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Abstract. We show that if the open, bounded domain 
 � Rd has a su�ciently smooth
boundary and if the data function f is su�ciently smooth, then the Lp(
)-norm of the

error between f and its surface spline interpolant is O(�
p+1=2) (1 � p � 1), where 
p :=
minfm;m � d=2 + d=pg and m is an integer parameter specifying the surface spline. In case
p = 2, this lower bound on the approximation order agrees with a previously obtained upper
bound, and so we conclude that the L2-approximation order of surface spline interpolation is
m+ 1=2.

1. Introduction

Let d;m 2 N := f1; 2; 3; : : : g with m > d=2. Let Hm be the space of all f 2 C(Rd) such
that D�f 2 L2(Rd) (in the distrubutional sense) for all j�j =m. We de�ne the semi-norm
jjj � jjjHm on Hm by

jjjf jjjHm :=



j�jm bf




L2(Rdn0)
;

where bf denotes the Fourier transform of f . Let �k denote the space of all d-variate
polynomials whose total degree is less or equal to k. It is known [Du1] that if f 2 Hm and
� � Rd satis�es

(1.1) p(�) 6= f0g 8p 2 �m�1n0;

then there exists a unique s 2 Hm which minimizes jjjsjjjHm subject to the interpolation
conditions sj� = fj� . The function s is called the surface spline interpolant to f at � and

will be denoted by T�f . In case � is a �nite subset of Rd satisfying (1.1), T�f has the
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concrete representation as the unique function in S(�;�) which satis�es sj� = fj� . Here
� : Rd! R is the radially symmetric function given by

� :=

(
j�j2m�d if d is odd

j�j2m�d log j�j if d is even,

and S(�;�) denotes the space of all functions of the form

q +
X
�2�

���(� � �);

where q 2 �m�1 and the ��'s satisfy

(1.2)
X
�2�

��p(�) = 0; 8p 2 �m�1:

Surface spline interpolation is a prominent member of a family of interpolants known as
radial basis function interpolants. The approximation properties of these interpolants have
received considerable attention in the literature (for a sampling see [Du2], [Bu1], [WS],
[MN], [WS], [DR], [BDL], [P2], [J1], [S1], [J2], [S2], [Bej], and the surveys [P1], [Bu2]).

In order to discuss the approximation properties of surface spline interpolation, we
assume that 
 � Rd is bounded and open and that the interpolation points � are contained
within 
 := closure(
). The `density' of � in 
 is measured by

�(�;
) := sup
x2


inf
�2�

jx� �j :

Roughly speaking, we say that surface spline interpolation provides Lp-approximation of
order 
 if for all bounded, open 
 � Rd having a su�ciently smooth boundary and for all
su�ciently smooth functions f ,

kf � T�fkLp(
) = O(�
) as � := �(�;
) ! 0:

The largest (or supremum of all) such 
 is called the Lp-approximation order of surface
spline interpolation. Duchon [Du2] has shown that the Lp-approximation order of surface
spline interpolation is at least 
p := minfm;m�d=2+d=pg for all 1 � p � 1. The precise
details are as follows:

Theorem 1.3. Let 
 � R
d be bounded, open and have the cone property. Then there

exists �0 > 0 (depending only on 
;m) such that if f 2 Hm and � := �(�;
) � �0, then

kf � T�fkLp(
) � const(
;m) �
p jjjT
f � T�f jjjHm; and

jjjT
f � T�f jjjHm ! 0 as � ! 0:

On the other hand, it is known [J1] that the Lp-approximation order of surface spline
interpolation is at most m + 1=p for all 1 � p � 1. Speci�cally, it is known that if 
 is
the open unit ball B := fx 2 Rd : jxj < 1g, then there exists f 2 C1(Rd) such that

kf � T�fkLp(
) 6= o(�m+1=p) as � := �(�;
) ! 0:
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For the sake of comparison, we mention that in the ideal case 
 = Rd, � = hZd, (which
of course violates our present setup) it is known ([Bu1], [JL]) that the Lp-approximation
order of surface spline interpolation is 2m, a value at least twice 
p.

The purpose of the present work is to show that the Lp-approximation order of surface
spline interpolation is at least 
p + 1=2 for all 1 � p � 1. In case p = 2, this new lower
bound matches the upper bound ofm+1=p, and so we conclude that the L2-approximation
order of surface spline interpolation is m+1=2. In order to state our main result, we need
the following de�nition which is taken from [Ad, p.67]. Our statement of the de�nition
has been specialized (simpli�ed) to the case when A has a bounded boundary.

De�nition 1.4. Let k 2 N0 := f0; 1; 2; : : : g and let A � R
d be an open set having a

bounded boundary. A has the uniform Ck-regularity property if there exists a �nite open
cover fUjg of @A, and a corresponding collection of one-to-one transformations f�jg with
�j taking Uj onto B, such that:

(i) For each j, the components of �j belong to C
k(Uj):

(ii) For each j, the components of ��1j belong to Ck(B):

(iii) For some h > 0; (@A + hB) �
[
j

��1j (B=2):

(iv) For each j; �j(Uj \A) = fy 2 B : yd > 0g:

Our main result is the following:

Theorem 1.5. Let 
 � Rd be bounded, open and have the uniform C2m-regularity prop-

erty. Then there exists �0 > 0 (depending only on 
;m) such that if f 2 B
m+1=2
2;1 and

� := �(�;
) � �0, then

jjjT
f � T�f jjjHm � const(
;m)�1=2 kfk
B
m+1=2
2;1

and hence by Theorem 1.3,

kf � T�fkLp(
) � const(
;m)�
p+1=2 kfk
B
m+1=2
2;1

:

Here, B
m+1=2
2;1 denotes a certain Besov space which we de�ne in section 2.

