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Abstract. Due to their so-called time-frequency localization proper-
ties, wavelets have become a powerful tool in signal analysis and image
processing. Typical constructions of wavelets depend on the stability
of the shifts of an underlying refinable function ¢ € L?(IR%). In this
paper, we derive necessary and sufficient conditions for the stability of
the shifts of certain compactly supported refinable functions. These
conditions are in terms of the zeros of the refinement mask. We also
provide a similar characterization of the (global) linear independence

of the shifts.

§1 Introduction

In this paper we present a characterization of the stability and linear inde-
pendence of the shifts of a compactly supported refinable function in terms
of the refinement mask. Our results are applicable to a large class of mul-
tivariate functions which includes (but is not limited to) tensor products
and box splines.

A function ¢ € LP(IRd) is said to have (P-stable shifts if there exist

positive constants C' and D such that

Cllaller < || Y al@)é(- = a)[z» < Dllalles

aEZ4d

for all a € Kp(Zd,C) (it is often said that ¢ provides a Riesz basis in LP
in this case). A compactly supported function ¢ is said to have linearly
independent shifts if the map

o' a Z ala)o(- — )

a€Zd
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1s one-to-one. R

These two properties can be characterized in terms of ¢, the Fourier-
Laplace transform of ¢, which is an entire function defined on all of C¢ for
all compactly supported ¢. In particular, the following results are stated
in terms of the Fourier-Laplace transform.

Result 1. Suppose 1 < p < oo and ¢ € LP(IRd) is compactly supported.
Then ¢ has (P-stable shifts if and only if the set

Nr(9) ::{ﬁeﬂd::[O..Qﬂ')d : q/b\(19—|—20z77):0‘v’oz€Zd}

1s empty.

Result 2. [3] Suppose ¢ € D’(Rd) is compactly supported. Then ¢ has
linearly independent shifts if and only if the set

Ne(¢) ::{ﬁeiT‘“riIRd : $(ﬁ+2aw):0vaezd}

1s empty.

Notice that the condition that Nr(¢) be empty in result 1 is indepen-
dent of p. For this reason, we will say that a compactly supported function
¢ has stable shifts if Ngr(¢) is empty. So a function ¢ which has stable
shifts has (P-stable shifts if and only if ¢ € LP.

A compactly supported function ¢ is said to be refinable if (¢ is not
identically zero and) there exists a 2r-periodic function A satisfying

o~

B(2w) = A(w)p(w) for all w € C% (1.1)

Equation (1.1) is called the refinement equation and A is called the (refine-
ment) mask.

The characterizations given in results 1 and 2 are in terms of q/b\ How-
ever, for refinable ¢ it is actually more desirable to characterize these prop-
erties in terms of the mask A. In the univariate case (d = 1), stability
and linear independence of the shifts of a compactly supported function
have been characterized in terms of the mask by Jia and Wang [2]. Their
arguments relied on the following

Result 3. [3] For a non-zero compactly supported ¢ € D’(Rd), the set
N¢ (@) is finite.

Unfortunately, this result is not true for multivariate functions To an-
alyze the multivariate case, we consider functions ¢ whose Fourier-Laplace
transform ¢ has the form:

Q/b\: AE = H 55(<7€>)7 (1'2)

e
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where = is a finite subset of Zd\() satisfying dimspan= = d and, for each
£ € 2, ¢¢ is a compactly supported member of LP(IRd) for some 1 < p < oo
(p may depend on ¢).

Remark Each ¢ is univariate. However, (1.2) defines ¢ ¢ as a distribution
on R? (with support in the hyperplane R¢).

Remark If ¢, is refinable for every { € =, say with mask A¢, then ¢z is
also refinable with mask

Az =[] Al €)).

e

It is clear from (1.2) and result 1 (resp. result 2) that, if the shifts
of ¢z are stable (resp. linearly independent), then the set Nr(¢y) (resp.
Ne (¢y)) must be empty for every Y C =. Now, suppose ¢ = ¢z is of the
type (1.2) and suppose Y C = satisfies dy := dimspanY < d. Then q/b\y is
constant in directions orthogonal to Y. Therefore, if Ny (¢y ) (we use IF to
represent either of the fields R or C) is non-empty, say ¢ € Ny (¢y ), then
for any n € Y+, q/b\y(ﬁ—l—n—l—Qozﬂ') is zero for all @ € Z%; i.e., the set Nr(oy)
is infinite. And since Ny (¢y) is a subset of Nyp(¢), Ny (¢) is also infinite.

