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The story

The basic idea of the Meir/Sharma/Hall/Meyer error analysis for cubic spline inter-
polation (see [SM66], [H68], [HM76]) has been extended to cover also certain deficient
quartic and quintic spline interpolation schemes, the latter already by them, the former by
Howell/Varma [HV89] and, perhaps, others. It is the purpose of this note to describe the
most general situation to which this idea applies and thereby, perhaps, to obviate further
papers on various special cases.

In full generality, the idea covers the following situation. Let

(1) τ = (τ1, . . . , τk+1) = (0, . . . , 0︸ ︷︷ ︸
ρ times

< τρ+1 ≤ · · · ≤ τρ+r < 1, . . . , 1︸ ︷︷ ︸
ρ times

)

be any nondecreasing (k+1)-sequence in [0 . .1] in which both 0 and 1 occur exactly ρ > 0
times, hence r is such that

k + 1 = 2ρ+ r.

Denote by
Hτg

the Hermite interpolant to g at τ , i.e., the unique polynomial of degree ≤ k which agrees
with g at τ , repeated points in τ corresponding to the matching of derivative values in the
standard way.

The corresponding Hermite spline interpolant, for a given break sequence

ξ = (a = ξ1 < · · · < ξ`+1 = b)

in the interval [a . . b], is, by definition, the function

(2) Hg := Hτ,ξg := σ−1
i Hτσig on [ξi . . ξi+1], i = 1, . . . , `,

with σi the linear change of variables

σif : t 7→ f(ξi + t hi), hi := ξi+1 − ξi, i = 1, . . . , `.

By the Schoenberg-Whitney Theorem, there exists, for given smooth g, exactly one
element in the space

S := Π(ρ)
k,ξ

of pp functions in C(ρ)[a . . b] of degree k with break sequence ξ which matches g ρ− 2-fold
at each breakpoint, except at a and b where the match is ρ− 1-fold, and matches also at
the points

ξi + τκhi, κ = ρ+ 1, . . . , ρ+ r, i = 1 . . . , `.
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We denote this element by
s = Ig = Iτ,ξg.

Special cases include:
(i) k = 3, ρ = 2, hence r = 0, leading to complete cubic spline interpolation.
(ii) k = 3, ρ = 1, hence r = 2, leading to deficient cubic spline interpolation studied by

Dikshit/Powar [DP81] (and others).
(iii) k = 2, ρ = 1, hence r = 1, leading to parabolic spline interpolation (at midpoints,

e.g.), first discussed by Subbotin [Su67].
(iv) k = 4, ρ = 2, hence r = 1, leading to C2-quartic spline interpolation, as investigated

by Howell/Varma [HV89].
(v) k = 5, ρ = 3, hence r = 0, leading to C3-quintic spline interpolation, as investigated

by Sharma/Meir [SM66], as well as by Hall [H68], and Hall/Meyer [HM76].

The construction of Ig proceeds as follows. Since each polynomial piece of Ig is
completely determined once also the numbers Dρ−1Ig(ξi), i = 2, . . . , `, are known, and
thereby joins its neighboring piece(s) in C(ρ−1)-fashion, one relies on the tridiagonal linear
system

(3) A(Dρ−1Ig) = Λg

obtained from the requirement that the various polynomial pieces should join in C(ρ)-
fashion. Somewhat more explicitly,

(Af)(i) =
∑

j

A(i, j)f(ξj), i = 2, . . . , `

for a certain tridiagonal matrix A, with A(i, j) expressible in terms of hi−1, hi, k, and ρ
(see (18)). Also,

Λg = (λig : i = 2, . . . , `),

with λig a certain linear combination of the data

g τ(i)

(see (8)) for g on the interval [ξi−1 . . ξi+1], all i. It is one of the results of the present note
(see (19)) that, as has been known in all the special cases mentioned above, the matrix
A of the linear system (3) is diagonally dominant, uniformly in ξ if scaled appropriately
and if τ is symmetric, hence the linear system can be solved stably by Gauss elimination
without pivoting.

