with respect to the fundamental interpolant ψ. The
sum that defines ψ is proved to converge uniformly on compact sets. Thus, we see that the Local-
ization Conditions 2.1.2 as well as the Uniform Scheme Condition 2.1.6 which are required in our
conversion theorems, are valid in Buhmann’s interpolation schemes.
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The approximation orders associated with cardinal interpolation that are derived in [Bu1,2]
are of the following type. In case k′ = k + ε, with 0 < ε < 1, k integer, L is proved to provide
approximation order k′ to functions in Ck+1(IRd) whose derivatives of order k, k + 1 are bounded.
For an integer k′, L is proved to satisfy ‖σhf−L(σhf)‖∞ = O(hk

′

| log h|), for functions in Ck
′

(IRd),
with bounded derivatives of order k′ − 1, k′. Furthermore, for an even integer k′, and under a
stronger assumption on the behaviour of φ̂ at the origin, the O(hk

′

| log h|) order is improved to
approximation order k′. Though we do not provide here the details of those extra conditions (nor
we provide the full details of Buhmann’s original conditions), we mention that, with the aid of the
extra conditions, µ is proved to decay like O(| · |−(d+k′+ν)), for some positive integer ν.

In the conversion of the above results to the scattered case, we need not appeal to the results of
section 2.3, simply because µ decays here at a rate which allows the application of Theorem 2.2.16
in its full power. Indeed, we already realized that Conditions 2.1.2 and 2.1.6 are valid here, and
the requirements on φ̂ needed in [Bu1,2] are by far more restrictive than our mere assumption (a)
of Theorem 2.2.16. The decay conditions on µ required in (c) of Theorem 2.2.16 are satisfied only
in the case of a non-integer k′. Still, this is in agreement with Buhmann’s results, since he obtains
only the order O(hk

′+1| log h|) in the integer case, exactly as can be derived for LA (cf. the remark
after the proof of Theorem 2.2.16). Finally, in the case when k′ is an integer and, nonetheless, a
full approximation order is obtained in [Bu1,2], µ decays fast enough to be well-defined on Πk′ ,
and Theorem 2.2.16 applies again here. In summary, assuming that the Central Condition 2.2.5 is
satisfied, all the approximation orders that are established in [Bu1,2] for cardinal interpolation L
are valid also for its “scattered variant” LA (though, LA, of course, is not a cardinal interpolant,
nor is guaranteed to be any kind of interpolant), when the approximand satisfies the conditions
required in [Bu1,2], and, in addition, is bounded.

An extension of the LA-approximation orders to unbounded functions, follows from the analysis
of §2.4. For example, if k′ = k + ε, 0 < ε < 1, then, the decay rate of ψ and of µ are mψ = mµ =
d + k′, which allows us to invoke Theorem 2.4.4 for the value r := k there, provided that mA of
Condition 2.2.5 is known to be larger than d+ k. Consequently, the approximation order k′ of LA
holds, by Theorem 2.4.4, not only for bounded functions, but for functions in Ck+1(IRd) whose
derivatives of orders k and k + 1 are bounded. As mentioned before, this is exactly the class of
functions that are approximated in the uniform grid results of [Bu1,2]. Thus, the conversion here
fully preserves both the approximation order and the space of approximands. Analogous results
are valid in the case of an integer k′.

3.3. Quasi-interpolation schemes

Quasi-interpolation schemes which are based on uniform shifts of localized radial basis functions
are discussed in [J], [DJLR], [P], [Ra], [Bu1,3]. In this section, we show that the uniform grid results
of [DJLR] can be extended to non-uniform grids, with the aid of the machinery of §2 here.

In [DJLR], the Fourier transform of the basis function φ is assumed to be represented, on
IRd\0, as a quotient

(3.3.1) φ̂ = F/G,

with F,G satisfying several conditions, among which we mention here the following two:

(a) G is a homogeneous polynomial of degree k′ ∈ 2 IN, with no zeros in IRd\0.

