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Definitions

For given positive integers n and k, and for a given real nondecreasing sequence t := (ti)
n+k
1 with

ti < ti+k, all i,

denote by $k,t the linear span of the n normalized B-splines N1,k, . . . , Nn,k, given by the rule that, for each
t,

Ni,k(t) := gk(ti, . . . , ti+k; t)(ti+k − ti),

the kth divided difference of
gk(s; t) := (s− t)k−1

+

as a function of s at the k+ 1 points ti, . . . , ti+k. The elements of $k,t are called polynomial splines of order

k with knot sequence t.
Let τττττ := (τi)

n
1 be a strictly increasing real sequence. As is shown in [12], there exists, for given f , exactly

one s ∈ $k,t, such that
s(τi) = f(τi), i = 1, . . . , n,

if and only if
Ni,k(τi) 6= 0, i = 1, . . . , n,

i.e., if and only if
ti < τi < ti+k, i = 1, . . . , n. (1)

Hence, assuming τττττ to satisfy (1), the conditions

Pf ∈ $k,t, (Pf)(τi) = f(τi), i = 1, . . . , n, (2)

define a linear map into $k,t which reproduces $k,t. This paper is concerned with bounding P as a map on
C[t1, tn+k], i.e., with estimating

‖P‖ := sup
f

‖Pf‖∞
‖f‖∞

.

where the sup is taken over all f ∈ C[t1, tn+k], and

‖f‖∞ := sup
t1≤t≤tn+k

|f(t)|.

1. An Upper Bound

Since Pf depends only on the n-vector (f(τi))
n
1 and since, given any n-vector (fi)

n
1 , there exists f ∈

C[t1, tn+k] such that
f(τi) = fi, i = 1, . . . , n, while ‖f‖∞ = ‖(fi)‖∞,

it follows that
‖P‖ = sup

f
‖Pf‖∞/‖f‖∞ = sup

f
‖Pf‖∞/‖(f(τi))‖∞.

But then, since (Pf)(τi) = f(τi), i = 1, . . . , n, while ranP = $k,t, it follows that

‖P‖ = sup
s∈$k,t

‖s‖∞/‖(s(τi))
n
1 ‖∞.
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Writing the general element s of $k,t in terms of its B-spline representation, this gives that

‖P‖ = sup
a

‖
∑

j

ajNj,k‖∞/max
i

|
∑

j

ajNj,k(τi)|.

By [1], there exists a positive Dk depending only on k such that

D−1
k ‖a‖∞ ≤ ‖

∑

j

ajNj,k‖∞ ≤ ‖a‖∞, all a ∈ IRn.

Since

sup
a

‖a‖∞/max
i

|
∑

j

ajNj,k(τi)| = ‖(Nj,k(τi))
−1‖∞,

we therefore obtain the estimate

D−1
k ‖G−1‖∞ ≤ ‖P‖ ≤ ‖G−1‖∞,

showing that bounding P in the uniform norm is equivalent to bounding below the n× n matrix

G := (Nj,k(τi))
n
i,j=1 (1)

with respect to the matrix norm associated with the max-norm for vectors. This proves the following.

Lemma 1.1. As a linear map on C[t1, tn+k], the map P of spline interpolation given by (0.2) satisfies

D−1
k ‖G−1‖∞ ≤ ‖P‖ ≤ ‖G−1‖∞

for some positive constant Dk depending only on k, and with G the Gramian matrix (1).

Finding a lower bound for a matrix, i.e., an upper bound for its inverse, is in general very difficult. In
this particular case, one would expect some help from the fact that G is totally nonnegative, i.e., G has all
its minors nonnegative, as is shown in [6; Chap. 10, Theorem 4.1]. But the only use I have been able to
make of this fact has been in the form of its simple consequence that all (n−1)-minors of G are nonnegative,
hence G−1 is a checkerboard matrix. This implies (see [2; Lemma 2.4])

Lemma 1.2. Let D := ((−1)iδij), with δij the Kronecker delta. If, for some n-vector γγγγγ,

min
1≤i≤n

(DGG−1γγγγγ)(i) > 0,

then

‖γγγγγ‖∞/max
i

(DGD−1γγγγγ)(i) ≤ ‖G−1‖∞ ≤ ‖γγγγγ‖∞/min
i

(DGD−1γγγγγ)(i).

For a given n-vector γγγγγ, set

a := D−1γγγγγ.