An outline of the paper is as follows: In section 2, we recall previous work on this problem
and state in Theorem 2.3 precisely what will be proven in the present paper. In section
3, we estimate the size of � � � in various function spaces under various assumptions on
the compactly supported distribution �. A general representation of TAf is then obtained
in section 4 assuming only that A is bounded and f 2 Hm. The regularity of T
f in the
exterior domain 
ext := Rdn
 is studied in section 5 and the global regularity of T
f is
then deduced in section 6. Finally, in section 7, the representation and global regularity
of T
f are employed to prove Theorem 2.3.

Throughout this paper we use standard multi-index notation: D� := @�1

@x
�1
1

@�2

@x
�2
2

� � � @�d

@x
�d
d

.

The natural numbers are denoted N := f1; 2; 3; : : : g, and the non-negative integers are
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denoted N0. For multi-indices � 2 Nd0, we de�ne j�j := �1 + �2 + � � � + �d, while for

x 2 Rd, we de�ne jxj :=px21 + x22 + � � �+ x2d. For multi-indices �, we employ the notation
()� to represent the monomial x 7! x�, x 2 Rd. The space of polynomials of total degree
� k can then be expressed as �k := spanf()� : j�j � kg. The Fourier transform of an

integrable function f is de�ned by bf(w) :=
R
Rd
e�iw�xf(x) dx. The space of compactly

supported C1 functions whose support is contained in A � Rd is denoted C1c (A). If �
is a distribution and g is a test function, then the application of � to g is denoted hg; �i.
We employ the notation const to denote a generic constant in the range (0 : :1) whose
value may change with each occurence. An important aspect of this notation is that const
depends only on its arguments if any, and otherwise depends on nothing.

2. A Reduction of the Problem

The Besov spaces, which we now de�ne, play an essential role in our theory.

De�nition 2.1. Let A0 := B, and for k 2 N, let Ak := 2kBn2k�1B. The Besov space
B

2;q, 
 2 R, 1 � q � 1, is de�ned to be the set of all tempered distributions f for whichbf is a locally integrable function and

kfkB

2;q

:=





k 7! 2k




 bf




L2(Ak)






`q(N0 )

<1:

We also employ the Sobolev spaces Wn;p(A) de�ned for open A � R
d and n 2 N0,

p 2 [1 : :1] by
Wn;p(A) := ff 2 L2(A) : kfkWn;p(A) <1g;

where kfkWn;p(A) := (
P

j�j�n kD�fkpLp(A))1=p if 1 � p <1 and kfkWn;p(A) := maxj�j�n kD�fkL1(A)

if p =1. The closure of C1c (A) in Wm;p(A) is denoted

Wm;p
0 (A) := closure(C1c (A);Wm;p(A)):

For s � 0, the Sobolev space W s is de�ned by

W s := ff 2 L2 : kfkWs :=



(1 + j�j2)s=2 bf




L2
<1g:

All of the above de�ned spaces are Banach spaces. The following continuous embeddings
can be found in [Pe] (they are also easy to prove from the de�nitions):

Bs1
2;q1

,! Bs2
2;q2

if s1 > s2;

Bs
2;q1 ,!W s ,! Bs

2;q2 if q1 � 2 � q2; s � 0; and

W s1 ,! Bs
2;q ,!W s2 if s1 > s > s2 � 0:

Moreover, if s � 0, then W s = Bs
2;2 (with equivalent norms), and if n 2 N0, then

Wn;2(Rd) =Wn (with equivalent norms).
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A signi�cant part of our task (proving Theorem 1.5) has already been established in
[J3]. Before stating the relevant result, we must de�ne the convolution between � and a
compactly supported distribution. The Fourier transform of � can be identi�ed on Rdn0
with the locally integrable function c� j�j�2m, where is c� is a nonzero real constant which
depends only on d;m (see [GS]). If � is any compactly supported distribution, then we
de�ne the convolution � � � in the Fourier transform domain via

(� � �)b := b�b�:
That this is well-de�ned stems from the fact that b�b� is a tempered distribution (as can
be seen from the fact that b� 2 C1(Rd) and jb�(x)j has at most polynomial growth as
jxj ! 1). The following has been proven (in greater generality) in [J3]:

Theorem 2.2. Let 
 be a bounded, open subset of Rd having the cone property. There
exists �0 > 0 (depending only on 
;m) such that if f 2 C(Rd) is such that there exists

q 2 �m�1, � 2 B�m+1=2
2;1 satisfying supp� � 
, h�m�1; �i = f0g, and q+� �� = f on 
,

then

(i) T
f = q + � � �; and

(ii) jjjT
f � T�f jjjHm � const(
;m)�1=2 k�k
B
�m+1=2
2;1

whenever � := �(�;
) � �0:

In view of Theorem 1.3 and Theorem 2.2, the task of proving Theorem 1.5 reduces to
proving the following:

Theorem 2.3. Let 
 be a bounded, open subset of Rd having the uniform C2m-regularity

property. If f 2 Bm+1=2
2;1 , then there exists q 2 �m�1 and � 2 B�m+1=2

2;1 such that supp� �

, h�m�1; �i = f0g, q + � � � = f on 
, and

(2.4) k�k
B
�m+1=2
2;1

� const(
;m) kfk
B
m+1=2
2;1

:

We mention that in the special case d = m = 2, 
 = B, it has already been shown in
[J2] that such a q and � exist (without (2.4)) whenever f 2 C1(R2). In this special case,
it is possible to express � explicitly in terms of the boundary data and normal derivatives
of f on @B; however, such an approach would be hopeless for general 
.

3. An examination of � � �
The purpose of this section is to prove the following:

Proposition 3.1. Let r > 0 and let � 2 B�m2;2 be supported in rB. The following hold:
(i) If h�m�1; �i = f0g, then � � � 2 Hm and

const(d;m) k�kB�m2;2
� jjj� � �jjjHm � const(d;m; r) k�kB�m2;2

:

(ii) If h�2m�1; �i = f0g, then � � � 2Wm and

const(d;m) k�kB�m2;2
� k� � �kWm � const(d;m; r) k�kB�m2;2

:

(iii) � � � 2Wm;2(rB) and k� � �kWm;2(rB) � const(d;m; r) k�kB�m2;2
.