The Meir/Sharma/Hall/Meyer analysis of the error g − Ig is based on the split

e := g − Ig = (g −Hg) + (H − I)g,

as first used by Hall [H68] (for cubic and quintic spline interpolation).
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The first part is dealt with locally, relying on known sharp bounds (such as those
in Birkhoff and Priver [BP67] for the cubic and quintic case) for Hermite interpolation.
Fortunately, Shadrin [Sh95] quite recently gave a complete treatment of such sharp error
bounds, for arbitrary degree, thus providing a proof that

‖g −Hg‖∞,(ξi..ξi+1) ≤ cτh
k+1
i ‖Dk+1g‖∞,(ξi..ξi+1),

with
cτ := ‖(1 −Hτ )()k+1‖∞/(k + 1)!.

This implies that

(4) ‖g −Hg‖∞ ≤ cτ (max
i
hi)k+1‖Dk+1g‖∞

with equality for any g for which Dk+1g is absolutely constant and is constant in each
break interval (ξi . . ξi+1).

The second part requires comparison of the (local) Hermite interpolant, Hg, with the
(global) spline interpolant, s = Ig. On each break interval [ξi . . ξi+1], both are polynomials
of degree ≤ k that match the same information about g except for the (ρ− 1)st derivative
at the endpoints which is only matched by Hg, while Ig gets that information from the
linear system (3). It follows that, on this break interval,

Hg − Ig = Dρ−1e(ξi)ϕ0,i +Dρ−1e(ξi+1)ϕ1,i,

with σiϕj,i := hρ−1
i ϕj , j = 0, 1, and ϕ0, ϕ1 certain polynomials of degree ≤ k with

(5) (−1)k−ρϕ0ϕ1 ≥ 0 on [0 . . 1].

Therefore,
‖Hg − Ig‖∞,(ξi..ξi+1) ≤ ‖Dρ−1e ξ‖∞cϕhρ−1

i ,

with
cϕ := ‖ϕ0 + (−1)k−ρϕ1‖∞,

and with equality if Dρ−1e ξ is absolutely constant and (−1)k−ρDρ−1e(ξi)Dρ−1e(ξi+1) ≥ 0
for all i. Further, the sequence (Dρ−1e(ξj) : j = 2, . . . , `) satisfies the linear system (3),
but with an appropriately changed right side:

(6) A(Dρ−1e) = A(Dρ−1g) − Λg =: Mg.

The coefficient matrix, A, for this linear system is tridiagonal, with positive diagonal
entries. Hence, if

(20) cA := min
i

(A(i, i) − |A(i, i− 1)| − |A(i, i+ 1)|)

is positive, then
‖(Dρ−1e) ξ‖∞ ≤ ‖Mg‖∞/cA.
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Further, if τ is symmetric, i.e., τ = 1− τ , then (see (19)) the minimum in (20) is taken on
for i = 3, . . . , `− 1 and is independent of ξ. Finally,

Mg = (µig : i = 2, . . . , `),

with each µi a certain linear combination of the linear functionals used for σ−1
ν Hτσν ,

ν = i− 1, i , i.e., µig is a linear combination of values and derivatives of g at the entries of

(8) τ (i) := (ξi−1 + τhi−1 , ξi + (τκ : κ = ρ+ 1, . . . , k + 1)hi ).

In the early papers, local Taylor expansion was appealed to to assert (sometimes incorrectly,
e.g., in [H68] for the cubic case) that µig = ciD

k+1g(ηi) for some ηi ∈ (ξi−1 . . ξi+1). In
any case, µi must vanish on Πk, hence, as first used explicitly in Howell/Varma [HV89]
(but see already Schultz [S73]), for smooth g,

µig =
∫ ξi+1

ξi−1

µ̂iD
k+1g, i = 2, . . . , `,

for a certain pp function µ̂i, with breaks only at the data points and with support in
[ξi−1 . . ξi+1]. Therefore,

‖Mg‖∞ ≤ max
i

‖µ̂i‖1 ‖Dk+1g‖∞,

and a detailed analysis (see (22)) of the integrals

‖µ̂i‖1 =
∫ ξi+1

ξi−1

|µ̂i(y)|dy

provides the formula

(9) ‖µ̂i‖1 = cµ
hih

k−ρ+2
i−1 + hi−1h

k−ρ+2
i

hi−1 + hi

with a certain ξ-independent constant cµ, and so finishes the derivation of the error bound

(10) ‖g − Ig‖∞ ≤ (cτ + (cµ/cA)cϕ)(max
i
hi)k+1‖Dk+1g‖∞.

