
Stability and Independence of the Shifts

of a Multivariate Re�nable Function

Tom Hogan

Abstract. Due to their so-called time-frequency localization proper-
ties, wavelets have become a powerful tool in signal analysis and image
processing. Typical constructions of wavelets depend on the stability
of the shifts of an underlying re�nable function � 2 L2(lRd). In this
paper, we derive necessary and su�cient conditions for the stability of
the shifts of certain compactly supported re�nable functions. These
conditions are in terms of the zeros of the re�nement mask. We also
provide a similar characterization of the (global) linear independence
of the shifts.

x1 Introduction

In this paper we present a characterization of the stability and linear inde-
pendence of the shifts of a compactly supported re�nable function in terms
of the re�nement mask. Our results are applicable to a large class of mul-
tivariate functions which includes (but is not limited to) tensor products
and box splines.

A function � 2 Lp(lRd) is said to have `p-stable shifts if there exist
positive constants C and D such that

Ckak`p � k
X
�2ZZd

a(�)�(� � �)kLp � Dkak`p

for all a 2 `p(ZZd;Cjj ) (it is often said that � provides a Riesz basis in Lp

in this case). A compactly supported function � is said to have linearly
independent shifts if the map

��0 : a 7!
X
�2ZZd

a(�)�(� � �)
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is one-to-one.
These two properties can be characterized in terms of b�, the Fourier-

Laplace transform of �, which is an entire function de�ned on all of Cjj d for
all compactly supported �. In particular, the following results are stated
in terms of the Fourier-Laplace transform.

Result 1. Suppose 1 � p � 1 and � 2 Lp(lRd) is compactly supported.
Then � has `p-stable shifts if and only if the set

NlR(�) :=
n
# 2 TTd := [0 : : 2�)d : b�(# + 2��) = 0 8� 2 ZZd

o
is empty.

Result 2. [3] Suppose � 2 D0(lRd) is compactly supported. Then � has
linearly independent shifts if and only if the set

NC (�) :=
n
# 2 TTd + ilRd : b�(# + 2��) = 0 8� 2 ZZd

o
is empty.

Notice that the condition that NlR(�) be empty in result 1 is indepen-
dent of p. For this reason, we will say that a compactly supported function
� has stable shifts if NlR(�) is empty. So a function � which has stable
shifts has `p-stable shifts if and only if � 2 Lp.

A compactly supported function � is said to be re�nable if (� is not
identically zero and) there exists a 2�-periodic function A satisfying

b�(2!) = A(!)b�(!) for all ! 2 Cjj d: (1:1)

Equation (1.1) is called the re�nement equation and A is called the (re�ne-
ment) mask.

The characterizations given in results 1 and 2 are in terms of b�. How-
ever, for re�nable � it is actually more desirable to characterize these prop-
erties in terms of the mask A. In the univariate case (d = 1), stability
and linear independence of the shifts of a compactly supported function
have been characterized in terms of the mask by Jia and Wang [2]. Their
arguments relied on the following

Result 3. [3] For a non-zero compactly supported � 2 D0(lRd), the set
NC (�) is �nite.

Unfortunately, this result is not true for multivariate functions To an-
alyze the multivariate case, we consider functions � whose Fourier-Laplace
transform b� has the form:

b� = b�� :=
Y
�2�

b��(h�; �i); (1:2)



Stability and Independence 3

where � is a �nite subset of ZZdn0 satisfying dimspan� = d and, for each
� 2 �, �� is a compactly supported member of Lp(lRd) for some 1 � p �1
(p may depend on �).

Remark Each �� is univariate. However, (1.2) de�nes �f�g as a distribution

on lRd (with support in the hyperplane lR�).

Remark If �� is re�nable for every � 2 �, say with mask A�, then �� is
also re�nable with mask

A� :=
Y
�2�

A�(h�; �i):

It is clear from (1.2) and result 1 (resp. result 2) that, if the shifts
of �� are stable (resp. linearly independent), then the set NlR(�Y ) (resp.
NC (�Y )) must be empty for every Y � �. Now, suppose � = �� is of the

type (1.2) and suppose Y � � satis�es dY := dim spanY < d. Then b�Y is
constant in directions orthogonal to Y . Therefore, if NIF(�Y ) (we use IF to
represent either of the �elds lR or Cjj ) is non-empty, say # 2 NIF(�Y ), then

for any � 2 Y ?, b�Y (#+�+2��) is zero for all � 2 ZZd; i.e., the set NIF(�Y )
is in�nite. And since NIF(�Y ) is a subset of NIF(�), NIF(�) is also in�nite.
One of the main results of this paper is the converse of this, namely:

Theorem 1. If � = �� is of the type (1.2), and if NIF(�) is in�nite, then
there is some Y � � with dY = dimspanY < d so that NIF(�Y ) is already
non-empty.