(iv) If � 2 L2, then � � � 2W 2m;2(rB) and k� � �kW2m;2(rB) � const(d;m; r) k�kL2 .
Our proof of Proposition 3.1 requires the following two lemmata.
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Lemma 3.2. If g 2 C1c (Rd) satis�es jg(w)j = O(jwj2m�d+1) as jwj ! 0, then

hg; b�i = c�

Z
Rd

g(w) jwj�2m dw:

Proof. The proof can be adapted from that of [J2, Lem. 2.3] in a straightforward fashion.

Lemma 3.3. Let r > 0, 
 � 0, n 2 N, and let � 2 B�
2;2 be supported in rB. Then

kb�kWn;1(B) � const(d; 
; n; r) k�kB�

2;2
;

and if h�n�1; �i = f0g, then


j�j�n b�



L1(B)

� const(d; 
; n; r) k�kB�

2;2
:

Proof. Since � is compactly supported, b� is entire. Let � 2 C1c (Rd) be such that � = 1
on rB and for � 2 Nd0, let �� := ()�� 2 C1c (Rd). Note that

D�b� = i�j�j (()��)b= i�j�j (���)b= i�j�j(2�)�dc�� � b�:
Hence, for w 2 B,

jD�b�(w)j = (2�)�d
����Z

Rd

b�(t)c��(w � t) dt

����
� (2�)�d





 b�
1 + j�j







L2

k(1 + j�j
)c��(w � �)kL2 � const(�; 
; �) k�kB�
2;2
:

Therefore, after a suitable choice of �, kb�kWn;1(B) � const(d; 
; n; r) k�kB�
2;2
. Now as-

sume that h�n�1; �i = f0g. It follows that D�b�(0) = 0 8 j�j < n. Hence, by Taylor's

Theorem, jb�(w)j � const(d; n) jwjn kb�kWn;1(B) 8w 2 B. Therefore,



j�j�n b�




L1(B)
�

const(d; 
; n; r) k�kB�
2;2
. �

Proof of Proposition 3.1. Assume h�m�1; �i = f0g. Put f := � � �. Let j�j = m. Then

(D�f )b = im()� b�b�. If g 2 C1c (Rd), then g1 := im()�b�g 2 C1c (Rd) satis�es jg1(w)j =
O(jwj2m) as jwj ! 0 and hence by Lemma 3.2,

hg; (D�f )bi = hg1; b�i = c�

Z
Rd

jwj�2m g1(w) dw = c�i
m

Z
Rd

jwj�2m w�b�(w)g(w) dw:
The assumptions on � ensure that j�j�2m ()�b� 2 L2; hence, (D�f )b 2 L2 and by the
Plancherel Theorem, D�f 2 L2. Therefore, f 2 Hm. Now,

jjjf jjj2Hm =



j�jm bf


2

L2(Rdn0)
= c2�

1X
k=0




j�j�m b�


2
L2(Ak)

:
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For k > 0 we have 2�mk kb�kL2(Ak)
�



j�j�m b�




L2(Ak)
� 2m2�mk kb�kL2(Ak)

while for k = 0

we have kb�kL2(B) � 


j�j�m b�


L2(B) � const(d;m; r) k�kB�m2;2
by Lemma 3.3. It now follows

that const(d;m) k�kB�m2;2
� jjjf jjjHm � const(d;m; r) k�kB�m2;2

which proves (i). For (ii)

assume h�2m�1; �i = f0g. The argument used to prove (i) can be easily adapted to show
that D�f 2 L2 for all j�j � m. Hence f 2Wm. Now

kfk2Wm =





�1 + j�j2
�m=2 bf



2

L2

= c2�

1X
k=0





�1 + j�j2
�m=2

j�j�2m b�



2
L2(Ak)

:

For k > 0 we have 2�m2�mk kb�kL2(Ak)
�




�1 + j�j2

�m=2
j�j�2m b�





L2(Ak)

� 23m2�mk kb�kL2(Ak)
;

and for k = 0 we have kb�kL2(B) �




�1 + j�j2

�m=2
j�j�2m b�





L2(B)

� const(d;m; r) k�kB�m2;2

by Lemma 3.3. It now follows that const(d;m) k�kB�m2;2
� kfkWm � const(d;m; r) k�kB�m2;2

which proves (ii). Turning now to (iii){(iv), we no longer assume h�m�1; �i = f0g.
There exist �� 2 C1c (rB) such that for all j�j ; j�j < 2m, h()� ; ��i = ��;�, k��kL2 �
const(d;m; r), and k� � ��kW2m;2(rB) � const(d;m; r). For j�j < 2m we have

jh()�; �ij = jD�b�(0)j � kb�kW2m;1(B) � const(d;m; r) k�kB�m2;2

by Lemma 3.3. Put � := � �Pj�j<2mh()�; �i��. Then supp� � rB, h�2m�1; �i = f0g,
and
(3.4)

k�kB�m2;2
� k�kB�m2;2

0@1 + const(d;m; r)
X

j�j<2m

k��kB�m2;2

1A � const(d;m; r) k�kB�m2;2
:

Therefore,

k� � �kWm;2(rB) � k� � �kWm;2(rB) +







� �
X

j�j<2m

h()�; �i��








Wm;2(rB)

� const(d;m; r)
�
k� � �kWm + k�kB�m2;2

�
� const(d;m; r) k�kB�m2;2

by (ii) and (3.4). Hence (iii). In order to prove (iv), we assume � 2 L2. It follows from
Lemma 3.3 that jh()�; �ij � const(d;m; r) k�kL2 8 j�j < 2m and consequently,

(3.5) k�kL2 � k�kL2

0@1 + const(d;m; r)
X

j�j<2m

k��kL2

1A � const(d;m; r) k�kL2 :
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Hence,

(3.6)
k� � �kW2m;2(rB) � k� � �kW2m;2(rB) +







� �
X

j�j<2m

h()�; �i��








W2m;2(rB)

� const(d;m; r)
�k� � �kW2m + k�kL2

�
:

Now,

k� � �kW2m = c2�

�


�1 + j�j2
�m

j�j�2m b�


2
L2(B)

+



�1 + j�j2

�m
j�j�2m b�


2

L2(RdnB)

�
� const(d;m)

�


j�j�2m b�


2
L2(B)

+ kb�k2L2(RdnB)� � const(d;m; r) k�k2L2

by Lemma 3.3 and the Plancherel Theorem which, in view of (3.6) and (3.5), proves
(iv). �

4. A representation of TAf

The following representation of TAf is probably known, particularly by Duchon, but to
the best of my knowledge has yet to be clearly stated and proved. Since our subsequent
development relies heavily on this representation, we give it a careful treatment.