One of the main results of this paper is the converse of this, namely:

Theorem 1. If ¢ = ¢z is of the type (1.2), and if Ny(¢) is infinite, then
there is some Y C = with dy = dimspanY < d so that Ny (¢y) is already
non-empty.

Remark This theorem does not require that ¢ be refinable.

This theorem actually leads to a complete characterization of stability
and linear independence in terms of the mask for refinable functions of
the type (1.2). If the shifts of ¢z are linearly dependent and Ng¢(¢z) is
infinite, for example, then any minimal ¥ C = with N¢(¢y) # {} will
satisfy dy < d by theorem 1. In this case, ¢y actually has its support in
the subspace spanned by Y, and the map ¢+’ is not even one-to-one when

restricted to €4 M5PanY Yy may then analyze those shifts of ¢y with
support in spanY. Equivalently, we may analyze the set N¢(¢y ) NspanY
which, since Y is minimal, must be finite. This argument applies equally
well to stability.

§2 Statement of main results

We have already stated one of our main results, namely theorem 1. Combin-
ing theorem 1 with theorems 2 and 3 leads to a complete characterization
of stability and linear independence in terms of the mask for functions of
the type (1.2).
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We begin with a 27-periodic function A defined on €. We assume that
there exists a non-trivial compactly supported function ¢ which satisfies the
refinement equation (1.1). We will also assume that A(0) = 1, and that A
is Lipschitz continuous at the origin.

Definition In the statement of results that follows, and throughout this
paper, we will say that a function A has a
w T-periodic zero in I if there exists z € IF? such that

A(z+ar)=0for all a € Zd;

m contaminating zero in R® if there exists an integer m > 2 and p €

Z4\ (2™ —1)Z? such that

P
A(z’“Qm’“‘fl tum) =0 for all v € ZN\2Z% k€ {0, 1,2, ...}

Remark Example 2 is provided to generate some familiarity with contam-
inating zeros.

The following two theorems were proved for univariate ¢ in [2]. Since
the authors dealt only with univariate functions, the set Ny (¢) was guaran-
teed to be finite by result 3; and hence this was not part of their hypotheses.

Theorem 2. Suppose the compactly supported function ¢ is refinable with
mask A. Suppose further that Nr(¢) is finite. Then the shifts of ¢ are
stable if and only if

(i) A has no w-periodic zeros in R¢, and

(ii) A has no contaminating zeros in R?.

Theorem 3. Suppose the compactly supported function ¢ is refinable with
mask A. Suppose further that N¢(¢) is finite. Then the shifts of ¢ are
linearly independent if and only if

(i) A has no w-periodic zeros in €%, and

(ii) A has no contaminating zeros in R?.

The assumption that Np(¢) be finite is only used to prove the suffi-
ciency. We therefore have the following

Theorem 4. Suppose the compactly supported function ¢ is refinable with
mask A. If the shifts of ¢ are stable (resp. linearly independent), then

(i) A has no w-periodic zeros in R¢ (resp. €%) and

(ii) A has no contaminating zeros in R?.

Remark None of the theorems up to this point in this section required that
¢ be of the type (1.2).

Unfortunately, the assumption that Ny (¢) be finite in theorems 2 and
3 cannot be easily verified in terms of the mask. The following two theorems
show that it can be eliminated for functions of the type (1.2).
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Theorem 5. Suppose that ¢ = ¢=, of the type (1.2), is refinable with mask
A := Az. Then the shifts of ¢ are stable if and only if
(i) A has no w-periodic zeros in RY,

(ii) A has no contaminating zeros in R?, and
(iii) Ag¢(m) =0 for every £ € =.

Theorem 6. Suppose that ¢ = ¢=, of the type (1.2), is refinable with mask
A := Az. Then the shifts of ¢ are linearly independent if and only if
(i) A has no w-periodic zeros in c?,

(ii) A has no contaminating zeros in R?, and
(iii) Ag¢(m) =0 for every £ € =.

These theorems may be best viewed in light of the following known
necessary conditions for stability:

Result 4. Suppose that ¢ = ¢z is of the type (1.2) and ¢ is refinable with
mask A := Az. Suppose further that A¢(w) = 0 for every £ € =. If the
shifts of ¢ are stable, then |det B| = 1 for every basis B C =.

However, the condition |det B| = 1 for all bases is not sufficient. Ex-
ample 1 illustrates a situation in which each ¢, has linearly independent
shifts, each A¢ has a zero at m, and |det B| = 1 for all bases B C Z; yet
the shifts of ¢= are not even stable.