Curtis and Powell [CP67] seem to be the first to have proved sharpness of spline
interpolation error bounds, for the special case of cubic spline interpolation on a uniform
mesh. Their argument relies on a detailed analysis of the Peano kernel for the error.

In the present setting, Hall/Meyer [HM76] were the first to consider the sharpness of
the bound (10) (and of corresponding bounds on the error in derivatives). To be precise,
this sharpness is only asymptotic, as ` grows large, with the error bound almost exact
for a uniform ξ. In all cases considered, i.e., Hall/Meyer in cubic and C(3)-quintic spline
interpolation, Howell/Varma in C(2)-quartic spline interpolation, the sharpness has been
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established by exhibiting an extremizing function, in effect an Euler spline in the cases
considered by Hall/Meyer, and the monomial ()k+1 in C(2)-quartic spline interpolation.
The argument for it relies on an often quite detailed analysis of the function µ̂i to show
its simple sign pattern (just one sign change, at ξi, in the cubic and quintic case, no sign
change in the quartic case) and on a further, ad hoc, argument involving the matrix A.

It is one purpose of this note to point out that the error bound (10) is asymptotically
sharp in the general case, and that this can be seen quite easily. In particular, µ̂i is
necessarily a linear combination of the k + 1 − ρ B-splines of order k + 1 associated with
the knot sequence τ (i) (see (8)) and has a zero of order k − ρ at ξi, and this already
determines it uniquely, up to sign. In particular, µ̂i is of one sign on each of the two
breakpoint intervals in its support. Furthermore, the µ̂i are of one sign (resp., change
sign) exactly when the inverse of A is of one sign (resp., checkerboard), making it possible
to exhibit a function for which the error bound is (asymptotically) sharp. In particular,
the error bound (10) can thereby be seen to be exact in a very simple case, in which the
error can be computed directly, thus making the separate calculation of the four constants,
cτ , cµ, cA, and cϕ unnecessary.

Here is the formal statement.

Theorem. Let τ = (τi : i = 1, . . . , k + 1) be a nondecreasing sequence in [0 . . 1] in which
both 0 and 1 occur exactly ρ > 0 times, and set r := k + 1 − 2ρ (hence 0 < τρ+1 ≤ · · · ≤
τρ+r < 1). Let ξ = (a = ξ1 < · · · < ξ`+1 = b) and let S = Π(ρ)

k,ξ be the space of pp functions

in C(ρ) of degree k with breaks ξ. Then, for every g ∈ C(ρ−1)[a . . b], there exists exactly
one s = Ig in S which interpolates to g in the sense that

s = g at ξj + (τ2, . . . , τk)∆ξj , j = 1, . . . , `

(with repetitions indicating the matching of derivatives in the usual way), and also

(11) Dρ−1s = Dρ−1g at a, b.

Further, if τ is symmetric, i.e., τ = 1 − τ , then

(12) ‖g − Ig‖∞ ≤ c (max
i

∆ξi)k+1‖Dk+1g‖∞,

with c := ‖g0 − I0g0‖∞ the maximum error in the special case that ξ = (−1, 0, 1), g0
is 2-periodic with Dk+1g0(x) equal to −1 for −1 < x < 0 and equal to (−1)k−ρ−1 for
0 < x < 1, and with (11) replaced by the periodic end-conditions

(13) Dρ−js(b) = Dρ−js(a), j = 0, 1.

In particular (12) is asymptotically sharp, for a uniform ξ, as `→ ∞.

