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ABSTRACT. We show that if the open, bounded domain €2 C R¢ has a sufficiently smooth
boundary and if the data function f is sufficiently smooth, then the L,(2)-norm of the
error between f and its surface spline interpolant is O(§77T1/2) (1 < p < o), where 7, :=
min{m, m —d/2 + d/p} and m is an integer parameter specifying the surface spline. In case
p = 2, this lower bound on the approximation order agrees with a previously obtained upper
bound, and so we conclude that the Ls-approximation order of surface spline interpolation is

m+1/2.

1. INTRODUCTION

Let d,m € N:={1,2,3,...} with m > d/2. Let H™ be the space of all f € C'(R?) such
that D®f € Ly(R?) (in the distrubutional sense) for all |a| = m. We define the semi-norm
[~ llzzm on H™ by

1 o= |11 F)

Lo(BI\0)

where ]/C\ denotes the Fourier transform of f. Let II; denote the space of all d-variate
polynomials whose total degree is less or equal to k. It is known [Dul] that if f € H™ and
= C R? satisfies

(1.1) p(=) #1{0} Vp € Il,1\0,

then there exists a unique s € H™ which minimizes |||s]||;» subject to the interpolation
conditions S|z = f|: The function s is called the surface spline interpolant to f at = and

will be denoted by T=f. In case = is a finite subset of RY satisfying (1.1), T=f has the
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concrete representation as the unique function in S(¢, =) which satisfies S|z = f| . Here

[1]

¢ : R4 — R is the radially symmetric function given by

b R if d is odd
- |-|2m_d log|-| if dis even,

and S(¢, =) denotes the space of all functions of the form

g+ Y Aed(-—8),

e

where ¢ € II,,_; and the A¢’s satisfy

(1.2) > Aep(€) =0, Ype Iy
Ee=

Surface spline interpolation is a prominent member of a family of interpolants known as
radial basis function interpolants. The approximation properties of these interpolants have
received considerable attention in the literature (for a sampling see [Du2], [Bul], [WS],
[MN], [WS], [DR], [BDL], [P2], [J1], [S1], [J2], [S2], [Bej], and the surveys [P1], [Bu2]).

In order to discuss the approximation properties of surface spline interpolation, we
assume that Q@ C R?is bounded and open and that the interpolation points = are contained
within Q := closure(2). The ‘density’ of = in € is measured by

4(=,Q) :=sup inf |z — £]|.
zeQ EEE
Roughly speaking, we say that surface spline interpolation provides L,-approzimation of
order ~ if for all bounded, open Q C R? having a sufficiently smooth boundary and for all
sufficiently smooth functions f,

If = Teflly, ) = O)  as §:=5(Z.Q) = 0.

The largest (or supremum of all) such ~ is called the L,-approzimation order of surface
spline interpolation. Duchon [Du2] has shown that the L,-approximation order of surface
spline interpolation is at least 7, := min{m, m —d/2+4d/p} for all 1 < p < co. The precise
details are as follows:

Theorem 1.3. Let Q C RY be bounded, open and have the cone property. Then there
exists 0o > 0 (depending only on Q,m) such that of f € H™ and § := §(=,Q) < do, then
If = T=fllL, ) < const(,m) 67 | T f = T=flll g,  and
ITa f = Teflll g — 0 as 6 — 0.

On the other hand, it is known [J1] that the L,-approximation order of surface spline
interpolation is at most m + 1/p for all 1 < p < oco. Specifically, it is known that if € is
the open unit ball B := {z € R%: |z| < 1}, then there exists f € C°°(R?) such that

1f =T=fllL, ) # o(6™ ) as  §:=6(2,Q) = 0.
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For the sake of comparison, we mention that in the ideal case Q = R, = = hZ¢, (which
of course violates our present setup) it is known ([Bul], [JL]) that the L,-approximation
order of surface spline interpolation is 2m, a value at least twice ~,.

The purpose of the present work is to show that the L,-approximation order of surface
spline interpolation is at least v, + 1/2 for all 1 < p < co. In case p = 2, this new lower
bound matches the upper bound of m+1/p, and so we conclude that the Ly-approximation
order of surface spline interpolation is m 4 1/2. In order to state our main result, we need
the following definition which is taken from [Ad, p.67]. Our statement of the definition
has been specialized (simplified) to the case when A has a bounded boundary.

Definition 1.4. Let & € Ny := {0,1,2,...} and let A C R? be an open set having a
bounded boundary. A has the uniform C*-reqularity property if there exists a finite open
cover {U;} of A, and a corresponding collection of one-to-one transformations {®;} with
®; taking U; onto B, such that:

(1) For each j, the components of ®; belong to C*(TUy;).

) or each 7, the components of @ belong to B).

i) For each j, th f ¢ belong to C*(B
(ifi) ~ For some h >0, (9A+hB) C | J@;"(B/2).

j
(1v) For each j, ®;(U; N A) ={y € B :yqs > 0}.

Our main result is the following:

Theorem 1.5. Let Q C R? be bounded, open and have the uniform C*™-reqularity prop-

erty. Then there exists dg > 0 (depending only on Q,m) such that if f € B;v?l—i—l/2 and
§:=46(=2,Q) < do, then

Tt — T fll o < const(Q,m)8? || £] yyssso

and hence by Theorem 1.9,

1 = T2l g0y < const(€,m)E V2 || pmssyo

Here, B;nfl/z denotes a certain Besov space which we define in section 2.