Then ‖a‖∞ = ‖γγγγγ‖∞, while

(DGD−1γγγγγ)(i) = DGa)(i) = (−)i
∑

j

ajNj,k(τi).

Lemmas 1.1 and 1.2 have therefore the following Corollary.
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Corollary. If s ∈ $k,t has B-spline coefficients a and satisfies

s(τi)s(τi+1) < 0, i = 1, . . . , n− 1,

then
‖P‖ ≤ ‖a‖∞/min

i
|s(τi)|.

Finally from [4], if s =
∑

j ajNj,k and τi ∈ (ti, ti+k) (as we assume) then

ai = s(τi) +

k−1
∑

j=1

(−)k−1−jψ
(k−1−j)
ik s(j)(τi)

with
ψik(t) := (ti+1 − t) · · · (ti+k−1 − t)/(k − 1)!,

hence

ai −
k−1
∑

j=1

(−)k−1−jψ
(k−1−j)
ik s(j)(τi) = s(τi), (2)

which is of help in relating the vectors a and (s(τi)) or, equivalently, in computing the entries of G.

2. A Lower Bound

There is no hope of bounding P independently of τττττ . For one, one would expect ‖P‖ to blow up as τττττ
approaches a sequence violating (0.1). For another, ‖P‖ is guaranteed to approach infinity as two consecutive
interpolation points approach each other (t being held fixed). For, in this situation, the interpolation process
approaches osculatory interpolation at the limit of the two interpolation points. But such a process cannot
be bounded in the sup-norm since derivative evaluation cannot be bounded in the sup-norm.

In order to make this last argument precise, and for further guidance, I prove the following.

Lemma. Let r be a positive integer less than k and assume, for simplicity, that

ti < ti+k−r, all i.

Then, for i = 1, . . . , n+ r,

‖P (r−1)‖ := sup
f

‖(Pf)(r−1)‖∞
‖f (r−1)‖∞

≥ constk,rdi,r/(τi+r − τi)

with
di,r := min{tj+k−r − tj : (tj , tj+k−r) ∩ (τi, τi+r) 6= ∅}.

Proof: Let a be the coordinate vector for (Pf)(r−1) ∈ $k−r+1,t with respect to the B-spline basis.
By [1], there exists Dk−r+1 > 0 depending only on k − r + 1 so that

D−1
k−r+1‖a‖∞ ≤ ‖(Pf)(r−1)‖∞ ≤ ‖a‖∞,

while (see, e.g., [3; (14)-(15)])

(Pf)(r) = (k − r)

n+r
∑

i=1

ai − ai−1

ti+k−r − ti
Ni,k−r .

Hence, for τi ≤ t ≤ τi+r ,

|(Pf)(r)(t)| ≤ (k − r)max{
aj − aj−1

tj+k−r − tj
: Nj,k−r(t) 6= 0}

≤ (k − r)2‖a‖∞/di,r.
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But then
|f [τi, . . . , τi+r ]| = |(Pf)[τi, . . . , τi+r ]|

≤ sup
τi≤t≤τi+r

|(Pf)(r)(t)|/r!

≤ (k − r) 2Dk−r+1‖(Pf)(r−1)‖∞/(r!di,r).

Therefore,

sup
f

‖(Pf)(r−1)‖∞/‖f
(r−1)‖∞ ≥

di,rr!

(k − r) 2Dk−r+1
sup

f

|f [τi, . . . , τi+r ]|

‖f (r−1)‖∞
.

But this last supremum can be shown to be at least

2

r!(τi+r − τi)

which is obvious for r = 1 and is proved for r > 1 as follows:

f [τi, . . . , τi+r] =

∫ τi+r

τi

gr(τi, . . . , τi+r; s)f
(r)(s) ds/(r − 1)!

= −

∫ τi+r

τi

( d/ ds)gr(τi, . . . , τi+r ; s)f
(r−1)(s) ds/(r − 1)!

since gr(τi, . . . , τi+r; ·) is a B-spline of order r with knots τi, . . . , τi+r (see Section 0), hence vanishes at τi
and τi+r . Further [5; Theorem 1],

( d/ ds)gr(τi, . . . , τi+r ; ·)

changes sign exactly once in [τi, τi+r ], at t∗ such that

max
τi≤s≤τi+r

gr(τi, . . . , τi+r ; s) = gr(τi, . . . , τi+r; t
∗).

Hence
∫ τi+r

τi

|( d/ ds)gr(τi, . . . , τi+r ; s)| ds = 2gr(τi, . . . , τi+r; t
∗).