Theorem 4.1. Let A � Rd be bounded and satisfy (1.1). For all f 2 Hm, there exists a
unique polynomial q and compactly supported distribution � such that

TAf = q + � � �:

Moreover, the following hold

(i) q 2 �m�1; � 2 B�m2;2 ; and supp� � A:

(ii) h�m�1; �i = f0g:
(iii) k�kB�m2;2

� const(A;m)jjjTAf jjjHm:

(iv) � 2 closure(spanf�� : � 2 Ag;B�m2;2 );

where �� denotes the Dirac delta distribution de�ned by hf; ��i = f(�).

Proof. An important property of surface spline interpolation is that for all � � R
d and

g 2 Hm,

(4.2) jjjg� T�gjjj2Hm = jjjgjjj2Hm � jjjT�gjjj2Hm:

Let �n be an increasing sequence of �nite subsets of A, each satisfying (1.1), such that
�(�n; A) ! 0 as n ! 1. Let f 2 Hm. Duchon [Du1] has shown that there exists
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qn 2 �m�1 and �n 2 spanf�� : � 2 �ng, satisfying h�m�1; �ni = f0g, such that T�nf =
qn + � � �n. Since �n � �n+1, it follows that T�nf = T�n(T�n+1f). Hence, by (4.2),

0 � jjjT�n+1f � T�nf jjj2Hm = jjjT�n+1f jjj2Hm � jjjT�nf jjj2Hm:

The sequence fjjjT�nf jjjHmgn2N is therefore monotonically increasing and bounded above
by jjjf jjjHm and hence convergent. By choosing a subsequence of f�ng, if necessary, we
may assume without loss of generality that jjjT�n+1f jjjHm � jjjT�nf jjjHm � 2�n 8n 2 N.
Let r > 0 be the smallest positive real number satisfying A � rB. By Proposition 3.1 (i),

k�n+1 � �nkB�m2;2
� const(d;m)jjj� � (�n+1 � �n)jjjHm

= const(d;m)jjjT�n+1f � T�nf jjjHm � const(d;m)2�n:

It follows that f�ng is a Cauchy sequence in the Banach space B�m2;2 , and hence there

exists � 2 B�m2;2 such that �n ! � in B�m2;2 . Since the space of distributions in B�m2;2
which are supported in A and annihilate �m�1 is a closed subspace of B�m2;2 , it follows

that supp� � A and h�m�1; �i = f0g. It follows from Proposition 3.1 (iii) that � �
�n ! � � � in Wm;2(rB). Since m > d=2, the Sobolev Imbedding Theorem [Ad, p.97]
asserts thatWm;2(rB) is continuously imbedded in C(rB) (taken with the L1(rB)-norm).
Consequently f � � � �n ! f � � � � in C(rB). But f � � � �n = qn on �n. Hence, there
exists q 2 �m�1 such that qn ! q in �m�1. It follows now that f = q + � � � on A. By
Proposition 3.1 (i), q+��� 2 Hm, and by (4.2), jjjq+ � � �jjjHm = limn!1 jjj� � �njjjHm �
jjjTAf jjjHm. Therefore TAf = q + � � �. Note that (i), (ii), and (iv) hold, and (iii) follows
from Proposition 3.1 (i). It remains to show that q and � are unique. Assume that the
polynomial eq and the compactly supported distribution e� are such that TAf = eq + � � e�.
Then q � eq + � � (� � e�) = 0 and consequently, (q � eq)b+ b� (�� e�)b= 0. Since (q � eq)b
is supported on f0g and b� = c� j�j�2m on Rdn0, it follows that (�� e�)b= 0 on Rdn0 and
hence � = e�. Thus (q � eq)b= 0 which implies q = eq. �

5. The Regularity of T
f in 
ext

At this point we know that the � in the representation T
f = q+� �� belongs to B�m2;2
whenever f 2 Hm. The main hurdle in proving Theorem 2.3 is to show that if 
 has a

su�ciently smooth boundary and f 2 B
m+1=2
2;1 , then the regularity of � increases to that

of B
�m+1=2
2;1 . As will become clear in section 7, there is an intimate relation between the

regularity of � and the regularity of T
f . We begin by studying the regularity of T
f in
the exterior domain


ext := R
dn
:

We assume, throughout this section, that 
 � Rd is open, bounded and has the uniform
C2m-regularity property. It follows from this that 
ext has a bounded boundary and the
uniform C2m-regularity property. Our purpose in this section is to prove the following:

Proposition 5.1. If f 2W 2m, then for all j�j = m, D�T
f 2Wm;2(
ext) and

kD�T
fkWm;2(
ext)
� const(
;m) kfkW2m :
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We will employ a regularity result regarding a solution of a linear elliptic partial dif-
ferential equation. Since we are concerned only with the di�erential operator �m, we will
state a simpli�ed result which applies to constant coe�cient di�erential operators. The
following result appears as a remark generalizing [Ag, Th. 9.8].