An outline of the paper is as follows: In section 2, we recall previous work on this problem
and state in Theorem 2.3 precisely what will be proven in the present paper. In section
3, we estimate the size of ¢ * p in various function spaces under various assumptions on
the compactly supported distribution p. A general representation of Ty f is then obtained
in section 4 assuming only that A is bounded and f € H™. The regularity of T f in the
exterior domain Qey; 1= Rd\ﬁ is studied in section 5and the global regularity of Tq f is
then deduced in section 6. Finally, in section 7, the representation and global regularity

of Tq f are employed to prove Theorem 2.3.
%L 92 H%d
ozl 9z, ? axjd‘

The natural numbers are denoted N := {1,2.3,...}, and the non-negative integers are

Throughout this paper we use standard multi-index notation: D% :=
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denoted Ng. For multi-indices a € N¢, we define |a| := a1 + as + -+ + a4, while for

z € RY, we define |z| := \/:1;% + @3 + -+ + 22. For multi-indices a, we employ the notation
() to represent the monomial z ++ 2%, x € R% The space of polynomials of total degree
< k can then be expressed as Il := span{()® : || < k}. The Fourier transform of an
integrable function f is defined by J/C\(w) = Jpa e~ f(z)dr. The space of compactly
supported C'° functions whose support is contained in A C R? is denoted C'2°(A). If u
is a distribution and ¢ is a test function, then the application of 1 to ¢ is denoted (g, 11).
We employ the notation const to denote a generic constant in the range (0..o00) whose
value may change with each occurence. An important aspect of this notation is that const
depends only on its arguments if any, and otherwise depends on nothing.

2. A REDUCTION OF THE PROBLEM

The Besov spaces, which we now define, play an essential role in our theory.
Definition 2.1. Let 4y := B, and for k € N, let Ay := 2¥B\2¥~'B. The Besov space
B;q, v e R, 1< g < o0,is defined to be the set of all tempered distributions f for which

f 1s a locally integrable function and

< 0.

£y, = |1 2017
" éq(NO)

Lo(Ag)

We also employ the Sobolev spaces W"?(A) defined for open 4 C RY and n € N,
p€[l..o0] by
WHP(A) :={f € Lao(A) [ fllwnr(ay < ool

where HfHWWP(A) = (Z|a|§n HDafH]zp(A))l/p if1 < p < ooand HfHW’%P(A) ‘= 1aX|q|<n HDafHLOO(A)
if p = oco. The closure of C°(A) in W P(A) is denoted

WyP(A) := closure(C(A); W™P(A)).

For s > 0, the Sobolev space W? is defined by

W= {f € L || fllye = |[(1+ )72 ]]

< .
Lo OO}

All of the above defined spaces are Banach spaces. The following continuous embeddings
can be found in [Pe] (they are also easy to prove from the definitions):

Bifql — B;qu if 53 > 52,
B5, =W =B, ifqg<2<q,s>0, and
W — By =W ifs) >s>s 20.

Moreover, if s > 0, then W* = Bj, (with equivalent norms), and if n € Ny, then
W (R = Wn (with equivalent norms).



DURPFACE SDPFLINL IN1TERFOLATTION J

A significant part of our task (proving Theorem 1.5) has already been established in
[J3]. Before stating the relevant result, we must define the convolution between ¢ and a
compactly supported distribution. The Fourier transform of ¢ can be identified on R%\0
with the locally integrable function c4 |-|_2m, where is cg4 1s a nonzero real constant which
depends only on d,m (see [GS]). If 1 is any compactly supported distribution, then we
define the convolution ¢ * i1 in the Fourier transform domain via

(¢ ) "= opi.
That this is well-defined stems from the fact that q/b\ﬁ is a tempered distribution (as can

be seen from the fact that 7 € C°°(RY) and |ji(z)| has at most polynomial growth as
|z| — o0). The following has been proven (in greater generality) in [J3]:

Theorem 2.2. Let Q be a bounded, open subset of R? having the cone property. There

exists &g > 0 (depending only on Q,m) such that if f € C(RY) is such that there exists

g € Mo, p € By satisfying suppp C Q. (IL—y, p) = {0}, and g+ p = f on

then
() Taf=q+érp and
(17) WTaf —T=flllgm < const(Q, m)5'/? H/,LHBQ_:;H/z whenever § := §(=,Q) < do.
In view of Theorem 1.3 and Theorem 2.2, the tz;sk of proving Theorem 1.5 reduces to
proving the following:

Theorem 2.3. Let Q be a bounded, open subset of R? having the uniform C*™-regqularity
property. If f € Bg?l—H/z, then there exists ¢ € ;1 and p € B;?o+1/2
D, (M1, p1) = {0}, g+ 64 p0 = f on 9, and

(24) HMHBQ_ZZ-H/Q S COIlSJC(Q7 m) HfHB;nl-H/Q .

such that supp p C

We mention that in the special case d = m = 2, 2 = B, it has already been shown in
[J2] that such a ¢ and u exist (without (2.4)) whenever f € C°°(R?). In this special case,
it is possible to express p explicitly in terms of the boundary data and normal derivatives
of f on 0B; however, such an approach would be hopeless for general (2.