Remark This theorem does not require that � be re�nable.
This theorem actually leads to a complete characterization of stability

and linear independence in terms of the mask for re�nable functions of
the type (1.2). If the shifts of �� are linearly dependent and NC (��) is
in�nite, for example, then any minimal Y � � with NC (�Y ) 6= fg will
satisfy dY < d by theorem 1. In this case, �Y actually has its support in
the subspace spanned by Y , and the map ��0 is not even one-to-one when

restricted to Cjj ZZ
d\spanY . We may then analyze those shifts of �Y with

support in spanY . Equivalently, we may analyze the set NC (�Y )\ spanY
which, since Y is minimal, must be �nite. This argument applies equally
well to stability.

x2 Statement of main results

We have already stated one of our main results, namely theorem 1. Combin-
ing theorem 1 with theorems 2 and 3 leads to a complete characterization
of stability and linear independence in terms of the mask for functions of
the type (1.2).
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We begin with a 2�-periodic functionA de�ned on Cjj d. We assume that
there exists a non-trivial compactly supported function � which satis�es the
re�nement equation (1.1). We will also assume that A(0) = 1, and that A
is Lipschitz continuous at the origin.

De�nition In the statement of results that follows, and throughout this
paper, we will say that a function A has a

�-periodic zero in IFd if there exists z 2 IFd such that

A(z + ��) = 0 for all � 2 ZZd;

contaminating zero in lRd if there exists an integer m � 2 and � 2
ZZdn(2m � 1)ZZd such that

A(2k
2��

2m � 1
+ ��) = 0 for all � 2 ZZdn2ZZd; k 2 f0; 1; 2; : : :g:

Remark Example 2 is provided to generate some familiarity with contam-
inating zeros.

The following two theorems were proved for univariate � in [2]. Since
the authors dealt only with univariate functions, the set NIF(�) was guaran-
teed to be �nite by result 3; and hence this was not part of their hypotheses.

Theorem 2. Suppose the compactly supported function � is re�nable with
mask A. Suppose further that NlR(�) is �nite. Then the shifts of � are
stable if and only if
(i) A has no �-periodic zeros in lRd, and
(ii) A has no contaminating zeros in lRd.

Theorem 3. Suppose the compactly supported function � is re�nable with
mask A. Suppose further that NC (�) is �nite. Then the shifts of � are
linearly independent if and only if
(i) A has no �-periodic zeros in Cjj d, and
(ii) A has no contaminating zeros in lRd.

The assumption that NIF(�) be �nite is only used to prove the su�-
ciency. We therefore have the following

Theorem 4. Suppose the compactly supported function � is re�nable with
mask A. If the shifts of � are stable (resp. linearly independent), then
(i) A has no �-periodic zeros in lRd (resp. Cjj d) and
(ii) A has no contaminating zeros in lRd.

Remark None of the theorems up to this point in this section required that
� be of the type (1.2).

Unfortunately, the assumption that NIF(�) be �nite in theorems 2 and
3 cannot be easily veri�ed in terms of the mask. The following two theorems
show that it can be eliminated for functions of the type (1.2).
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Theorem 5. Suppose that � = ��, of the type (1.2), is re�nable with mask
A := A�. Then the shifts of � are stable if and only if
(i) A has no �-periodic zeros in lRd,
(ii) A has no contaminating zeros in lRd, and
(iii) A�(�) = 0 for every � 2 �.

Theorem 6. Suppose that � = ��, of the type (1.2), is re�nable with mask
A := A�. Then the shifts of � are linearly independent if and only if
(i) A has no �-periodic zeros in Cjj d,
(ii) A has no contaminating zeros in lRd, and
(iii) A�(�) = 0 for every � 2 �.

These theorems may be best viewed in light of the following known
necessary conditions for stability:

Result 4. Suppose that � = �� is of the type (1.2) and � is re�nable with
mask A := A�. Suppose further that A�(�) = 0 for every � 2 �. If the
shifts of � are stable, then jdetBj = 1 for every basis B � �.

However, the condition jdetBj = 1 for all bases is not su�cient. Ex-
ample 1 illustrates a situation in which each �� has linearly independent
shifts, each A� has a zero at �, and jdetBj = 1 for all bases B � �; yet
the shifts of �� are not even stable.