Theorem 5.2. Let A � R
d be an open set having a bounded boundary and having the

uniform C2m-regularity property. Let fa�;�gj�j;j�j�m be complex numbers satisfying

(5.3) Re
X

j�j;j�j=m

a�;��
�+� � E0 j�j2m 8� 2 Rd

for some constant E0 > 0. Let b be the Dirichlet bilinear form

(5.4) b[u; v] :=
X

j�j;j�j�m

a�;�

Z
A

D�u(x)D�v(x) dx:

If u 2 Wm;2
0 (A) and g 2 L2(A) are such that

(5.5) b[u; v] =

Z
A

g(x)v(x) dx 8v 2 C1c (A);

then u 2W 2m;2(A) and

kukW2m;2(A) � const(A;m; fa�;�g)
�
kgkL2(A) + kukL2(A)

�
:

Proof. The case when A is bounded is covered by [Ag, Th. 9.8] so we assume A is un-
bounded. Let r0 be the smallest positive real number such that Rdnr0B � A and put

r := r0 + 4
p
d. By [Ag, Th. 9.8],

(5.6) kukW2m;2(A\rB) � const(A;m; fa�;�g)
�
kgkL2(A) + kukL2(A)

�
:

The proof of this is done in two steps. First, it is shown that (5.6) holds with kukL2(A)
replaced by kukWm;2(A), and then Garding's inequality is employed to show that

(5.7) kukWm;2(A) � const(d;m; fa�;�g)
�
kgkL2(A) + kukL2(A)

�
:

We turn now to AnrB. For j 2 Z
d, put Gj := j + 2

p
dB and eGj := j +

p
dB,

and let N := fj 2 Z
d : eGj \ (AnrB) 6= ;g. Since AnrB = R

dnrB, the choice of r
ensures that Gj � A 8j 2 N . By [Ag, Th. 9.6], for each j 2 N , kukW2m;2( eGj)

�
const(d;m; fa�;�g)

�
kgkL2(Gj)

+ kukWm;2(Gj)

�
. Hence,

kuk2W2m;2(AnrB) �
X
j2N

kuk2W2m;2( eGj)
� const(d;m; fa�;�g)

X
j2N

�
kgk2L2(Gj)

+ kuk2Wm;2(Gj)

�
� const(d;m; fa�;�g)

�
kgk2L2(A) + kuk2Wm;2(A)

�
which, in view of (5.7) and (5.6), completes the proof. �

In our proof of Proposition 5.1, we employ the following two lemmata in establishing
the hypothesis of Theorem 5.2. The �rst lemma is an immediate consequence of [Ad, Th.
7.55].
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Lemma 5.8. Let A be as in Theorem 5.2. If f 2 Wm equals 0 on RdnA, then f 2
Wm;2

0 (A).

Lemma 5.9. If � is a compactly supported distribution, then

�m(� � �) = (�1)mc��;

where � := @2

@x21
+ @2

@x22
+ � � �+ @2

@x2d
denotes the Laplacian operator.

Proof. Let g 2 C1c (Rd). Then

hg; (�m(� � �))bi = (�1)mhg; j�j2m b�b�i = (�1)mhg j�j2m b�; b�i
= (�1)mc�

Z
Rd

g(w) jwj2m b�(w) jwj�2m dw; by Lemma 3.2;

= (�1)mc�hg; b�i:
�

Before embarking on the proof below, an explanation is in order. Ideally, we would like
to choose u, in Theorem 5.2, to be f �T
f . Unfortunately, we only know that T
f 2 Hm

which means that jT
f(x)j may grow as jxj ! 1; hence we cannot assert that f � T
f
belongs to Wm;2(
ext). Fortunately, the o�ending part of T
f (q + � � � in the language
of the proof below) can be subtracted o� and treated seperately.

Proof of Proposition 5.1. For j�j < 2m, let �� 2 C1c (
) be such that h()� ; ��i = ��;�
8 j�j ; j�j < 2m and

P
j�j<2m k��kL2 � const(
;m). Let f 2 W 2m and let q 2 �m�1,

� 2 B�m2;2 be as in Theorem 4.1. Then supp� � 
, h�m�1; �i = f0g, T
f = q+ � ��, and

(5.10) k�kB�m2;2
� const(
;m)jjjT
f jjjHm � const(
;m)jjjf jjjHm � const(
;m) kfkWm :

Let r be the smallest positive real number for which 
 � (r=2)B. Note that since
q = f � � � � on 
 and �m�1 is �nite dimensional, it follows that

kqkW2m;2(rB) � const(
;m) kqkWm;2(
) � const(
;m)
�
kfkWm + k� � �kWm;2(rB)

�
� const(
;m)

�
kfkWm + k�kB�m2;2

�
� const(
;m) kfkWm

by Proposition 3.1 (iii) and (5.10). Put � :=
P

m��<2mh()�; �i�� and note that h�2m�1; ��
�i = f0g. Hence we can write T
f = q + � � � + � � (� � �) with � � (� � �) 2 Wm by
Proposition 3.1 (ii). It follows from Lemma 3.3 that for all j�j < 2m,

jh()�; �ij = jD�b�(0)j � kb�kW2m�1;1(B) � const(
;m) k�kB�m2;2
� const(
;m) kfkWm

by (5.10). Hence,

(5.11) k�kL2 �
X

m�j�j<2m

jh()�; �ij k��kL2 � const(
;m) kfkWm :
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Consequently, we have by Proposition 3.1 (iv), that k� � �kW2m(rB) � const(
;m) k�kL2 �
const(
;m) kfkWm . Let � 2 C1c (rB) be such that � = 1 on 
 and k�kW2m;1(rB) �
const(
;m). We then obtain the estimate

(5.12) kf � �(q + � � �)kW2m � kfkW2m + k�(q + � � �)kW2m

� kfkW2m + const(
;m) kq + � � �kW2m;2(rB) � const(
;m) kfkW2m :

Put u := f � �(q + � � �)� � � (�� �). Note that u = 0 on 
 and

kukWm � kf � �(q + � � �)kWm + k� � (� � �)kWm

� const(
;m)
�
kfkW2m + k�� �kB�m

2;2

�
; by (5.12) and Proposition 3.1;