(b) F ∈ C∞(IRd\0), is smooth (but not necessarily infinitely smooth) at the origin and does not
vanish there.
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We forgo mentioning the detailed conditions assumed in [DJLR] (and refer the reader to that
reference), since most of those details will not be needed here. We do mention that the basic
examples of φ that satisfy all the conditions assumed there are the fundamental solutions of the
iterated Laplacian (in particular, the thin–plate splines in even dimensions) and their “shifted”
version, where |x| is replaced by (|x|2 + c2)1/2 (in particular, the multiquadrics in odd dimensions).

The localization process of [DJLR] is done with the aid of a finitely supported localization
sequence µ. This means that, for the sake of extending the [DJLR]-schemes to the scattered case,
the required conditions (a) and (c) of 2.1.2 are automatically satisfied. Since the error analysis of
[DJLR] is based on polynomial reproduction, a careful attention is given there to the decay rates
mψ of ψ at ∞. In general, these decay rates are mψ = d + ` + 1 for some non-negative integer `,
which means that condition (b) of 2.1.2 is also satisfied in the present case.

The approximation scheme used in [DJLR] is the simple one

(3.3.2) Lf :=
∑

α∈ZZd

ψ(· − α) f(α),

and the quasi-interpolation argument is employed there to yield the error estimate

(3.3.3) ‖σhf − Lσhf‖ = O(h`
′+1| log h|), `′ := min{`, k′ − 1},

provided that f is `′ +1-times differentiable, and that |f |`′,∞ and |f |`′+1,∞ are finite. For functions
f whose derivatives of orders `′ + 2 are also continuous and bounded, and under more subtle
information on the decay of ψ, the above O(h`

′+1| log h|) is improved to O(h`
′+1). We refer to

section 4 of [DJLR] for the full details.
It is now easy to verify that all the conditions on φ, ψ, and µ imposed in Theorem 2.2.9 and

Theorem 2.2.16 are satisfied by the schemes considered in [DJLR]. Therefore, the only condition
that we really need to assume is the Central Condition 2.2.5, in order to obtain

Theorem 3.3.4. Let φ be any of the basis functions considered in [DJLR] (whose Fourier trans-
form has a singularity of even order k′ at the origin). Let ψ be its localization (localized with the
aid of a finite µ), which decays at ∞ like O(| · |−(d+`+1)). Let L be the approximation scheme of
(3.3.2), and let LA be its scattered version. If Condition 2.2.5 is satisfied, then

‖(L− LA)σhf‖L∞(IRd) = O(hk),

for every f ∈W k
∞(IRd) ∩ Ck(IRd), provided that k ≤ k′.

Note that the result is valid for k := k′, even when ` < k′.
Thus, while the approximation orders of (3.3.3) and their variants are restricted by the rate

of decay of ψ, i.e., the parameter `, the estimate for (L − LA)(σhf) is optimal already for ` = 0.
The extension in the above theorem from uniform grids to scattered grids required us to pay some
price: while the uniform results are obtained with respect to functions whose derivatives of order `
and ` + 1 are continuous and bounded, the non-uniform extensions require f to be bounded, too.
However, this further restriction can be relaxed with the aid of Theorem 2.4.4: choosing k and r in
that theorem to be our ` here, we see that since in our present case mµ = ∞, and mψ = d+ `+ 1,
we need only know that in Central Condition 2.2.5 mA > d+ `, in order to obtain that

‖(L− LA)σhf‖L∞(IRd) = O(h`+1),

for functions f whose derivatives of order ` and `+ 1 are continuous and bounded.
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Our last remark here deals with the polynomials in SΞ(φ). It is shown in [DJLR] (cf. §3 there)
that if F of (3.3.1) is the constant function (as is the case for the thin-plate splines), then we can
construct the function ψ to have an arbitrary high decay rate mφ, and to reproduce Πk∩P, with P
the kernel of G(D), and k = mφ− d− 1. It is further shown there that the corresponding sequence
µ would then annihilate Πk ∩ P. In such a case, Corollary 2.5.3 can be invoked to show that LA
reproduces Πk ∩ P, and, consequently, that SΞ(φ) contains Π ∩ P.

