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A characterization of the approximation order of multivariate spline spaces

Amos Ron

1. Introduction

The determination of the approximation order associated with spline spaces is one of the major

and fundamental goals of spline theory. In an abstract form, we are given a collection of function

spaces {Sh}h where h is a continuous or discrete positive parameter, and look for the largest d for

which

dist(f, Sh) = O(hd), ∀f ∈ F,

where dist is measured by some metric or norm (usually a p− or Sobolev norm) and F is an

admissible function space with respect to dist. Here, we always assume that all functions are

complex-valued and defined on the vector space IRs. We think of h as measuring (in a linear way)

the roughness of the mesh used, hence indeed expect to approximate better as h→ 0. A particular

case of interest, which will be referred to as “the scaling case” occurs when the refined spaces

Sh are dilations of S1, i.e.,

Sh = σhS1,

with σh the scaling operator

σh : f 7→ f(·/h).

In multivariate splines, as well as in finite elements, one prefers approximant spaces which are

spanned by compactly supported functions, since then there is hope to provide a local scheme

for approximation from the underlying space. In the area of multivariate splines on regular

meshes, one also assumes that the spaces Sh are translation-invariant, or more precisely, each Sh

is invariant under hZZs-translates. This leads to the model where each of the spaces Sh is assumed

to be spanned by the hZZs-translates of one or finitely many compactly supported functions. In

general, it is desirable to avoid the assumption that these translates are linearly independent, i.e,

form a basis for Sh, since such condition is not met in many cases of practical interest (e.g., the

Zwart element and also most of the cases when more than one compactly supported function is

involved).

The simplest case therefore occurs when we assume both, that S1 is spanned by the integer

translates of a single compactly supported function φ and that Sh is the the h-scale of S1 hence

is spanned by the h-scale of φ. This model was investigated intensively in the late 60’s-early 70’s

by people in the finite element area. The following theorem is essentially Theorem 1 of [SF] (at

least for p = 2,∞) and these days is usually referred to as The Strang-Fix Conditions. In the

statement of the theorem we use the notation φ∗h for the semi-discrete convolution operator

φ∗h : ChZZs

→ Sh, φ∗h : a 7→
∑

α∈hZZs

a(α)φ(· − α), φ∗ := φ∗1,

and φ∗′h for the semi-discrete operator

φ ∗′h f := φ ∗h (f|hZZs), φ∗′ := φ ∗′1 .

Also, Πk stands for the space of polynomials of (total) degree at most k.
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(1.1) Theorem. Let φ be a compactly supported continuous function. Let S1 be the space spanned

by the integer translates of φ and Sh := σhS1. Then, for 1 ≤ p ≤ ∞ the following conditions are

equivalent

(1) φ̂(0) 6= 0, and for |α| ≤ d− 1, Dαφ̂ vanishes on 2πZZs\0.

(2) For every µ ∈ Πd−1, φ ∗
′ µ is a polynomial of the form cµ+ q, for some c 6= 0 and q ∈ Π<deg µ.

(3) For every smooth function f which is in Lp together with all its derivatives up to order d, there

exist sequences ah : hZZs satisfying

(3a) ‖f − σhφ ∗h ah‖p = O(hd).

(3b) ‖ah‖`p
≤ kh−s/p‖f‖p.

The equivalence of (1) and (2) was refined and extended since then by several authors (cf.

e.g., [DM1] and [B1]; furthermore, [B1] shows that the two first conditions are equivalent to the

apparently weaker one: φ̂(0) 6= 0, Πd−1 ⊂ S1), yet is mainly technical since it deals with a

characterization of the polynomials in S1 in terms of the Fourier transform φ̂ and is not related

directly to the approximation order. The implication (1,2) =⇒ (3) initiated much work by many

authors aiming at constructing explicit linear maps into Sh, the so-called quasi-interpolants, which

satisfy the conditions in (3), and which (by now) are quite well understood (cf. [B2] for an updated

survey of quasi-interpolants). Still, it was probably the saturation alike result of the above theorem

that was so spectacular: one cannot achieve approximation order d from the dilated spaces {Sh}h

unless Πd−1 ⊂ S1! However, one should bear in mind that condition (3) is assuming a restrictive way