Other interesting results which follow from these theorems are

Corollary 1. Suppose the compactly supported function � is re�nable with
mask A. Suppose further that NC (�) is �nite. If the shifts of � are stable
but not linearly independent, then A has a (non-real) �-periodic zero.

which follows immediately from theorems 2 and 3; and

Corollary 2. Suppose � = �� is of the type (1.2) and � is re�nable with
mask A = A�. If the shifts of � are stable but not linearly independent,
then A� has a (non-real) �-periodic zero.

which follows immediately from theorems 5 and 6.

x3 Examples

Example 1. This example will show that the su�cient conditions provided
in result 4 are not necessary in general. We de�ne the univariate mask

A� :=
e�3i� + (1 � 2 cos �)e�2i� + (1 � 2 cos �)e�i� + 1

4� 4 cos �

=

�
e�i� + 1

� �
e�i� � e�i�

� �
e�i� � ei�

�
4� 4 cos �
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for �=3 < � < �. Then A� is a trigonometric polynomial with real coef-
�cients which satis�es A�(0) = 1. This is enough to imply the existence
of a real-valued compactly supported re�nable distribution with mask A�.
There is a unique such distribution, ��, if we insist further that b��(0) = 1.
In fact, for �=3 < � < �, �� is a continuous function with supp�� = [0 : :3].
The functions �� are plotted for � = 15�

32 and � = 17�
32 in �gure 1.

The zeros of the mask A� are

Z(A�) = f�; �; 2� � �g + 2ZZ�:

From this we can see that the shifts of �� are linearly independent for all
� 6= �

2 . We also see that A�(�) = 0.
In this example, we consider the bivariate function �� of type (1.2)

given by

� = f�; �; �g :=

��
1
0

�
;

�
0
1

�
;

�
1
1

��
;

�� = �15�=32; �� = �17�=32; and �� = �
[0::1)

;

b�� = b��(h�; �i)b��(h�; �i)b�� (h�; �i)
which has mask

A�(!1; !2) = A 15�
32

(!1)A 17�
32

(!2)

�
e�i(!1+!2) + 1

2

�
:

This de�nes a function � := �� 2 C1(lR2).
Each of the univariate functions has linearly independent shifts. More-

over, convolving any two also results in a function with linearly independent
shifts. Also note that every basis B � � satis�es jdetBj = 1. However,
the shifts of �� are not even stable, as you can see by observing that the
zero set of A� contains all points (x1; x2) 2 lR2 for which

x1 2

�
15�

32
;
49�

32

�
+2ZZ� or x2 2

�
17�

32
;
47�

32

�
+2ZZ� or x1+x2 2 �+2ZZ�:

Thus Z(A�) contains (
15�
32 ;

17�
32 ) + ZZ�; i.e., the shifts of � are not stable.

Example 2. We provide an example of a box spline whose mask has a
contaminating zero to generate some familiarity with contaminating zeros.

As far as this paper is concerned, it will be su�cient to de�ne box
splines in terms of their re�nement mask. We can de�ne a box spline M�

associated with � � ZZdn0 by the re�nement equation

cM�(2�) = A�
cM� where A� :=

Y
�2�

A�(h�; �i) and A� :=

�
1 + e�i�

2

�n�
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(along with cM�(0) = 1). Here, n := (n�)�2� 2 lN� is the multiplicity of
the direction set �.

Remark The necessary conditions stated in result 4 are also su�cient for
box splines.

We have suppressed the dependence on the multiplicity n because the
results of this paper are in terms of Z(A�), the zeros of the mask. It is clear
that this set is independent of n. In fact, we see that Z(A�) = (ZZn2ZZ)�
and hence that

Z(A�) =
[
�2�

n
x 2 lRd : hx; �i 2 (ZZn2ZZ)�

o
:

We should point out that, although our de�nition of box splines re-
quires � � ZZd, the standard de�nition of box splines allows for arbitrary
� � lRdn0. However, box splines with non-integer directions are, in general,
not re�nable. Hence we are not concerned with them here.

h�; �i = 5�

h�; �i = 3�

h�; �i = �

h�; �i = �3�

h�; �i = 17�

h�; �i = 13�

h�; �i = 11�h�; �i = 3�

(0;0)

(2�;2�)

2��
2m�1

Figure 1. Contaminating zero set with 2��
2m�1 =

�
2�
3 ; 2�5

�
.

In this example, we let d = 2 and we consider �� :=M�, where

� = f�; �g :=

��
6
5

�
;

�
�3
5

��
:
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Recall that Z(A�) = Z(A�) consist of all odd multiples of �. Since
jdet [ � � ]j = 45 6= 1, result 4 implies that the shifts of �� are not stable.
Indeed, �� has a contaminating zero with m = 4 and � = (5; 3). In �gure 1
we have denoted the points 2k 2��

2m�1 2 TTd by bullets(�). The contaminat-
ing zero set is marked by asterisks(�). We have also displayed particular
curves h�; �i 2 �ZZn2ZZ and h�; �i 2 �ZZn2ZZ which cover this contaminating
zero set.
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