Other interesting results which follow from these theorems are

Corollary 1. Suppose the compactly supported function ¢ is refinable with
mask A. Suppose further that N¢(¢) is finite. If the shifts of ¢ are stable

but not linearly independent, then A has a (non-real) m-periodic zero.
which follows immediately from theorems 2 and 3; and

Corollary 2. Suppose ¢ = ¢z is of the type (1.2) and ¢ is refinable with
mask A = A=. If the shifts of ¢ are stable but not linearly independent,
then Az has a (non-real) m-periodic zero.

which follows immediately from theorems 5 and 6.

63 Examples

Example 1. This example will show that the sufficient conditions provided
in result 4 are not necessary in general. We define the univariate mask

e 73 4 (1 —2cos 9)6_%' + (1 —2cos 9)6_’ +1
4 —4cosb

<€—i~ + 1) <€—i~ _ e—i9> <€—i~ _ ei9>

- 4 —4cosb

Ag =
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for 7/3 < 8 < w. Then Ay is a trigonometric polynomial with real coef-
ficients which satisfies Ay(0) = 1. This is enough to imply the existence
of a real-valued compactly supported refinable distribution with mask Ag.
There is a unique such distribution, ¢g, if we insist further that ¢4(0) = 1.
In fact, for 7/3 < 6 < 7, ¢g is a continuous function with supp ¢y = [0..3].
The functions ¢g are plotted for 8 = 135—2” and 6 = 137—2” in figure 1.

The zeros of the mask Ay are

Z(Ag) =A{r,0,2n — 0} + 2Z~.

From this we can see that the shifts of ¢4 are linearly independent for all
8 # Z. We also see that Ag(7) = 0.

In this example, we consider the bivariate function ¢z of type (1.2)

given by
=={&n,¢) = {<(1)><(1)><1>}

Pe = P157/32, Py = P13z, and Q¢ = Xo..1)’
9= = Pe((+ )0 ({m)de((+,C)

which has mask

e—i(wl—l—wQ) _I_ 1
2 .

Ag(wl,wz) = A%(wl)A%(wg) (

This defines a function ¢ := ¢= € C'(IR?).

Each of the univariate functions has linearly independent shifts. More-
over, convolving any two also results in a function with linearly independent
shifts. Also note that every basis B C = satisfies |det B| = 1. However,
the shifts of ¢= are not even stable, as you can see by observing that the
zero set of Az contains all points (21, x2) € R? for which

157 49« 17n 47w
x1 € {3—2,3—2}—|—2Zﬂ' or xo € {5, 3—2}—|—2Z7T or x1+x9 € m+2%4m.

Thus Z(Az) contains (135—2”, 137—2”) + Zr; i.e., the shifts of ¢ are not stable.
Example 2. We provide an example of a box spline whose mask has a
contaminating zero to generate some familiarity with contaminating zeros.

As far as this paper is concerned, it will be sufficient to define box
splines in terms of their refinement mask. We can define a box spline Mz
associated with = C Zd\() by the refinement equation

— — e\
Mz(2-) = Az Mz where Az = [] A¢((-,€)) and A¢ := (1 +2 )
g€
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(along with ]\75(0) = 1). Here, n := (ng)eez € IN® is the multiplicity of
the direction set =.

Remark The necessary conditions stated in result 4 are also sufficient for
box splines.

We have suppressed the dependence on the multiplicity n because the
results of this paper are in terms of Z(Az), the zeros of the mask. It is clear
that this set is independent of n. In fact, we see that Z(Ag) = (Z\2Z)x
and hence that

2(az) = J {2 e R« (2,6 € (2\22)7 }.
Ee=

We should point out that, although our definition of box splines re-
quires = C Z?, the standard definition of box splines allows for arbitrary
=C IRd\O. However, box splines with non-integer directions are, in general,
not refinable. Hence we are not concerned with them here.

<'777> = o7

(2777277) <7T/> —_= 37T

<'777> =T

[ )
/‘/ o (-m) =—3=
[ )

(&) =17m

2um
2m 1
(0,0)
(-,§) =137
(-,§) =37 (-,§) =11x
Figure 1. Contaminating zero set with 2?71“1 = (2?”, 2%)
In this example, we let d = 2 and we consider ¢= := Mz, where

[1]

= {(9)-()
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Recall that Z(A¢) = Z(A,) consist of all odd multiples of x. Since
|det [€  n]| =45 # 1, result 4 implies that the shifts of ¢z are not stable.
Indeed, ¢= has a contaminating zero with m = 4 and p = (5, 3). In figure 1
we have denoted the points 2* 2?#; e T by bullets(e). The contaminat-
ing zero set is marked by asterisks(x). We have also displayed particular
curves (-, &) € wZ\2Z and (-,n) € 7Z\2Z which cover this contaminating

zero set.
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