for approximation from Sh (termed “controlled”), hence does not characterize the approximation

order from {Sh}h for smooth functions, and gives only a lower bound for that approximation

order. As a matter of fact the desired approximation order from spaces of the above form is known

only in some special cases (such as when φ is a box spline, [BH1]). Replacing the “controlled” notion

by another constrained approximation notion introduced in [BJ] (and referred there to as “local

approximation”), (1.1)Theorem admits a generalization to the case of several compactly supported

functions [SF], [BJ], however still leaving open the question of the unconditional approximation

order. Finally, the analysis in [DR] (of the approximation order for exponential box spline spaces)

demonstrated the fact that good rates of approximation can be obtained from spaces {Sh}, where

each one of them is spanned as before by the translates of a single function, yet none of them

contains non-trivial polynomials. (Clearly, such spaces are not obtained by dilating S1). In view

of these latter results, one may interpret the Strang-Fix Conditions as saying that constructing Sh

by scaling S1 is appropriate only when S1 contains a sufficiently large space of polynomials.

In this paper, we characterize the order of best approximation from spaces of the form

{Sh := σhS1}h, with S1 spanned by the integer translates of a compactly supported function φ.

We show that, under the assumption

∑

α∈ZZs

φ(· − α) 6≡ 0,

the approximation order associated with {Sh}h is determined by the polynomials in S1 exactly in

the same way the controlled and local approximation orders are characterized, thus improving the

statement of Strang-Fix Conditions above. Our course though, does not focus on (and as a matter
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of fact is not aimed at) spaces obtained by scalings, but considers the general setting of an arbitrary

directed function space set {Sh}h, each of which is spanned by the hZZs-translates of a compactly

supported function φh. The goal is to provide information about the approximation order of {Sh}h

and about maps that realize this approximation order. In order to make a good use of the compact

support assumption, it is essential to assume that for some k > 0

suppφh ⊂ [0, hk]s, ∀h,

since otherwise the translates of φh are not uniformly local as h→ 0.

A major step in the characterization here of the above mentioned approximation order is the

construction, for a given finite dimensional space H of a certain type, of a sequence {Qh}h of

uniformly local, uniformly bounded quasi-interpolants (each maps into the associated Sh), that

approximate the elements of H to the same order as best approximations do. In that process H is

required to be a translation-invariant subspace of L∞, which leads naturally to exponential spaces

H spanned by exponentials of imaginary frequencies. Using quasi-interpolation arguments, we show

that the operators {Qh}h provide approximants of optimal order to all admissible functions, in case

H approximates well locally (say, at the origin). This gives rise to a scheme for the determination

of the approximation order from {Sh}h, in which finding this order is reduced to determining the

approximation order obtained by applying a prescribed set of quasi-interpolants to prescribed (and

finitely many) exponentials. This also proves that the best approximation order can always be

realized in a linear way (i.e., by a quasi-interpolant), and furthermore, that we can construct quasi-

interpolants of optimal order (essentially) without an a priori (or even a posteriori) knowledge

about this approximation order.

In the special case when φh = σhφ1, the quasi-interpolants constructed are not scales one of

the other (i.e., Qh 6= σhQ1σ1/h), yet it is shown that the scaled operators {σ1/hQh}h converge,

and the limiting quasi-interpolant Q is then used to obtain the above mentioned improvement of

the Strang-Fix Conditions.

In section 2 we analyze first the relatively simpler case of approximation order to smooth

bounded functions, an analysis which serves as an illustration of the general case, while being

better tight in its statements and error estimates. The main results together with their proofs are

given in section 3. Finally, in section 4 we consider the scaling case under the singularity assumption∑
α∈ZZs φ(α) = 0. We prove a theorem which allows us to embed (in a suitable sense) the case of

several φ’s (as studied in [SF], [DM2], [J] and [BJ]) in this case of a singleton singular φ, and thus

to use the counterexample of [BH2] to show that the polynomials in S1 do not characterize

any more the approximation order, leaving perhaps only little hope for a clear and simple

characterization of the approximation order for this more general setting.