But since
∫ τi+r

τi

gr(τi, . . . , τi+r; s) ds/(r − 1)! = 1/r!,

we must have

max
τi≤s≤τi+r

gr(τi, . . . , τi+r; s) ≥
1

r(τi+r − τi)
.

Consequently,

sup
f

f [τi, . . . , τi+r]

‖f (r−1)‖∞
=

∫ τi+r

τi

|( d/ ds)gr(τi, . . . , τi+r; s)| ds/(r − 1)!

≥
2

r!(τi+r − τi)
,

and the asserted lower bound for ‖P (r−1)‖ follows with

constk,r := (k − r)−1D−1
k−r+1.

Q.E.D.
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The case r = 1 of this lemma shows that there is no hope of bounding P unless τττττ is tied very closely to
t in such a way that ∆τi being “small” implies that tj+k−1 − tj is “small” for some tj “near” τi. Consider,
in particular, odd-degree spline interpolation at knots (without the use of boundary derivatives), i.e.,

k = 2m

for some m ∈ IN, and
τm+i = tk+i, i = 1, . . . , n− k,

while the first m τi’s are chosen in [tk, tk+1) and the last m τi’s are, similarly, chosen in (tn, tn+1]. If
k > 2, then we can make the norm of this process arbitrarily large (even for fixed n) merely by letting two
consecutive knots (and interpolation points), τi and τi+1 say, approach each other. For, this will decrease
τi+1 − τi to zero while not materially decreasing tj+k−1 − tj for any j. Note that Nord’s example [11] shows
only the unboundedness of cubic spline interpolation as n approaches infinity.

If the knot sequence t satisfies
ti < ti+k−r, all i,

for a given integer r, then, by restricting P to C(r−1)[t1, tn+k], we can consider the map P (r−1) that associates
f (r−1) ∈ C[t1, tn+k] with (Pf)(r−1) ∈ $k−r+1,t, i.e.,

P (r−1)f (r−1) = (Pf)(r−1), all f (r−1) ∈ C[t1, tn+k].

The lemma shows that P (r−1) cannot be bounded in the sup-norm unless

max
i

min{
tj+k−r − tj
τi+r − τi

: (tj , tj+k−r) ∩ (τi, τi+r) 6= ∅} (1)

can be bounded. For the case of odd-degree spline interpolation at knots mentioned before, this means that
P (r−1) cannot be bounded in the sup-norm independently of t unless k− r ≤ r. Since, for reason to be given
elsewhere, P (s) cannot be bounded in the sup-norm independently of t for s > m, this leaves P (m−1) and
P (m) as the only candidates. In the case k = 4 of cubic spline interpolation at knots, i.e., when m = 2, these
two are indeed known to be bounded independently of t (as can be deduced from [13]). For k = 6, P (m) has
been shown to be bounded independently of t in [2]. But the question of bounding P (k/2) or P (k/2−1) for
arbitrary (even) k is still wide open.

Finally, we note that the lower bound given in the lemma is far from strict. For, this bound can be
bounded above in terms of the local mesh ratio whereas, e.g., in cubic spline interpolation at knots, P is
known [8] not to be boundable in terms of the local mesh ratio.

3. An Upper Bound for Cubic Spline Interpolation at Knot Averages

In [9], Marsden treats in detail the case k = 3 of quadratic spline interpolation. He show that, with the
choice

τi = (ti+1 + ti+2)/2, i = 1, . . . , n, (1)

‖P‖ is bounded by 2 regardless of t, surely a remarkable result. Marsden further conjectures that in the
case k = 4 of cubic spline interpolation, the choice

τi = (ti+1 + ti+2 + ti+3)/3, i = 1, . . . , n,

results in P which can be bounded in the sup-norm independently of t.
Marsden was apparently led to this particular choice because of his joint work with Schoenberg [10], [7],

in which the very simple linear map V , given by the rule

V f :=
∑

i

f(τi,k)Ni,k

with
τi,k = (ti+1 + · · · + ti+k−1)/(k − 1), i = 1, . . . , n,
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is shown to be variation diminishing. Note that, for this choice of the τi’s and for r = 1, the quantity in
(2.1) becomes k − 1 since τi+1 − τi = (ti+k − ti+1)/(k − 1). This means that, for this choice, the lemma in
Section 2 produces the lower bound D−1

k−1 for ‖P‖.
Before proving Marsden’s conjecture with the aid of the corollary in Section 1, I want to derive in that

way a bound for parabolic spline interpolation at knot averages in order to illustrate the procedure.
Choosing k = 3 and Marsden’s interpolation nodes (1), (1.2) becomes

ai +
1

8
(∆ti+1)