3.4. Review and extensions of the scheme used in [BuDL]

As we already mentioned in the introduction, the reference [BuDL] discusses approximation
schemes and approximation orders that are based on the scattered shifts of one basic function φ.
In this subsection we review the results of [BuDL] with the aid of the techniques and observations
of the present paper and, in this course, extend those results in several directions.

The aim of [BuDL] is to extend the approximation orders on uniform grids of [DJLR] to non-
uniform grids. While we did the same in the previous subsection, the error analysis we have used
here and the one used in [BuDL] are entirely different. Furthermore, apparently, the approximation
schemes used here and there seem to be very different, too. We will show, however, that the [BuDL]
scheme can be viewed as a variation of a special case of the method we suggest here. In particular,
implicitly, the approximation scheme of [BuDL] is engaged, too, with the approximation of uniform
shifts by scattered shifts.

The setup in [BuDL] starts with a basis function φ that obeys the conditions of [DJLR] (some
of these conditions are quoted in the previous subsection). Then, for each center ξ ∈ Ξ, a function
of the form

ψξ :=
∑

η∈Ξ

µξ,η φ(· − η),

with (µξ,η)η∈Ξ a sequence of finite support (supported on centers which are close to ξ), is con-
structed. The functions (ψξ)ξ∈Ξ are constructed such that they decay (uniformly) at ∞ at rates
similar to those of ψ of [DJLR], i.e., O(| · |−d−`−1) for some non-negative integer `. The approxi-

mation map L̃A is then defined as

L̃A : f 7→
∑

ξ∈Ξ

f(ξ)ψξ.

A very careful choice of the coefficients (µξ,η) enables [BuDL] to extend the results of [DJLR] to
the scattered case.

We make two preliminary observations concerning the difference between the map L̃A of
[BuDL] and the map LA here. First, the map L̃A uses the values of f at Ξ only, while LA in-
volves evaluation at ZZd of λ ∗ f . Second, the localization sequence µ which is used in [DJLR] in
order to construct the localization ψ from the original φ (and which is used in the approach of the
present paper in an essential way) is not invoked directly in [BuDL]. Instead, it is imitated in the
sequences (µξ,η)η∈Ξ, ξ ∈ Ξ.

The problem of selecting appropriate coefficients (µξ,η) is approached in [BuDL] as follows.
First, it assumes the existence of a matrix

A = (A(α, ξ))α∈ZZd, ξ∈Ξ

that satisfies the following three conditions:
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Assumptions 3.4.1.
(a) There exists a positive constant c1 such that A(α, ξ) = 0, whenever |α− ξ| > c1.
(b) The sequence set {A(α, ξ)ξ∈Ξ : α ∈ ZZd}, lies in `1(Ξ) and is bounded there.

(c) For some positive integer m, and for every α ∈ ZZd,
∑

ξ∈ΞA(α, ξ) δξ = δα on Πm, i.e.,∑
ξ∈ΞA(α, ξ) p(ξ) = p(α), for every p ∈ Πm.

Note that the above assumptions imply conditions (a-b) of Theorem 2.7.1. Indeed, most of the
subsequent results here that assume Assumptions 3.4.1, are valid under weaker assumptions (such
as (a-b) of Theorem 2.7.1).
The value of m required in [BuDL] is m = k′ + `, with ` as above, and k′ the degree of G in (3.3.1).

The coefficients M := (µξ,η) are then defined by

µξ,η :=
∑

α,β∈ZZd

A(α, ξ)A(β, η) 〈N(· − α), N(· − β)〉,

where 〈·, ·〉 is a certain bilinear-form that depends on φ, and where N is a sufficiently smooth
compactly supported multivariate spline which reproduces Πk′+` (i.e.,

∑
α∈ZZd N(· − α) p(α) = p,

∀p ∈ Πk′+`), (cf. [BuDL] for the full details). With N being the Gramian matrix

(3.4.2) N := (ν(α− β))α,β := (〈N(· − α), N(· − β)〉),

we see that
M = ATNA.

Furthermore, it is proved in [BuDL] that the sequence ν is a suitable localization sequence for the
[DJLR] construction.