We use standard multivariate notations. So ZZs
+ := {α ∈ ZZs : α ≥ 0}, and for α ∈ ZZs

+, ()α is

the power function x 7→ xα := xα1

1 ...xαs
s . D and E are used for the differential resp. shift operators,

and so p(D) and p(E) are the differential resp. difference operators obtained by evaluating the

polynomial p at D and E; in particular, Eα : f 7→ f(· + α).

One concluding remark seems to be in order: the Strang-Fix Conditions, as well as their

proofs, strongly emphasize the Fourier analysis approach (Poisson’s summation, Parseval formula).

Through the years it led to the understanding that the Fourier analysis methods are essential to the
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characterization of approximation orders and related issues, at least for general uniform spaces. The

results here, as well as their proofs, provide an illustration of the alternative techniques: while the

Fourier transform approach focuses (implicitly) on the similarity between the semi-discrete operator

φ∗′ and the standard convolution operator φ∗ for suitable spaces of polynomials or exponentials

(see [BR3] which elaborates on this point), the alternative approach (as originated in [B1], with the

results in [CJW] and [CD] serving as the motivation) associates φ∗′ with the difference operator

Tφ : f 7→
∑

α∈ZZs

φ(α)f(· − α).

In this setting, invariant subspaces of Sh (under differentiation, hZZs-translations, etc) play a key

role. The above difference operators match the action of φ∗′ for more general spaces rather than

polynomials or exponentials ([B1], [R1]), hence are adequate for the analysis here. Moreover, even

for piecewise-polynomials or piecewise-exponentials this approach is sometimes more direct and

more efficient than Fourier analysis (cf. e.g., [BAR] and [R2]).

2. Approximation order for continuous functions

In this section we illustrate the general results by treating first the approximation order for

bounded uniformly continuous functions.

Throughout this section, as well as in the next one, we assume that {φh}h is a collection of

compactly supported functions which satisfy, for every h, the following three conditions:

(2.1) suppφh ⊂ [0, hk)s;

(2.2)
∑

α∈hZZs

φh(α) = 1;

(2.3) ‖φh‖∞ ≤ c.

Here k and c are some constants, which will be used in the sequel in the above meaning without

further reference. Note that #(hZZs ∩ suppφh) ≤ ks. We also use the notation

(2.4) dist(f, S) := inf{‖f − g‖∞ : g ∈ S}.

(2.5)Proposition. For every h,

(2.6) ‖φh ∗′h 1 − 1‖∞ ≤ 2kscdist(1, Sh).

Proof: Let f be an arbitrary element of Sh. Then, for every α ∈ IRs,

(2.7) ‖E−αf − 1‖∞ = ‖f − 1‖∞.
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Since f ∈ Sh, we know from [B1] that φh ∗′h f =
∑

α∈hZZs φh(α)E−αf , and hence, by (2.1), (2.2)

and (2.7),

‖φh ∗′h f − 1‖∞ = ‖
∑

α∈hZZs

φh(α)(E−αf − 1)‖∞ ≤
∑

α∈hZZs

|φh(α)|‖E−αf − 1‖∞ ≤ ksc‖f − 1‖∞.

But this completes the proof, since (2.1) when combined with (2.3), implies that

‖φh ∗′h (f − 1)‖∞ ≤ ksc‖f − 1‖∞. ♠

The above result is now used in the following theorem, which shows that the operators {φh∗
′
h}h

approximate continuous functions to the same order as the best approximations from {Sh}h do.

(2.8) Theorem. Assume that (2.1), (2.2) and (2.3) hold. Then for every function f and every h,

(2.9) ‖φh ∗′h f − f‖∞ ≤ cks(k ωf (h) + 2 dist(1, Sh)‖f‖∞),

where ωf is the modulus of continuity of f (in the ∞-norm). In particular, if dist(1, Sh) = o(1),

then dist(f, Sh) = o(1) for every bounded uniformly continuous f , and if dist(1, Sh) = O(h), then

dist(f, Sh) = O(h), for every f ∈ C1(IRs) which is bounded together with its first order derivatives.