2s′′(τi) = s(τi),

or, with

s′′(t) = 2
∑

j

(

∆aj−1

tj+2 − tj
−

∆aj−2

tj+1 − tj−1

)

/∆tj Nj,1(t)

(see [3; (14)-(15)]),

ai + ∆ti+1

(

∆ai

ti+3 − ti+1
−

∆ai−1

ti+2 − ti

)

/4 = s(τi)

or
1

4

∆ti+1

ti+2 − ti
ai−1 +

(

1 −
∆ti+1

4

(

1

ti+2 − ti
+

1

ti+3 − ti+1

))

ai +
1

4

∆ti+1

ti+3 − ti+1
ai+1 = s(τi)

which shows G to be tridiagonal and column diagonally dominant, but, unfortunately for us, not necessarily
row diagonally dominant. In the terms of the corollary of Section 1, this means that the simple choice

ai = (−1)i, all i,

will not give s(τi)s(τi+1) < 0 for all i and t.
Consider now the choice

ai = (−)i

(

1 +
∆ti+1

ti+3 − ti

)

, all i,

so that

‖a‖∞ ≤ 2.

Then

(−)is(τi) ≥ −
1

4

∆ti+1

ti+2 − ti

(

1 +
∆ti

ti+2 − ti

)

+

(

1 −
∆ti+1

4

(

1

ti+2 − ti
+

1

ti+3 − ti+1

))

(1 +
∆ti+1

ti+3 − ti
)

−
1

4

∆ti+1

ti+3 − ti+1

(

1 +
∆ti+2

ti+3 − ti+1

)

= 1 +
∆ti+1

ti+3 − ti

−
∆ti+1

4(ti+2 − ti)

(

1 +
∆ti

ti+2 − ti
+ 1 +

∆ti+1

ti+3 − ti

)

−
∆ti+1

4(ti+3 − ti+1)

(

1 +
∆ti+2

ti+3 − ti+1
+ 1 +

∆ti+1

ti+3 − ti

)

= 1 +
∆ti+1

ti+3 − ti
−

3

4
∆ti+1

(

1

ti+2 − ti
+ 1 +

1

ti+3 − ti+1

)

=: f(A,B)

where, with

A := ∆ti/∆ti+1, B := ∆ti+2/∆ti+1,
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f(A,B) = 1 +
1

A+B + 1
−

3

4

(

1

1 +A
+

1

1 +B

)

.

But, for nonnegative A, B,

f(A,B) =
A+B + 2

A+B + 1
−

3

4

A+B + 2

(A+ 1)(B + 1)

=
A+B + 2

A+B + 1

(

1 −
3

4

A+B + 1

(A+ 1)(B + 1)

)

≥
A+B + 2

A+B + 1

1

4
≥

1

4
,

since, for AB ≥ 0, A + B + 1 ≤ (A + 1)(B + 1). Note that f(0.∞) = 1
4 , hence the lower bound of 1

4 for
f(A,B) on A ≥ 0, B ≥ 0 is sharp.

In conclusion, for the choice (2) for a,

(−)is(τi) ≥
1

4
, while ‖a‖∞ ≤ 2;

hence, from the corollary in Section 1,
‖P‖ ≤ 8

in this case. This should be compared with Marsden’s result that

‖P‖ ≤ 2.

Now for the main point of this paper.

Theorem. Let P be the linear map of interpolation by elements of $4,t at the points of τττττ = (τi)
n
1 . If

τi = (ti+1 + ti+2 + ti+3)/3, i = 1, . . . , n,

then
‖P‖ ≤ 27.

Proof: For this choice of k = 4 and the specific τi’s, (1.2) becomes

ai −
1

6
{(ti+1 − τi)(ti+2 − τi) + (ti+1 − τi)(ti+3 − τi) + (ti+2 − τi)(ti+3 − τi)}s

′′(τi)

−
1

6
(ti+1 − τi)(ti+2 − τi)(ti+3 − τi)s

′′′(τi) = s(τi).

(3)

With the abbreviation

a
(2)
j :=

(

∆aj−1

tj+3 − tj
−

∆aj−2

tj+2 − tj−1

)

/(tj+2 − tj),

we have

s′′ = 6
∑

j

a
(2)
j Nj,2, and s′′′ = 6

∑

j

∆a
(2)
j−1

∆tj
Nj,1.