3. AN EXAMINATION OF ¢ *

The purpose of this section is to prove the following:

Proposition 3.1. Let r > 0 and let 1 € By )" be supported in rB. The following hold:
(1) If (p—1,p0) =40}, then o+ € H™ and

const(d,m) 1l g < 16 % ll s < const(d, m, ) 1l
(11) If (gp—1,p) = {0}, then ¢p*p € W™ and
const(d,m) [l e < 116l < constldyrm,r) il g
(i) 6+ 1 € W(B) and 1165 iy 0y < constldym, ) 1l e
(iv) If u € Lo, then ¢+ € W2™2(rB) and ||¢ * /,LHWQMVQ(TB) < const(d, m, ) ||l -

Our proof of Proposition 3.1 requires the following two lemmata.
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Lemma 3.2. If g € C2(RY) satisfies |g(w)| = O(|w|2m_d+1) as |w| — 0, then

o~

(9,0) = cg /Rd g(w) |w] 2™ dw.

Proof. The proof can be adapted from that of [J2, Lem. 2.3] in a straightforward fashion.
Lemma 3.3. Letr >0, v >0, n €N, and let p € B;; be supported in rB. Then

[l o, oe 3y < const(d.yom,r) |l gy
and if (IL,—1,p) = {0}, then

=]

Lo (B) < COIlSt(d,"%n,T) H/’LHB;; :

Proof. Since 1 is compactly supported, ji is entire. Let n € C2°(R?) be such that n = 1
on rB and for o € N&, let n, := ()*n € C=(RY). Note that

Do =i~ ()0 u) =il (nap) "= i1 2m) Mg + i,

Hence, for w € B,

D% fi(w)| = (27)~"

[ et~ tyat

1

< (2m)7 T3

1L+ [17) alw =), < const(n, v, ) |lp]l - -
Lo ’

Therefore, after a suitable choice of 7, HﬁHWmoo(B) < const(d,y,n,7)||p]| - Now as-
2,2

sume that (II,,_q,p) = {0}. It follows that DY[i(0) = 0 V]o| < n. Hence, by Taylor’s

R <

Theorem, |fi(w)] < const(d,n)|w|” [l yyrn.ce gy Ve € B. Therefore, )

COIlSt(d,"%n,T) H/’LHB;; O

Proof of Proposition 3.1. Assume (Il,,,_1,p) = {0}. Put f := ¢ * u. Let |a| = m. Then
(Df)" = im()¢u. If g € CX(RY), then gy := i™()¥fig € C=(RY) satisfies |g;(w)| =
O(|w|*™) as |w| — 0 and hence by Lemma 3.2,

o~

(001 = {1 8) = <o [ 0™ () = coi™ [ o™ 0 iwlgw) do,

The assumptions on g ensure that |-|_2m ()%t € La; hence, (D*f)” € Ly and by the
Plancherel Theorem, D® f € L,. Therefore, f € H™. Now,

2 >0
2 . m — 2 s
AW = 7 7], e %k§:03H" ji

2
Lo(Ar)
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For k& > 0 we have 2—™mF HﬁHLQ(Ak) < H||_mﬁ

< gmo—mk |5 Lo for b — 0
La(Ag) — H/”LHLQ(A,{) while for

we have |7l 5) < H ™ < const(d, m,r) H/,LHB;; by Lemma 3.3. It now follows

La(B)
that const(d, m) H/,LHB;gz < |Ifllgm < const(d,m,r) H/,LHBQQL which proves (i). For (ii)

assume (Ilg,,—1, ) = {0}. The argument used to prove (i) can be easily adapted to show
that D®f € Ly for all |a] < m. Hence f € W™. Now

? 2 - ™2 —om
=3 |+ 1F) T
k=0

Lo

2

I3 = (1 1) 7

Lo(Ayg)

E i~ N2 _om
For k > 0 we have 2727 |11l 1,4,y < <1 + || > B 1

m/2 .
(14 7)1

by Lemma 3.3. It now follows that const(d, m) ||u| 5-

< 23mammk 1l 1y, -
Lo(Ax)

and for k = 0 we have [|zi||;, ) < < const(d, m,r) ||p|| g=m
LQ(B) 2,2

o <l < const(d,m,r) [l -

which proves (ii). Turning now to (iii)—(iv), we no longer assume (II,,,_q,p) = {O}
There exist 1o, € C°(rB) such that for all |a|,|3] < 2m, ()%, 1ta) = ba.s, ltallr, <

const(d, m,r), and ||¢ * /,LQHWQWQ(TB) < const(d, m,r). For |a| < 2m we have

(O )| = [DEO) < illywzm. oo gy < const(d,m,r) ||| g

by Lemma 3.3. Put v :=p =37 2, (0% p)tta. Then suppr C rB, (Myy—1,v) = {0},
and

(3.4)

My < llpllpyp | 1+ const(d,m,r) > lreallpyp | < const(dym,r)|[ull gy -
|a|<2m

Therefore,

¢ MHWm?(rB) <l * VHWW?(TB) + ||@* Z (0% wpa

la|<2m Wm.2(rB)

< const(d, m,r) <qu * U ypm + HMHB;;”> < const(d, m,r) HMHB;;”

by (ii) and (3.4). Hence (iii). In order to prove (iv), we assume pu € Ly. It follows from
Lemma 3.3 that [(()*, )| < const(d,m,r)||u|l;, ¥]a| < 2m and consequently,

(35) iy, < lully, | 1+ const(dm,r) Y lpally, | < const(d,m,r)||ully, -
|a|<2m
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Hence,
qu * ILLHW2m72(T’B) < qu * VHWQWvQ(rB) + qb * Z <()Q7M>MQ