� const(
;m) kfkW2m

by (5.10) and (5.11). By Lemma 5.9, �m(�� (���)) = (�1)m(���) = 0 on 
ext. Hence,
if g := (�1)m�m(f � �(q + � � �)), then (�1)m�mu = g on 
ext. Note that by (5.12),

kgkL2 � const(
;m) kfkW2m :

Let fc�gj�j=m be the positive integers de�ned by j�j2m =
P

j�j=m c��
2�, � 2 Rd. We wish

now to employ Theorem 5.2 on the exterior domain 
ext with

a�;� :=

�
c� if � = � and j�j = m;

0 otherwise.
Condition (5.3) is satis�ed with E0 = 1 since the

quantity on the left side of (5.3) equals j�j2m. Since u 2 Wm and u = 0 on 
, it follows

by Lemma 5.8 that u 2 Wm;2
0 (
ext). Note that the Dirichlet form in (5.4) simpli�es to

b[u; v] =
P

j�j=m c�
R

ext

D�uD�v. To see that (5.5) holds, let v 2 C1c (
ext). Then

b[u; v] =
X
j�j=m

c�hD�v;D�ui = (�1)m
X
j�j=m

c�hD2�v; ui

= (�1)mh�mv; ui = (�1)mhv;�mui =
Z

ext

v(x)g(x) dx

where the �rst and last equality hold since suppv � 
ext. Therefore, by Theorem 5.2,
u 2W 2m;2(
ext) and

kukW2m;2(
ext)
� const(
;m)

�
kgkL2(
ext)

+ kukL2(
ext)

�
� const(
;m) kfkW2m :

Now T
f can be written as T
f = q + � � � + f � �(q + � � �) � u. Let j�j = m and
note that D�(� � �) = � �D��. Since D�� 2 B�m2;2 and h�2m�1;D

��i = f0g, we have by
Proposition 3.1 (ii) that � �D�� 2Wm and

k� �D��kWm � const(
;m) kD��kB�m2;2
� const(
;m) k�kL2 � const(
;m) kfkWm

by (5.11). Therefore,

kD�T
fkWm;2(
ext)
� kD�(� � �)kWm + kf � �(q + � � �)kW2m + kukW2m;2(
ext)

� const(
;m) kfkW2m :

�
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6. The Global Regularity of T
f

As in the previous section, we assume throughout this section that 
 � R
d is open,

bounded and has the uniform C2m-regularity property. Our purpose in this section is to
prove the following:

Theorem 6.1. If f 2 Bm+1=2
2;1 , then for all j�j = m, D�T
f 2 B1=2

2;1 and

kD�T
fkB1=2
2;1

� const(
;m) kfk
B
m+1=2
2;1

:

The following de�nition and theorem are taken from [Ad, p.83{86].

De�nition. Let A � Rd be open. For given k and p, a linear operator E : W k;p(A) !
W k;p(Rd) is called a simple (m;p)-extension operator for A if for all u 2W k;p(A),

(i) Eu(x) = u(x) a.e. in A and

(ii) kEukWk;p (Rd ) � const(A; k; p) kukWk;p (A) :

E is called a strong n-extension operator for A if E is a linear operator mapping functions
de�ned a.e. in A into functions de�ned a.e. in Rd and if for every k 2 f0; 1; : : : ; ng and
for every p 2 [1 : :1), the restriction of E to W k;p(A) is a simple (k; p)-extension operator
for A.

The following theorem is proved in [Ad, p.84].

Theorem 6.2. If A � R
d is open, has a bounded boundary, and has the uniform Cn-

regularity property, then there exists a strong n-extension operator E for A.

The assumptions on 
 ensure that 
ext := Rdn
 has a bounded boundary and the uni-
form C2m-regularity property. Hence, by Theorem 6.2, there exists a strong m-extension
operator E for 
ext.

Lemma 6.3. If j�j =m and f 2 Bm+1=2
2;1 , then ED�T
f 2 B1=2

2;1 and

kED�T
fkB1=2
2;1

� const(
;m) kfk
B
m+1=2
2;1

:

Proof. We employ a result regarding real interpolation of Banach spaces. If X1;X2 are
two Sobolev spaces, then Peetre's K-functional is de�ned for t > 0, f 2 X1 +X2 by

K(t; f) := inffkf1kX1
+ t kf2kX2

: f = f1 + f2; f1 2 X1; f2 2 X2g:

For 0 < � < 1 and 1 � q <1, let

(X1;X2)�;q := ff 2 X1 +X2 : kfk(X1;X2)�;q
:= (

Z 1

0

t��q�1K(t; f)q dt)1=q <1g:

It is known [Tr1, p.39{40] that if s1; s2 2 N0, then (W s1 ;W s2)�;q = Bs
2;q (with equivalent

norms) where s := s1(1 � �) + s2�. Taking � = 1=(2m), q = 1 yields (Wm;W 2m)�;q =
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B
m+1=2
2;1 and (L2;Wm)�;q = B

1=2
2;1 . To see that the operator ED�T
 is a bounded linear

operator from Wm into L2, we observe that

kED�T
fkL2 � const(
;m) kD�T
fkL2(
ext)
� const(
;m) kD�T
fkL2

� const(
;m)jjjT
f jjjHm � const(
;m) kfkWm :

In addition, ED�T
 is a bounded linear operator from W 2m into Wm. Indeed,

kED�T
fkWm � const(
;m) kD�T
fkWm;2(
ext)
� const(
;m) kfkW2m

by Proposition 5.1. It follows by the interpolation property (see [Tr1, p.38]) that ED�T


is a bounded linear operator from B
m+1=2
2;1 into B1=2

2;1 . �

Our point of view now is the following: Assuming f 2 B
m+1=2
2;1 and j�j = m, we have

that both D�f and ED�T
f belong to B
1=2
2;1 . The function D

�T
f equals D�f on 
 and

equals ED�T
f on 
ext, and based on this we wish to show that D�T
f 2 B
1=2
2;1. The

purpose of the following three lemmata is to relate the B1=2
2;1-norm of a function g with the

rate at which an approximate identity convolved with g converges to g in the L2-norm.