It should be noted that the symmetry assumption for τ is a convenience. However,
diagonal dominance cannot be had without some assumption on τ .

Also, it should be pointed out that sharp pointwise error bounds are available for
interpolation by splines with simple (interior) knots to data at simple data sites which
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satisfy the Schoenberg-Whitney conditions; see Sections 5.2 and 5.3 of Korneichuk’s book
[K91]. Those results can easily be extended to the present situation (which involves non-
simple knots and data sites). This note’s virtue (if any) lies in pointing out a simple way
to derive the error bound (12) and compute the exact constant c in it for the particular
spline interpolation schemes considered.

The remainder of this note proves the various assertions made, thus providing all
missing details for the proof of the theorem.

Some facts concerning Hτ

In this preparatory section, we derive various facts concerning the Hermite interpolant,
Hτg, in particular its dependence on the data Dρ−1g(ν), ν = 0, 1, of use later, in the
analysis of the matrix of the linear system (3), and of the norms ‖µ̂i‖1.

Since Hτg matches g at τ , we may write it in the convenient form

(14) Hτg = Dρ−1g(0)ϕ0 +Dρ−1g(1)ϕ1 +Qτg,

with
ϕν = αν (· + ν − 1)ψ, ν = 0, 1,

where

ψ(t) :=
k∏

κ=2

(t− τκ),

and the constant αν is such that Dρ−1ϕν(ν) = 1, ν = 0, 1, hence Dρ−1Qτg(ν) = 0,
ν = 0, 1, and Qτg depends only on the data g (τκ:κ=2,...,k). In other words, (14) gives Hτg

in ‘Lagrange form’, but with only two of the data, namely Dρ−1g at 0 and at 1, mentioned
explicitly, and the rest of the information collected in the term Qτg.

Here are some details concerning the function ϕ1 which, together with the analogous
information about ϕ0, will be needed in the discussion of the diagonal dominance of A and
the sign pattern of its inverse. Since

Dq(· − β)ψ = qDq−1ψ + (· − β)Dqψ, q = 0, 1, 2, . . . ,

we have
1 = Dρ−1ϕ1(1) = α1(ρ− 1)Dρ−2ψ(1) + α1D

ρ−1ψ(1).

Since
Dρ−2ψ(1) = 0 6= Dρ−1ψ(1),

this implies that α1 = 1/Dρ−1ψ(1), hence

Dρϕ1 =
(
ρDρ−1ψ + ()1Dρψ

)
/Dρ−1ψ(1).

In particular,
Dρϕ1(0) = ρDρ−1ψ(0)/Dρ−1ψ(1),
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while

(15) Dρϕ1(1) = ρ+Dρψ(1)/Dρ−1ψ(1) > ρ

since, by Rolle’s theorem, Dρ−1ψ has all its zeros in the open interval (0 . . 1).
Since Dρ−1ψ has exactly ρ− 1 + r = k − ρ zeros in (0 . . 1), we have

(−1)k−ρDρ−1ψ(0)Dρ−1ψ(1) > 0,

hence

(16) (−1)k−ρDρϕ1(0) > 0 .

This implies that (−1)k−ρD2ρ−1(ϕ0ϕ1)(0) > 0, hence, since ϕ0ϕ1 vanishes to exact order
2ρ− 1 at 0 and has only even zeros in (0 . . 1), (5) follows. More explicitly than (16),

Dρϕ1(0) = (−1)k−ρρ, if τ is symmetric.

It seems most efficient to deduce the corresponding statements for ϕ0 from the fact
that

ϕ0 = ϕ0,τ = (−1)ρ−1ϕ1,1−τ (1 − ·).
This implies that

Dρϕ0 = (−ρDρ−1ψ + (1 − ·)Dρψ)/Dρ−1ψ(0)

and, in particular,
Dρϕ0(0) = −ρ+Dρψ(0)/Dρ−1ψ(0) < −ρ

(since Dρ−1ψ has all its zeros in the open interval (0 . . 1)). Therefore,

(17) Dρϕ0(0) < 0 < Dρϕ1(1).