(3.6) |al<2m W2m.2(yB)
< const(d, m,r) <H¢ * Ul yyrem + HMHL2> :

Now

Y

m 2
) o)
Lo(R3\ B)

m 2
H¢ * yHW2m = ci (H <1 + ||2> |,|—2m ﬁ‘

L2(B)

—2m ~ 2
< const(d, m) <H|| l/H

~112 2
) + HVHLQ(Rd\B)> < const(d, m, r) ||V,

by Lemma 3.3 and the Plancherel Theorem which, in view of (3.6) and (3.5), proves
(iv). O
4. A REPRESENTATION OF T4 f

The following representation of T4 f is probably known, particularly by Duchon, but to
the best of my knowledge has yet to be clearly stated and proved. Since our subsequent
development relies heavily on this representation, we give it a careful treatment.

Theorem 4.1. Let A C R? be bounded and satisfy (1.1). For all f € H™, there exists a
unique polynomaal q and compactly supported distribution p such that

Taf =q+¢xp.
Moreover, the following hold
(v
(11

(iii

q€1ly—1, p € Byy', and supppu C A.
<Hm—17M> = {0}
lrell g < const(A, m)[[[Ta fll -

€ closure(span{de : £ € A}; Bz_,;n)v

)
)
)
(ev)
where d¢ denotes the Dirac delta distribution defined by (f,d¢) = f(&).

Proof. An important property of surface spline interpolation is that for all = C R¢ and
geHm,

2 2 2
(4.2) llg = Tglllgm = lglllzm — 1 T=g Il m-

Let =, be an increasing sequence of finite subsets of A, each satisfying (1.1), such that
5(=n,A) = 0asn — oo. Let f € H™. Duchon [Dul] has shown that there exists
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qn € II,,—1 and p,, € span{d¢ : £ € =, }, satisfying (IL,,,_1, ptn) = {0}, such that T5 f =
qn + ¢ * pin. Since =, C Epq1, it follows that Tz f = Tz, (15, ., f). Hence, by (4.2),

0 < Tz f = T2, Al = N T=0ia Fllpm = N2, Flll -

The sequence {|||Tz,, f||| gm }nen is therefore monotonically increasing and bounded above
by [||f|ll= and hence convergent. By choosing a subsequence of {=,}, if necessary, we
may assume without loss of generality that [||T%, ., flll,;.. — [IT5, flllzm <277 Vn € N.

Let r > 0 be the smallest positive real number satisfying A C rB. By Proposition 3.1 (i),

ttnt1 — MnHB;gl < const(d, m)|||¢* (tn+1 — ptn)ll g

= const(d, m)|||T=,,, f — 1=, flll . < const(d,m)27".

It follows that {u,} is a Cauchy sequence in the Banach space Bz_én, and hence there
exists p € B, 5" such that p, — g in By 5", Since the space of distributions in B, 5"
which are supported in A and annihilate II,,_; is a closed subspace of Bz_én, it follows
that suppu C A and (Il,,_y,pu) = {0}. It follows from Proposition 3.1 (iii) that ¢ *
fn — ¢ % in W™2(rB). Since m > d/2, the Sobolev Imbedding Theorem [Ad, p.97]
asserts that W™ 2(rB) is continuously imbedded in C'(rB) (taken with the L. (rB)-norm).
Consequently f — ¢ *up, — f — ¢ *pin C(rB). But f — ¢ * p, = qn on =,. Hence, there
exists ¢ € II,,_1 such that ¢, — ¢ in II,,,_;. It follows now that f = g+ ¢ * p on A. By
Proposition 3.1 (i), g-+dxu € H™, and by (4.2), [llg+ & * flllym = ltn oo 16 % 1 <
| Tafl|lggm- Therefore Taf = g+ ¢ * p. Note that (i), (ii), and (iv) hold, and (iii) follows
from Proposition 3.1 (i). It remains to show that ¢ and p are unique. Assume that the
polynomial ¢ and the compactly supported distribution s are such that Taf = ¢+ ¢ * 4.
Then g — ¢+ ¢ * (1 — 1) = 0 and consequently, (¢ —¢) "+ & (pu— )" = 0. Since (¢ —q)~
is supported on {0} and b = o |-|73™ on RA\0, it follows that (p — 1) "= 0 on R\0 and
hence 1 = fi. Thus (¢ — ¢) "= 0 which implies ¢ = ¢q. O

5. THE REGULARITY OF Tof IN eyt

At this point we know that the v in the representation Tq f = ¢ + ¢ * u belongs to B, 5"
whenever f € H™. The main hurdle in proving Theorem 2.3 is to show that if 2 has a

sufficiently smooth boundary and f € Bg?l—i_l/z, then the regularity of p increases to that

of B;?o—'_l/z. As will become clear in section 7, there is an intimate relation between the
regularity of p and the regularity of T f. We begin by studying the regularity of T f in
the exterior domain

Qext = d\ﬁ

We assume, throughout this section, that Q C R is open, bounded and has the uniform
C?™_regularity property. It follows from this that Q. has a bounded boundary and the
uniform C?™-regularity property. Our purpose in this section is to prove the following:

Proposition 5.1. If f € W?™ then for all |a| =m, D*Tof € W™?(Qext) and

1D T fllyym 2.,y < const(Q,m) || fllyzm -
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We will employ a regularity result regarding a solution of a linear elliptic partial dif-
ferential equation. Since we are concerned only with the differential operator A™, we will
state a simplified result which applies to constant coefficient differential operators. The
following result appears as a remark generalizing [Ag, Th. 9.8].