The crucial properties of M required in [BuDL] are:
(i)

∑
η∈Ξ µξ,η p(η) = 0, for every p ∈ Πk′+` ∩ P, and every ξ ∈ Ξ, where P is the kernel of the

differential operator G(D), with G the denominator of φ̂ (see (3.3.1)).
(ii)

∑
ξ∈Ξ µξ,η p(ξ) = 0, for every p ∈ Πmin{`,k′−1}, and every η ∈ Ξ.

The [BuDL] analysis insists on a symmetric µ, since, in that way, condition (ii) above is implied
by (i), as G is a homogeneous polynomial of degree k′.

From our factorization ATNA of M, one can observe that (i) and (ii) hold with N = (µ(α−β))α,β,
for any localization sequence µ that satisfies the [DJLR] requirements, and not just for the specific
ν, (3.4.2), that is employed by [BuDL].

In order to see how the [BuDL]-scheme is related to the approach of the present paper, we
denote

Ψ := ψΞ = {ψξ}ξ, Φ := Ξ(φ) = {φ(· − ξ) : ξ ∈ Ξ}.

Then, we may write
Ψ = ATNAΦ.

Also, since ν can serve as a localization sequence of [DJLR], it follows that

ψ :=
∑

α∈ZZd

ν(α)φ(· − α)

decays at ∞ like O(| · |−(d+`+1)). Therefore, we see that the Localization Conditions 2.1.2 are
satisfied for the choice µ := ν.
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Given, now, an approximand f , we may write the approximant L̃Af that is provided by [BuDL]
in matrix form as

L̃Af = (f|Ξ)TATNAΦ,

with f|Ξ the restriction of f to Ξ, treated as a column vector. On the other hand, the approximation
map LA of the present paper, when written in matrix form, too, reads, in case the convolution λ∗
is the identity, as

LAf = (f|
ZZd

)TNAΦ,

since AΦ are exactly our pseudo-shifts (φα)α, and NAΦ are our pseudo-shifts (ψα)α.
In summary, while our map LA is of the form

LAf =
∑

α∈ZZd

f(α)ψα,

the [BuDL] map, written with the aid of our (ψα), is of the form

L̃Af =
∑

α∈ZZd

(Af|Ξ)(α)ψα.

Consequently, as soon as we can show that Af|Ξ provides a “reasonable” approximation to f|
ZZd

,
we will be able to derive the [BuDL] approximation results directly from the results of the present
paper. Since the results of the present paper are derived under assumptions which are substantially
more general than the ones of [BuDL], we will obtain in such a way an extension of the ideas and
the results of that paper beyond their stated limits.

The fact that (Af|Ξ)(α) approximates f(α) and in the “right” way, can be established in a far
more general setup than the one discussed above, as we now describe. First, we adopt Assumptions
3.4.1, with a general integer m whose desired values will be clarified in the sequel. Next, let
f ∈ Cm+1(IRd), and α ∈ ZZd. Let Tαf be the Taylor polynomial of degree m of f about α. By
Assumption 3.4.1 (c), A(p|Ξ) = p|

ZZd
for every p ∈ Πm, and therefore

A((Tαf)|Ξ)(α) = (Tαf)(α) = f(α).

This implies that, in view of Assumptions 3.4.1 (a,b) on A,

|(Af|Ξ)(α) − f(α)| =|
∑

|α−ξ|≤c1

A(α, ξ)(f(ξ) − (Tαf)(ξ))|

≤constm,c1‖A(α, ·)‖`1(Ξ)|f |∞,m+1 ≤ const |f |∞,m+1

Consequently, we obtain

Lemma 3.4.3. For f ∈ Cm+1(IRd), under Assumptions 3.4.1, Localization Conditions 2.1.2, and
Central Condition 2.2.5,

|(L̃A − LA)(σhf)| ≤ consthm+1|f |∞,m+1.