The tridiagonal linear system

Since the Schoenberg-Whitney theorem guarantees existence and uniqueness of the
interpolant, we know that the coefficient matrix A in (3) is invertible. We now show that,
for a symmetric τ , A is diagonally dominant, independently of ξ, with positive diagonal
entries and with the next-to-diagonal entries negative (positive) exactly when k−ρ is even
(odd), hence the inverse of A is positive (checkerboard).

The ith equation in (3) expresses the requirement that the interpolant, s = Ig, have
a continuous ρth derivative at ξi:

Dρs(ξi−) = Dρs(ξi+).
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Written out in more detail, this reads, after reordering so as to put the unknown terms on
the left and the given information on the right (except that, for i = 2 and i = `, we leave
the known endpoint derivative on the left side),

(Dρ−1s(ξi−1)Dρϕ0(1) + Dρ−1s(ξi)Dρϕ1(1))/hi−1

−
(Dρ−1s(ξi+1)Dρϕ1(0) + Dρ−1s(ξi)Dρϕ0(0))/hi

= Dρ−1(σ−1
i−1Qτσi−1g)(ξi−) − Dρ−1(σ−1

i Qτσig)(ξi+).

After multiplying both sides by (hi−1hi)/(hi−1 + hi), we obtain the ith equation of
(3), with

(18) A(i, j) =
1

hi−1 + hi



Dρϕ0(1)hi, j = i− 1;
Dρϕ1(1)hi −Dρϕ0(0)hi−1, j = i;
−Dρϕ1(0)hi−1, j = i+ 1.

By (17), A(i, i) > 0 while, by (16), A(i, i±1) is negative (positive) exactly when k−ρ
is even (odd).

If now τ is symmetric, i.e., τ = 1 − τ , then

(19) A(i, j) =
1

hi + hi−1




−ρ(−1)k−ρhi, j = i− 1;
(ρ+Dρψ(1)/Dρ−1ψ(1))(hi + hi−1), j = i;
−ρ(−1)k−ρhi−1, j = i+ 1.

Therefore,

(20) A(i, i) −
∑
j 6=i

|A(i, j)| ≥ Dρψ(1)/Dρ−1ψ(1) =: cA,

with cA positive (by (15)) and with equality for all i except for the first and last, unless
we switch to the periodic end conditions (13), in which case there is equality here for all i.

While it is trivial that, therefore, A is also diagonally dominant for all ‘nearby’ τ , A is
not diagonally dominant for all choices of τ . E.g., for the simplest possible case ρ = 1 = r,
hence k = 2, we have φ0 = (· − τ2)(· − 1)/τ2, and therefore

A(i, i)−|A(i, i−1)|−|A(i, i+1)| = (hi(
2 − τ2
1 − τ2

− 1 − τ2
τ2

)+hi−1(
τ2 + 1
τ2

− τ2
1 − τ2

))/(hi+hi−1),

which, for some ξ, becomes negative when τ2 6∈ [2−√
3 . . 1/

√
2]. (However, this matrix is

column diagonally dominant for all τ2 ∈ (0 . . 1)).
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A representer for µi

Since the error, e = g − Ig, is zero for any g ∈ S and the matrix A is invertible, it
follows that, for each i, the functional µi necessarily vanishes on S. This implies that

µig =
∫ ξi+1

ξi−1

µ̂iD
k+1g, i = 2, . . . , `,

for a certain pp function µ̂i, with breaks only at the data sites and with support in
[ξi−1 . . ξi+1]. Precisely, any smooth g can be written

g(t) =
∑
j≤k

Dig(a)(t− a)i/j! +
∫ b

a

(t− y)k
+/k! D

k+1g(y)dy,

and, since Πk [a..b] ⊂ S [a..b], this implies that

µ̂i(y) = µi(· − y)k
+/k! = −µi(· − y)k

−/k!,

the second equality since (· − y)k
+ + (· − y)k

− ∈ Πk. Consequently, µ̂i is an element of the
space Sk+1,τ(i) of splines of order k+1 with knot sequence τ (i) (see (8)). Any spline space
has dimension equal to (number of knots) – (order), hence,

(21) dimSk+1,τ(i) = ρ+ r = k − ρ+ 1.