Theorem 5.2. Let A C RY be an open set having a bounded boundary and having the
uniform C*™-reqularity property. Let {@a,5}al,181<m be complex numbers satisfying

(5.3) Re Y aapl™ > Eo ¢ VEeR!
o], [B]=m
for some constant Eq > 0. Let b be the Dirichlet bilinear form
(5.4) blu,v] := Z aaﬁ/ D%u(z)DBv(z) dx.
Jal,|8]<m 4

If u € W)™ (A) and g € Ly(A) are such that
(5.5) blu,v] = Ag(x)@dx Yo € C2°(A),
then w € W?™2(A) and
HUHI/V?W?(A) < const(A,m, {aa,g}) <H9HL2(A) + HUHL2(A)> :

Proof. The case when A is bounded is covered by [Ag, Th. 9.8] so we assume A is un-
bounded. Let rg be the smallest positive real number such that R%\roB C A and put
r:=ro 4+ 4Vd. By [Ag, Th. 9.8],

(5.6) il s ey < const(A,m. aws}) (gl iyn + ) -

The proof of this is done in two steps. First, it is shown that (5.6) holds with HuHL2(A)
replaced by HuHWmVQ(A), and then Garding’s inequality is employed to show that

(5.7) lellymzay < const(d,m, {aa,s}) (9l ocny + el iy ) -

We turn now to A\rB. For j € 7 put G; == j+ 2v/dB and é’j = j+ \/EB7
and let N := {j € Z¢ : G; N (A\rB) # 0}. Since A\rB = R%rB, the choice of r
ensures that G; C A Vj € N. By [Ag, Th. 9.6], for each j € N, Hunm,z((;j) <

const(d m, {aa,3}) (19 () + lllm (e ) - Honce,
2 2 2 2
lalivms ey < D Nilliyan s,y < const(dm, {aas}) S (1917100 + Nllfmaca )
JEN JEN
2 2
< const(d, m, {aa,s}) (1917 44y + [y
which, in view of (5.7) and (5.6), completes the proof. O

In our proof of Proposition 5.1, we employ the following two lemmata in establishing
the hypothesis of Theorem 5.2. The first lemma is an immediate consequence of [Ad, Th.
7.55].
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Lemma 5.8. Let A be as in Theorem 5.2. If f € W™ equals 0 on RI\NA, then f €
WoH(A).

Lemma 5.9. If p s a compactly supported distribution, then
A™($ ) = (1) ™ot
where A 1= aa—;% + ;—;g + .4 % denotes the Laplacian operator.
Proof. Let g € C°(RY). Then
(9, (A™ (¢ ) ) = (1) (g, |-*™ fig) = (=)™ (g |- i, &)
(=1 [ gt} 0™ ) [w " duw. by Lemma 3.2,

(=1)"ep(g, 11)-

4

Before embarking on the proof below, an explanation is in order. Ideally, we would like
to choose u, in Theorem 5.2, to be f — T f. Unfortunately, we only know that Tof € H™
which means that |Tq f(2)| may grow as |#| — oo; hence we cannot assert that f — Tof
belongs to W2 (Qeyt). Fortunately, the offending part of To f (¢ + ¢ * v in the language
of the proof below) can be subtracted off and treated seperately.

Proof of Proposition 5.1. For |a| < 2m, let pu, € C2°(Q) be such that (), ) = da.s
Val,|8] < 2m and E|a|<2m ltally, < const(Q,m). Let f € W?2™ and let ¢ € II,,,_1,

€ By 5 be as in Theorem 4.1. Then supp p C Q, (M1, 1) = {0}, Taf = ¢+ & *p, and

(5.10) [l gy < const(§2, m)|[[Ta flgm < const(S,m)|||f[[[grm < const(S2m) | flypm -

Let r be the smallest positive real number for which @ C (r/2)B. Note that since
q=f—¢*pon Qand II,,_; is finite dimensional, it follows that

lallan sy < const(S.m) gl oy < const(m) (1 F o + 16 % il
< const(,m) (1l + llll sy ) < const(@m) £y
by Proposition 3.1 (iii) and (5.10). Put v := 3" . ()%, t)pa and note that (I, —1, i—

v) = {0}. Hence we can write Tof = q+ ¢ *v+ d* (u—v) with ¢ % (u —v) € W™ by
Proposition 3.1 (ii). It follows from Lemma 3.3 that for all |o| < 2m,

O% m = [DTEO < el wam-1.00 gy < const(Q,m) ||ul| gz < const(€,m) [ fll e

by (5.10). Hence,

(5.11) Wl < ) KO“mllikally, < const(S2,m) || flym -

m<|a|<2m
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Consequently, we have by Proposition 3.1 (iv), that ||¢ * VHWQM(TB) < const(Q2,m) ||v||,,
const(Q, m) || fllyym. Let 0 € CX(rB) be such that ¢ = 1 on  and HUHWQMVOO(TB)
const(€2,m). We then obtain the estimate