Proof: From the arguments that precede the lemma, we conclude that

|(L̃A − LA)(σhf)| ≤ consthm+1|f |∞,m+1

∑

α∈ZZd

|ψα(x)| ≤ consthm+1|f |∞,m+1,

where, in the second inequality, we used the fact that
∑

α∈ZZd |ψα| ∈ L∞(IRd), which, thanks to
our assumptions here, follows from Lemma 2.2.6.
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Therefore, in order to extend the approximation order results concerning the map LA to the
map L̃A we need the numberm+1 of Lemma 3.4.3 to match or exceed the orders for ‖(LA−L)(σhf)‖
derived in the theorems of section 2. This can be guaranteed if we take m as the largest integer
smaller than the order of the singularity φ̂ has at the origin. For example, the following is the
extension of Theorem 2.2.16 to the map L̃A:

Corollary 3.4.4. Assume that conditions (a-d) of Theorem 2.2.16 hold. Assume further that the
matrix A satisfies Assumptions 3.4.1, with m taken to be k of Theorem 2.2.16. Then, the assertions
of that theorem remain valid with respect to the map L̃A defined above.

Proof: Since all the approximation orders asserted in Theorem 2.2.16 with respect to LA
are ≤ k + 1, the present assertion follows from Lemma 3.4.3.

Remark. With k, k′ as in Theorem 2.2.16, if k′ 6∈ ZZ+, then Condition 2.2.5 (that is, condition
(d) in Theorem 2.2.16), which is the crucial condition exploited in §2, becomes redundant in the
above corollary, under mild conditions on φ. This follows by an application of Corollary 2.7.4:
conditions (a) and (b) of that corollary are a consequence of Assumptions 3.4.1, and therefore, if φ
satisfies assumptions (c-e) of that corollary, we obtain that mA of Condition 2.2.5 can be taken as
m− k′ + d+ 1 = k − k′ + d+ 1 > d, since k − k′ > −1, as k′ 6∈ ZZ+. In the other case, when k′ is
an integer, we obtain a similar result if m of Assumption (c) of 3.4.1 is taken as k′.

We show now, that the approximation order results of [BuDL] follow from our results in §3.3
and §3.4. Indeed, for bounded approximands this is obtained directly from Theorem 3.3.4 and
Corollary 3.4.4. As for unbounded approximands, the reasoning goes as follows. First, by the
discussion in the last paragraph of §3.3, our scattered analog LA of the [DJLR] L provides to
functions with bounded `- and `+ 1-order derivatives the desired approximation orders, provided
that mA of Condition 2.2.5 is > d + `. In particular, LA is well-defined on N`, and, adopting (a)

and (b) of Assumptions 3.4.1, we easily conclude that L̃A is well-defined on N`, as well. Thus,

by Lemma 3.4.3, L̃A provides the desired approximation orders as long as m is at least `. In
summary, the [BuDL]-scheme approximates unbounded functions to the desired rates, as soon as
(i): mA > d+ `, (ii) m of Assumptions 3.4.1 is at least `.

We can obtain (i) above from Assumptions 3.4.1 by invoking Corollary 2.7.4, which applies to
all φ considered in [DJLR] for the choice ρ0 := F (0)/G (with F,G as in (3.3.1)). Condition (i)
follows from that corollary if m− k′ + d+ 1 > d+ `, i.e., if m ≥ k′ + `. Such condition covers the
required (ii), as well. Hence, the choice m := k′ + ` in Assumptions 3.4.1 (which indeed is the value
of m used in [BuDL]) suffices to reproduce the [BuDL] results.

We have just shown that Corollary 3.4.4 reproduces the results of [BuDL]. In fact, it extends
those results quite substantially. First, it applies to a much larger family of basis functions φ, and
in particular, the order of the singularity of φ̂ need not be an even integer. Second, neither do we
need the localization sequence µ to be the specific one employed in [BuDL], nor we even need µ
to be finitely supported. Third, though we did not take advantage of that option, the matrix A
that is used to define (φα)α need not be identical to the matrix A used in the expression (Af|Ξ)(α)
(they only need to satisfy, both, Assumptions 3.4.1 with m = k′ + `, and m = ` respectively). Also,
for bounded approximands, requirement (c) in Assumptions 3.4.1 is weaker in the last corollary, as
compared to the analogous requirement in [BuDL] (we need m = ` instead of m = k′ + `).
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