Since also (· − ξi)
q
+, q = ρ + 1, . . . , k, is in S, hence is annihilated by µi, it follows

that µ̂i vanishes k − ρ-fold at ξi. It follows from (21) (and, e.g., the Schoenberg-Whitney
Theorem) that this condition alone determines µ̂i uniquely, up to a scalar factor. Further,
since µ̂i 6= 0, it follows that µ̂i vanishes in (ξi−1 . . ξi+1) only at ξi, hence is of one sign, or
changes sign only at ξi, depending on whether k − ρ is even or odd.

This simple observation suffices for the derivation of an explicit formula for ‖µi‖ =
‖µ̂i‖1, as follows. Consider the functions

ϕ±(t) := (t− β±)ϕ0(
t− ξi
h±

) (h±)k γ±Dρ−1ψ(0)/(k + 1)!,

with γ− := −1, γ+ := −(−1)k−ρ, h± := ξi±1 − ξi, with ϕ0 and ψ as in the detailed
discussion of Hτ , and with β± to be determined in such a way that

Dρ−jϕ−(ξi) = Dρ−jϕ+(ξi), j = 0, 1.

It turns out that β± can so be determined. The resulting function

g(t) :=
{
ϕ−(t) t ≤ ξi;
ϕ+(t) t ≥ ξi,
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is seen to be piecewise polynomial of degree k+ 1, with Dk+1g equal to γ− on (ξi−1 . . ξi),
and equal to γ+ on (ξi . . ξi+1), hence

∫ ξi+1

ξi−1

µ̂iD
k+1g = ±‖µ̂i‖1.

On the other hand, g τ(i) = 0, and even Dρ−1g(ξi±1) = 0. This implies that the spline
interpolant to g for the break sequence (ξi−1, ξi, ξi+1) is zero, therefore A(i, i)Dρ−1g(ξi) =∫ ξi+1

ξi−1
µ̂iD

k+1g.
This gives (9) in the more explicit form

(22) ‖µ̂i‖1 =
ρ|Dρ−1ψ(0)|

(k + 1)!
hi(hi−1)k−ρ+2 + hi−1(hi)k−ρ+2

hi + hi−1
,

and even shows that µ̂i(t) ≤ 0 for t ≤ ξi, while (−1)k−ρµ̂i(t) ≤ 0 for t ≥ ξi (by virtue of
the fact that A(i, i)Dρ−1g(ξi) is positive). To be sure, the g constructed is only in C(ρ).
However, it is the error in the spline interpolant to any (k+ 1)st primitive of the function
Dk+1g, and that is all that really matters.

A similar construction for the simple break sequence (−1, 0, 1) can be used to provide
the 2-periodic function g0, with g0(x) = ((x(x − 1) + ρDρ−1ψ(0)/Dρψ(0))ψ(x)/(k + 1)!
on (0 . . 1) and odd (even) when ρ − 1 is odd (even), for which I0g0 = 0 while ‖g0‖∞ =
cτ + (cµ/cA)cϕ.

It also follows that, if k− ρ is even, then all the µi take on their norm on the function
()k+1, while, if k − ρ is odd, they all take on their norm on the function whose k + 1st
derivative is absolutely constant and changes sign across each interior ξi. In the former
case, the corresponding right side in (6) is of one sign, while, in the latter case, it is
maximally alternating in sign. In the latter case, and for a symmetric choice of τ and for
a uniform ξ, it follows that Dρ−1e vanishes at all the breaks ξi when g = ()k+1, hence the
error in Dρ−1e at the breaks is at least one order higher than expected. This was first
observed for cubic spline interpolation, in [BB65].

Now recall that, correspondingly, the inverse of the matrix A in (6) is of one sign when
k − ρ is even, and is checkerboard when k − ρ is odd. Therefore, (12) is asymptotically
sharp for a uniform ξ (using the essentially local character of spline interpolation in that
case).
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