(512) |[f —alg+ o+ v)llwom < Nfllwom +llo(q+ ¢ *v)l[yom
< [[fllwam + const(§2,m) lg + ¢+ vl yyam2(py < const(€,m) [[f]]yzm -
Putu:=f—o(¢g+o¢*v)—¢*(u—r). Note that u =0 on 2 and
[ullym <N f = olg+é*v)llyym +[10* (= )llyym
< const(§2, m) <HfHW2m + ||l — l/HBQ—gl> , by (5.12) and Proposition 3.1,
< const(62,m) |y |

by (5.10) and (5.11). By Lemma 5.9, A™(¢p*(u—v)) = (—=1)™ (g —v) = 0 on Qeyt. Hence,
if g:=(=1)"A™(f —o(q+ ¢*v)), then (—1)"A™u = g on Qext. Note that by (5.12),

lgll, < const(€2,m) [[£]]y2m -

Let {ca}|a|=m be the positive integers defined by |§|2m = E|a|:m cof??, ¢ € R%. We wish
now to employ Theorem 5.2 on the exterior domain 2.yt with

¢ fa=pand |a| =m,
(a3 = .

0 otherwise.
quantity on the left side of (5.3) equals |§|2m Since u € W™ and v = 0 on £, it follows
by Lemma 5.8 that u € Wom’z(ﬂext). Note that the Dirichlet form in (5.4) simplifies to
blu,v] = Z|a|:m Co fQ t D¥uDv. To see that (5.5) holds, let v € C°(Qeyyt). Then

blu, ] = > oD, D) = (=1)™ Y ca(D**v,u)

lo|=m lo|=m

— (™A ) = (1) (0, A7) = [ elalgta)da

Condition (5.3) is satisfied with Ey = 1 since the

where the first and last equality hold since suppv C Qex¢. Therefore, by Theorem 5.2,
u € W22 (Quyt ) and
fullyem i, .y < c0nst(®m) (19l aga ) + ey, ) < const(m) | flyen

Now Tqof can be written as Tof = ¢+ ¢ *xv+ f—o(qg+ ¢ *v) —u. Let |o] = m and
note that D%(¢ * v) = ¢ x D*v. Since D% € B, 5" and (Ilz;—1, Dv) = {0}, we have by
Proposition 3.1 (ii) that ¢ « Dy € W™ and

|+ DV||jym < const(£2,m) HDal/HBQ—;n < const(2,m) HIJHL2 < const(, m) || flyym
by (5.11). Therefore,

1D Ta fllwm2(g.,) < 1D(@* ) lyym +If —olg+ ¢ xv)llyem + l[ulliyemz(q,,.)
< const(, m) || f

|z -
U
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6. THE GLOBAL REGULARITY OF Tq f

As in the previous section, we assume throughout this section that Q@ C R? is open,
bounded and has the uniform C?™-regularity property. Our purpose in this section is to
prove the following:

Theorem 6.1. If f € By’ '/, then for all |a| = m, D°Tof € By and
HDQTQ.]CHB;/Q < const(§2, m) HfHB;n;.l/z .

The following definition and theorem are taken from [Ad, p.83-86].
Definition. Let A C R? be open. For given k and p, a linear operator E : WkP(A) —
WkP(RY) is called a simple (m, p)-extension operator for A if for all u € WkP(A),
(1) Eu(x) =u(z) a.e. in A and
() [Bullyprs ey < const(A, &, p) [ull e ay -
E is called a strong n-extension operator for A if E is a linear operator mapping functions

defined a.e. in A into functions defined a.e. in R and if for every k € {0,1,... ,n} and

for every p € [1..00), the restriction of E to W*?(A) is a simple (k, p)-extension operator
for A.

The following theorem is proved in [Ad, p.84].

Theorem 6.2. If A C R? is open, has a bounded boundary, and has the uniform C™-
reqularity property, then there exists a strong n-extension operator E for A.

The assumptions on €2 ensure that Qeyt 1= Rd\ﬁ has a bounded boundary and the uni-
form C?™-regularity property. Hence, by Theorem 6.2, there exists a strong m-extension
operator E for Qext.

Lemma 6.3. If |o| =m and [ € Bgffl/z, then ED°Tqo f € B;/lz and
HEDQTQfHB;/f < const(2,m) HfHB;n;.l/z .

Proof. We employ a result regarding real interpolation of Banach spaces. If X, Xy are
two Sobolev spaces, then Peetre’s K-functional is defined for ¢t > 0, f € X; + X5 by

Kt f) =mf{||fillx, +tlfellx, s fF=Fr + fo. fL € X1, fo € Xo}

For0 <f# < 1land 1 <gqg< oo,let

(X0 X = 1 € X0 X flx, e, = (4 KA a1 < o).

0

It is known [Trl, p.39-40] that if s;,s2 € No, then (W, W*2)y , = B3 (with equivalent
norms) where s := s1(1 — 0) + s26. Taking 6 = 1/(2m), ¢ = 1 yields (W™ W?™), =
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Bg?l—i_l/z and (Lq, W™ ), = Bl/ To see that the operator ED%Tq is a bounded linear
operator from W™ into Lo, we observe that
|EDTo |, < const(S,m) | D"Ta fll ..., < const(9,m) | D°To sl
< const(§2, m)|[|Ta fll[ ym < const(,m) || fllyym -

In addition, ED®Tq is a bounded linear operator from W?2™ into W™. Indeed,
[EDTa fllyym < const(,m) [[D*To fllyym2(q,,,) < const(§2,m) [[f]lym

by Proposition 5.1. It follows by the interpolation property (see [Trl, p.38]) that ED*Tg

is a bounded linear operator from Bm+1/2 into Bl/2 O

Our point of view now is the following: Assuming f € Bm+1/2

that both D®f and ED“Tq f belong to Bl/2 The function D*Tq f equals D f on  and
equals EDTq f on Qext, and based on this we wish to show that DT f € 31/2 The

purpose of the following three lemmata is to relate the B, / ~-horm of a function ¢ with the

and |a| = m, we have

rate at which an approximate identity convolved with ¢ converges to ¢ in the Lo-norm.