Hence, assuming without loss that

∆ti+2 ≤ ∆ti+1, therefore τi ∈ [ti+1, ti+2], (4)

we find that
s′′(τi) = 6a

(2)
i Ni,2(τi) + 6a

(2)
i+1Ni+1,2(τi),

s′′′(τi) = 6∆a
(2)
i /∆ti+1.
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On substituting this into (3) and simplifying, we obtain

ai + a
(2)
i (ti+2 − τi)

3/∆ti+1 + a
(2)
i+1(τi − ti+1)

3/∆ti+1 = s(τi).

Now set
aj = (−)jγj , all j,

for some positive γγγγγ still to be determined. Then we obtain, more explicitly, that

(−)is(τi) = γi +

(

γi + γi−1

ti+3 − ti
+
γi−1 + γi−2

ti+2 − ti−1

)

(ti+2 − τi)
3

ti+2 − ti
/∆ti+1

−

(

γi+1 + γi

ti+4 − ti+1
+
γi + γi−1

ti+3 − ti

)

(τi − ti+1)
3

ti+3 − ti+1
/∆ti+1,

(5)

an expression to be bounded below by some positive quantity. In fact, with the choice

γj =

(

1 +
tj+3 − tj+1

tj+4 − tj

)

, all j,

we have ‖a‖∞ ≤ 2, and
(−)is(τi) ≥ 2/27, all i, (6)

which, by the corollary to Section 1, finishes the proof of the theorem.
Unfortunately, I have been unable to come up with an elegant proof of the inequality (6). Instead, I

had to follow the following procedure:
(i) Replace the term (γi−1+γi−2)/(ti+2−ti−1) in the right hand side of (5) by zero, thereby obtaining

a lower bound for (−)is(τi).
(ii) Multiply the resulting expression by 27, then subtract 2. It remains to prove the resulting

expression nonnegative.
(iii) In the resulting expression, use the abbreviations

A := ∆ti/∆ti+1, C := ∆ti+2/∆ti+1, D := ∆ti+3/∆ti+1,

E := 1 + C = (ti+3 − ti+1)/∆ti+1

bringing it into the form

27γi + (γi + γi−1)coefi−1 + (γi + γi+1)coefi+1 − 2 (7)

with

coefi−1 =

(

(2 − E)3

1 +A
−

(1 + E)3

E

)

/(A+ E)

coefi+1 = −
(1 + E)3

E
/(E +D).

Note that the earlier assumption (4) translates into

1 ≤ E ≤ 2 (8)

hence (7) has to be shown to be nonnegative on A,D ≥ 0, 1 ≤ E ≤ 2.
(iv) Verify that both coefi−1 and coefi+1 are always negative, hence replace without increase in (7)

γi + γi−1 by the larger expression 3 + 1/(A+ E +D)

and
γi + γi+1 by the larger expression 3 + C/(A+ E +D).
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(v) Bring the resulting expression on one denominator, using the further abbreviation

F := A+D.

The denominator is then positive on A,D ≥ 0, 1 ≤ E ≤ 2, while the numerator is a polynomial in A, D, E,
and F whose coefficients are given in the following table:

1 A D AD A2 DA2 D2 (1 +A)F 2 (1 +A)ADF

E6 −3
E5 10 −10 −6
E4 1 39 26 −12 −10 −3
E3 −9 −9 −17 67 48 18 −3
E2 1 −10 6 −14 −27 52 −36 16
E −7 −4 12 −7 24 −9 25
1 1 −1 −1 −1 −3

(vi) Verify that, on 1 ≤ E ≤ 2, each of the 9 polynomials in E listed in the above table is nonnegative.
As it turns out, all of these polynomials are strictly positive on [1, 2] except for the one multiplying D2, the
polynomial

E(24 − 36E + 18E2 − 3E3)

which decreases from a value of 3 at 1 to a value of 0 at 2.
It follows that, for A, D, and F nonnegative, the numerator is nonnegative, thus proving (6); Q.E.D.

In view of the fact that I obtained above a bound of 8 in the parabolic case when actually the norm is
at most 2, it seems likely that, in the cubic case, the norm is at most 3 or 4 rather than the proven 27.

At this point, it is easy to conjecture that kth order spline interpolation at the averages of k − 1
successive knots is bounded as a map on C[t1, tn+k] independently of t. It is also easy to see that a proof of
this conjecture is not likely to be a straightforward generalization of the above procedure 1.
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