Lemma 6.4. Let r � 1. There exists " > 0 (depending only on 
; r) such that if n 2 N0
and 0 < h � "2�n, then

md((@
 + hB) \ (x + 2�nrB)) � const(
; r)h2�n(d�1) 8x 2 Rd;
where md denotes Lesbegue measure in Rd.

Proof. The assumptions on 
 ensure that there exists c1 > 0 (depending only on 
) such
that for all j

j�j(x) ��j(y)j � c1 jx� yj 8x; y 2 Uj and(6.5)

md(A) � c1md(�j(A)) 8 measurable A � Uj :(6.6)

Put eUj := ��1j (B=2). By De�nition 1.4 (iii), there exists � > 0 such that @
+�B � [j eUj .
Let " be the largest positive real number satisfying " � � and eUj + 6"B � Uj 8j. Let
n 2 N0, x 2 Rd and assume 0 < h � "2�n. Put F := (@
 + hB) \ (x + 2�nrB). It is a
straightforward matter to show that md(@
+ hB) � const(
)h. Hence, if 2�nr � ", then
md(F ) � md(@
 + hB) � const(
)h � const(
; r)h2�n(d�1). So assume 2�nr < ". Let
a 2 F . Then there exists a0 2 @
 such that ja� a0j < h. Put F1 := (@
 \ [a0 + 2(h +
2�nr)B]) + hB and note that F � F1. Indeed, if y 2 F , then there exists y0 2 @
 such
that jy � y0j < h. Since jy � xj < 2�nr, we have jx � y0j < h+ 2�nr. Hence,

jy0 � a0j � jy0 � xj+ jx � aj+ ja � a0j < (h+ 2�nr) + 2�nr + h = 2(h+ 2�nr):

Thus y0 2 @
\ (a0 +2(h+2�nr)B) and consequently y 2 F1. Let N := fj : F1 \ eUj 6= ;g.
We note that if j 2 N , say y 2 F1 \ eUj , then ja0 � yj � 2(h+2�nr)+h � 3(h+2�nr) and

hence a0 2 eUj +3(h+2�nr)B � eUj +6"B � Uj . Consequently, �j(a0) is de�ned whenever
j 2 N .
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Claim. If j 2 N , then

�j(F1 \ eUj) � fw 2 Rd : jwdj � c1h; j(w1; : : : ; wd�1; 0)� �j(a
0)j � 3c1(h+ 2�nr)g:

proof. Let z 2 F1\ eUj and put w = �j(z). Then there exists z0 2 @
\ (a0+2(h+2�nr)B)

such that jz � z0j < h. Note that z0 2 z + hB � eUj + "B � Uj and hence w0 := �j(z0) is
de�ned. Since w0d = 0, we have jwdj � jw � w0j � c1 jz � z0j � c1h by (6.5). And

j(w1; : : : ; wd�1; 0) ��j(a
0)j � jw ��j(a

0)j � c1 jz � a0j ; by (6.5);

� c1(jz � z0j+ jz0 � a0j) � c1(h + 2(h+ 2�nr)) � 3c1(h+ 2�nr)

which proves the claim.

Since F � F1 � @
+ hB � @
 + �B � [j eUj , it follows that
md(F ) �

X
j2N

md(F1 \ eUj) � c1
X
j2N

md(�j (F1 \ eUj)); by (6.6);

� c1
X
j2N

md(fw 2 Rd : jwdj � c1h; j(w1; : : : ; wd�1; 0)� �j(a
0)j � 3c1(h+ 2�nr)g)

= c1
X
j2N

const(d)c1h(3c1(h+ 2�nr))d�1 � const(
; r)h2�n(d�1):

�

Lemma 6.7. For all f 2 B1=2
2;1 and h > 0,

kfkL2(@
+hB) � const(
)h1=2 kfk
B
1=2
2;1

:

Proof. We employ the atomic decomposition of B
1=2
2;1 (see [Tr2, p.70{81]). It is known that

there exists r � 1 and functions an;j 2 C1(Rd), n 2 N0, j 2 Zd, (depending only on d)
satisfying

suppan;j � 2�n(j + rB) and(6.8)

kD�an;jkL1 � 2n(j�j+(d�1)=2) 8 j�j � 1(6.9)

such that for all f 2 B1=2
2;1 , there exists f�n;jg such that

1X
n=0

0@X
j2Zd

j�n;jj2
1A1=2

� const(d) kfk
B
1=2
2;1

; and(6.10)

f =
1X
n=0

X
j2Zd

�n;jan;j (convergence in L2).(6.11)
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It follows from (6.8) that for all n 2 N0,

(6.12)








X
j2Zd

�n;jan;j








2

L2(@
+hB)

� const(d)
X
j2Zd

j�n;jj2 kan;jk2L2(@
+hB) :

We estimate kan;jk2L2(@
+hB) in two cases. Let " > 0 be as in Lemma 6.4. If h � "2�n,

then by Lemma 6.4, md((@
 + hB) \ 2�n(j + rB)) � const(
)h2�n(d�1) and hence,

kan;jk2L2(@
+hB) � kan;jk2L1(@
+hB)md((@
 + hB) \ 2�n(j + rB))

� 2n(d�1)const(
)h2�n(d�1) = const(
)h:

On the other hand, if h > "2�n, then md(2
�n(j + rB)) � const(d)2�nd and hence

kan;jk2L2(@
+hB) � kan;jk2L2 � kan;jk2L1md(2
�n(j + rB))

� 2n(d�1)const(d)2�nd � const(d)2�n � const(
)h:

It therefore follows by (6.12) that



Pj2Zd �n;jan;j




2
L2(@
+hB)

� const(
)h
P

j2Zd j�n;j j2.
Hence by (6.11),

kfkL2(@
+hB) �
1X
n=0








X
j2Zd

�n;jan;j








L2(@
+hB)