Lemma 6.4. Let r > 1. There exists ¢ > 0 (depending only on Q,r) such that if n € Ny
and 0 < h <277, then

ma((0Q + hB) N (x+27"rB)) < const({2, r)hZ_"(d_l) Vz € Rd,

where mq denotes Lesbeque measure in R

Proof. The assumptions on €2 ensure that there exists ¢; > 0 (depending only on Q) such
that for all 5

(65) B;(e) ~ B;(y)| <1 e —yl Vauy € U; and
mq(A) < eimg(®;(A)) V measurable A C Uj.

Put ﬁj = CIDj_l(B/Z). By Definition 1.4 (iii), there exists § > 0 such that Q2408 C Ujﬁj.
Let ¢ be the largest positive real number satisfying ¢ < § and ﬁj +6cB C Uj Vj. Let
n € Ny, 2 € R? and assume 0 < h < 27", Put F := (0Q+hB)N(x+27"rB). It is a
straightforward matter to show that mg(9 4+ hB) < const(2)h. Hence, if 27"r > ¢, then
ma(F) < mg(02 + hB) < const(Q)h < const(Q,r)hQ‘"(d_l). So assume 27 "r < . Let
a € F. Then there exists a' € 0Q such that |a — d'| < h. Put Fy := (0Q N [d’ + 2(h +
27"r)B]) + hB and note that F' C Fy. Indeed, if y € F, then there exists y’ € 02 such
that |y — y'| < h. Since |y — x| < 27"r, we have |x — y'| < h + 27"r. Hence,

ly' —d'| <y —z|+ ]z —a|+]a—d| < (h+27"r)+27"r + h =2(h + 27 "r).

Thus y' € 92N (a' +2(h+27"r)B) and consequently y € Fy. Let N :={j : Fi N ﬁj # 0},
We note that if j € NV, say y € F ﬂUJ, then o' —y| <2(h+27"r)+h <3(h+27"r) and
hence o' € U +3(h+27"r)B C U +6eB C Uj. Consequently, ®;(a’) is defined whenever
jEeN.
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Claim. If j € A/, then
®;(FNU;) C{weRY: Jwa| < erh, [(wr,... ,wae1,0) — ®j(a")] < 3er(h +27"r)}.
proof. Let z € Fy ﬂﬁj and put w = ®;(z). Then there exists 2/ € QN (a' +2(h+27"r)B)

such that |z — 2’| < h. Note that z/ € z+ hB C ﬁj + B C U; and hence w' := ®;(2') is
defined. Since w), =0, we have |wq| < |w —w'| < ¢ |z — 2| < e1h by (6.5). And

[(w1,... ,wi—1,0) — @;(a")] < |Jw—Pj(a')| < 1|z —d'|, Dby (6.5),
<ci(lz =+ |2 —d]) <er(h +2(h+27"r)) < 3ci(h+27"r)

which proves the claim.

Since F C Fy C 90+ hB C 8Q + 6B C U,;U;, it follows that

ma(F) <> ma(FinT;) <er Y ma(@;(FiNTj)), by (6.6),

JEN JEN
< Z ma({w € R : |wa| < erh, |(wi,... ,wa_1,0) — ®;(a’)] < 3ci(h +27"r)})
JEN
= Z const(d)cyh(3¢y(h 4+ 27"r)) ™! < const(9, r)h2_"(d_1).
JEN

0
Lemma 6.7. For all f € B;/lz and h > 0,

HfHLQ(BQ—I—hB) < COHSt(Q)hl/Z HfHB;/f :

Proof. We employ the atomic decomposition of B;/f (see [Tr2, p.70-81]). It is known that

there exists r > 1 and functions a, ; € C'(R?), n € Ny, j € Z%, (depending only on d)
satisfying

(6.8) suppa, ; C27"(j+rB) and
(69) [D%an ], < 29D/ o) < 1

such that for all f € B;/lz, there exists {A, ;} such that

1/2
(6.10) DY gl < const(d) ||| g2, and
n=0 \ je7d ’
(6.11) f= Z Z An,jGn ; (convergence in Lg).

n=0 ;74
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It follows from (6.8) that for all n € N,
2

2 2
(6.12) g An,jln.j < const(d) E [ A, HG"JHLQ(BQ—HLB)'
jes Lo(0Q+hB) JEL

We estimate HamJHzLQ(aQ—i—hB) in two cases. Let ¢ > 0 be as in Lemma 6.4. If h < 27",
then by Lemma 6.4, mq((0Q + hB) N 27"(j + rB)) < const(Q)h27 ¢~V and hence,

Han’jH2L2(aQ+hB) < Ha"fozLoo(aﬂJth) ma((0Q + hB)N27"(j + rB))
< Qn(d_l)conSt(Q)hQ_n(d_l) = const()h.
On the other hand, if b > e27", then m4(27"(j 4+ rB)) < const(d)2™"? and hence

2 2 —n(
Han,JHLz(aQJth) < lanillz, < llan il ma(27"( +rB))
< 2n(d—1)const(d)2_"d < const(d)27" < const(§2)h.

< const(Q)h Y epe [An iyl

2
It therefore follows by (6.12) that HEJEZd An ja

Hence by (6.11),

HfHLQ(BQ—i—hB) < Z Z An,jln, j

n=0 jEZd

L2(8Q+hB)

Lo (0Q+hB)
1/2
< const(Q h”zz > sl < const (@RI f]l g
n=0 ]EZd a

by (6.10). O

Lemma 6.13. Let tp € CZ(RY) be such that ;Z(O) =1 and put 1y, := h=%(-/h), h > 0.
Then for all g € Lo,

(1) lg — v * gll, < const(v)h'/? lgll gzr= Vh >0 and
(47) 9] grr2 < const(t, €) (!\g!\L2 + sup h=2 g = pn *gHL2> Ve > 0.
2,00 < <e

Proof. Let g € Ly and h > 0. We first prove (i). If h > 1, then
o —vn gl < (L 160 gl < const() gl e < const(uh172 gl e So s
sume 0 < b < 1. Let k be the least integer such that 28 > h~!. Then

2
=2 Jo=so,
2 n n
<3 [u=de] Wl < oo ol (Zm Pe Y o )

n=k+1

@) llg = gn g, = (1@

< const(¢) [lg]%y/2 b
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which proves (i). Let ¢ > 0 and put M := supy.j<. R2 g — oy, * g/, Let k be the

b <1/2. F 0,1,...,2k
‘¢“Lm(Rd\2kB) = / OI'TLE{ 5 Ly 9 }
we have 27/2 HL/Q\HLQ(AH) < 2k qu\HLQ < const(v, ) HgHL2. For n > 2k, put h := 2F "+ < ¢,
Then

least positive integer such that 27% < ¢ and

2n/2 < 21—|—n/2

191l 7,4, <

(1= (k)3

=2 RnilE g — gy g,
2

< 21+"/2(27T)d/2Mh1/2 < const (), e) M.

Therefore, HQHB;/OQO = SUPpeny 2n/? HgHLQ(An) < const(y,)(||gllp, + M). O

Proof of Theorem 6.1. Let f € Bg?l—i_l/z and |o| = m. Put g := DT f and note that
lglly, < (27) =2 || Ta fl| jym < const(d,m) [l gm+1/2. Put Qp := 0Q + hB, h > 0. Let

¢ be the largest positive real for which md(Q\QZ;) > mq(§2)/2. Let ¢p € C°(B) be such
that ¢/(0) = 1. We intend to estimate [|g|| 51/> using Lemma 6.13. Let i € (0..¢]. Then

lg — ¥n *gHLQ(Q\Qh) = [|1DYf — tn * (Daf)HLQ(Q\Qh) < | DYf = (Daf)HLQ
< const(tp)h1/? D% fll gz < const(m, )h'/? [ fI g+

by Lemma 6.13 (i). Similarly,

g — n * gHLQ(Qext\Qh) = |[EDTqf — ¥y * (EDQTQf)HLQ(Qext\Qh)
< |ED*Taf — ¢u + (ED*Taf)|p, < const(y)h'/? |[ED*Tof g1/

< const(m, )h'/? | f]l gm+1/2 by Lemma 6.3. Define G := 9Xg,, - Then

lg = 0 * gllpy0,) < I1G = # Gl < const(w) |G|, = const() 9]l ,(q,)
< const (1)) <HDafHL2(QQh) + HEDQTQJCHLQ(Q%)>

< const(§2, ¢)h'/? <HDafHB;/12 + HEDQTQJCHB;/f) < const(2, m,y)h'/? A1l gyt

by Lemma 6.7 and Lemma 6.3. Therefore, ||g — 15, * ]|, < const(€2,m, )R/ [ £l g+
V0 < h < ¢e. Hence, by Lemma 6.13, [[g|| g1/2 < const(2,m,v) || f|| gm+1/2 which, after a
suitable choice of 1, completes the proof. O 7

7. THE PROOF OF THE MAIN RESULT

Proof of Theorem 2.5. Let {cq }|a|]=m De the positive integers defined by |§|2m = E|a|:m ca &2,

12
€€ RL Then [l = Spen D) Wiay ¥ € Lo k € Noo Let
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fe Bg?l—i—l/z- Then ||[D*To fl| g2 < const(2,m) || f|| gm+1/2 V|a| = m by Theorem 6.1.
, 00 2,1 1
Let 1, q be as in Theorem 4.1. Since Tq f = q + ¢ * y, it follows that 1 = — ||2m (Taf)”
Co
on R\0. By Theorem 4.1 (iii),

il a0y < Nl < const(€2,m)[Tofll s < const(2,m) [ £l] ysore.

For kK > 1 we have

1/2
o~ 1 m m 1 m o 2
17l ) < Pk N (T f) Mpyar) = e 1Y D Taf) N7 an
|la|=m
1/2
1 — [e%
< mQ(m 1/2)k Z CaHD TQszB;/OQO

|a|=m

< const(2, m)Q(m_l/z)k | fll gm+1/2, by Theorem 6.1.

Hence ||| 5 mi172 = supgery 2"/ 2¥ [ 4, < const(Qm) || gz O
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