� const(
)h1=2
1X
n=0

0@X
j2Zd

j�n;j j2
1A1=2

� const(
)h1=2 kfk
B
1=2
2;1

by (6.10). �

Lemma 6.13. Let  2 C1c (Rd) be such that b (0) = 1 and put  h := h�d (�=h), h > 0.
Then for all g 2 L2,

(i) kg �  h � gkL2 � const( )h1=2 kgk
B
1=2
2;1

8h > 0 and

(ii) kgk
B
1=2
2;1

� const( ; ")

�
kgkL2 + sup

0<h�"
h�1=2 kg �  h � gkL2

�
8" > 0:

Proof. Let g 2 L2 and h > 0. We �rst prove (i). If h � 1, then
kg �  h � gkL2 � (1 + k kL1 ) kgkL2 � const( ) kgk

B
1=2
2;1

� const( )h1=2 kgk
B
1=2
2;1

. So as-

sume 0 < h < 1. Let k be the least integer such that 2k � h�1. Then

(2�)d kg �  h � gk2L2 =



(1� b (h�))bg


2

L2
=

1X
n=0




(1� b (h�))bg


2
L2(An)

�
1X
n=0




1� b (h�)


2
L1(An)

kbgk2L2(An)
� const( ) kgk2

B
1=2
2;1

 
kX

n=0

jh2nj2 2�n +
1X

n=k+1

2�n

!
� const( ) kgk2

B
1=2
2;1

h
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which proves (i). Let " > 0 and put M := sup0<h�" h
�1=2 kg �  h � gkL2 . Let k be the

least positive integer such that 2�k < " and



 b 




L1(Rdn2kB)
� 1=2. For n 2 f0; 1; : : : ; 2kg

we have 2n=2 kbgkL2(An)
� 2k kbgkL2 � const( ; ") kgkL2 . For n > 2k, put h := 2k�n+1 < ".

Then

2n=2 kbgkL2(An)
� 21+n=2




(1� b (h�))bg



L2

= 21+n=2(2�)d=2 kg �  h � gkL2
� 21+n=2(2�)d=2Mh1=2 � const( ; ")M:

Therefore, kgk
B
1=2
2;1

= supn2N0 2
n=2 kbgkL2(An)

� const( ; ")(kgkL2 +M). �

Proof of Theorem 6.1. Let f 2 Bm+1=2
2;1 and j�j =m. Put g := D�T
f and note that

kgkL2 � (2�)�d=2jjjT
f jjjHm � const(d;m) kfk
B
m+1=2
2;1

. Put 
h := @
 + hB, h > 0. Let

" be the largest positive real for which md(
n
2") � md(
)=2. Let  2 C1c (B) be such

that b (0) = 1. We intend to estimate kgk
B
1=2
2;1

using Lemma 6.13. Let h 2 (0 : : "]. Then

kg �  h � gkL2(
n
h) = kD�f �  h � (D�f)kL2(
n
h) � kD�f �  h � (D�f)kL2
� const( )h1=2 kD�fk

B
1=2
2;1

� const(m; )h1=2 kfk
B
m+1=2
2;1

by Lemma 6.13 (i). Similarly,

kg �  h � gkL2(
extn
h)
= kED�T
f �  h � (ED�T
f)kL2(
extn
h)

� kED�T
f �  h � (ED�T
f)kL2 � const( )h1=2 kED�T
fkB1=2
2;1

� const(m; )h1=2 kfk
B
m+1=2
2;1

by Lemma 6.3. De�ne G := g�

2h

. Then

kg �  h � gkL2(
h) � kG�  h �GkL2 � const( ) kGkL2 = const( ) kgkL2(
2h)

� const( )
�
kD�fkL2(
2h)

+ kED�T
fkL2(
2h)

�
� const(
;  )h1=2

�
kD�fk

B
1=2
2;1

+ kED�T
fkB1=2
2;1

�
� const(
;m; )h1=2 kfk

B
m+1=2
2;1

by Lemma 6.7 and Lemma 6.3. Therefore, kg �  h � gkL2 � const(
;m; )h1=2 kfk
B
m+1=2
2;1

80 < h � ". Hence, by Lemma 6.13, kgk
B
1=2
2;1

� const(
;m; ) kfk
B
m+1=2
2;1

which, after a

suitable choice of  , completes the proof. �

7. The Proof of the Main Result

Proof of Theorem 2.3. Let fc�gj�j=m be the positive integers de�ned by j�j2m =
P

j�j=m c��
2�,

� 2 R
d. Then




j�jm bf


2
L2(Ak)

=
P

j�j=m c� k(D�f )bk2L2(Ak)
8f 2 L2, k 2 N0. Let
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f 2 B
m+1=2
2;1 . Then kD�T
fkB1=2

2;1
� const(
;m) kfk

B
m+1=2
2;1

8 j�j = m by Theorem 6.1.

Let �; q be as in Theorem 4.1. Since T
f = q + � � �, it follows that b� =
1

c�
j�j2m (T
f )b

on Rdn0. By Theorem 4.1 (iii),

kb�kL2(A0)
� k�kB�m

2;2
� const(
;m)jjjT
f jjjHm � const(
;m) kfk

B
m+1=2
2;1

:

For k � 1 we have

kb�kL2(Ak)
� 1

jc�j2
mk kj�jm (T
f)bkL2(Ak)

=
1

jc�j2
mk

0@ X
j�j=m

c� k(D�T
f)bk2L2(Ak)

1A1=2

� 1

jc�j2
(m�1=2)k

0@ X
j�j=m

c� kD�T
fk2B1=2
2;1

1A1=2

� const(
;m)2(m�1=2)k kfk
B
m+1=2
2;1

; by Theorem 6.1.

Hence k�k
B
�m+1=2
2;1

= supk2N0 2
(�m+1=2)k kb�kL2(Ak)

� const(
;m) kfk
B
m+1=2
2;1

. �
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