Proof: Fix h and x ∈ IRs. Since, by (2.1), φh(x − α) = 0 for all α 6∈ x − [0, hk)s, then

(2.5)Proposition implies that, with νh(x) := hZZs ∩ (x− suppφh),

(2.10) |
∑

α∈νh(x)

φh(x− α) − 1| ≤ 2kscdist(1, Sh),

and hence

(2.11) |
∑

α∈νh(x)

f(x)φh(x− α) − f(x)| ≤ 2kscdist(1, Sh)‖f‖∞.

On the other hand, by (2.3),

(2.12)

|
∑

α∈νh(x)

f(α)φh(x− α) −
∑

α∈νh(x)

f(x)φh(x− α)|

≤
∑

α∈νh(x)

|f(α) − f(x)||φh(x− α)| ≤ cks+1ωf (h).

Summing (2.11) and (2.12) we obtain (2.9), which implies the rest of the theorem.
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(2.8)Theorem leads to the following improvement of the case d = 0 (and p = ∞) in (1.1)The-

orem:

(2.13) Corollary. Let φ be a compactly supported bounded function satisfying∑
α∈ZZs φ(α) = 1. Define φh := σhφ, and let Sh be the space spanned by the hZZs-translates

of φh. Then the following conditions are equivalent:

(a) dist(f, Sh) = O(h), for every f ∈ C1(IRs) which is bounded together with its first order

derivatives.

(b) For every function f

‖φh ∗′h f − f‖∞ ≤Mωf (h),

where M depends only on diam suppφ and ‖φ‖∞.

(c) 1 ∈ S1.

(d) φ ∗′ 1 = 1.

Proof:

(d) =⇒ (c): trivial.

(c) =⇒ (b): (2.2) is assumed here and (2.1) and (2.3) are trivially satisfied, and therefore

(2.8)Theorem can be invoked. (b) then follows from the fact that, since 1 ∈ S1, 1 ∈ Sh for every h,

and thus dist(1, Sh) = 0.

(b) =⇒ (a): trivial.

(a) =⇒ (d): With f = 1, we employ (2.5)Proposition to conclude that

‖φh ∗′h 1 − 1‖∞ →
h→0

0. But since ‖φh ∗′h 1 − 1‖∞ is independent of h, it must be 0.

3. Approximation order for smooth functions

In this section we establish necessary and sufficient conditions for higher approximation orders

(i.e., higher than O(h)) for smooth functions by the spaces {Sh}h. Precisely, we look for the

maximal d for which dist(f, Sh) = O(hd) for every function in the Sobolev space

(3.1) W d
∞ := {f ∈ Cd(IRs) : ‖f‖∞,d :=

∑

|α|≤d

‖Dαf‖∞ <∞}.

Throughout the section we retain assumptions (2.1), (2.2) and (2.3).

The proofs in the previous section were based on the fact that the sequence {φh∗
′
h}h forms

a collection of uniformly bounded local operators which approximate continuous functions to the

same order as the best approximation. The constant function is a convenient trial function since

on the one hand it spans a translation-invariant space while on the other hand it is admissible,

being bounded and uniformly continuous. In the general case, though, the operator φh∗
′
h cannot be

expected to approximate well, and will be replaced by an operator of the form ψh∗
′
h for a suitable

function ψh ∈ Sh. Furthermore, we avoid here polynomials as trial functions, since in general they

are neither bounded nor uniformly continuous. Seeking for finite-dimensional spaces H which are

translation-invariant on the one hand, and consist of bounded functions on the other hand, we note

that such spaces are necessarily of the form

(3.2) H = span{eθ}θ∈Θ,
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where eθ : x 7→ eθ·x, and the spectrum Θ of H satisfies

(3.3) Θ ⊂ iIRs.

The first result here deals with the extension of (2.5)Proposition to exponential spaces H of

the above form, and is the crux in the analysis to follow. We use here the notation Th for the

difference operator

(3.4) Th : f 7→
∑

α∈hZZs

φh(α)E−αf.

(3.5) Theorem. Assume that {φh}h satisfy (2.1), (2.2) and (2.3). Let H be a finite-dimensional

exponential space satisfying (3.2) and (3.3). Then there exists a sequence {Vh}h of difference

operators which are supported on hZZs (resp.) and satisfy

(a) Vh inverts Th|H for all (sufficiently small) h;

(b) {Vh}h are uniformly local and uniformly bounded, i.e.,

(3.6) suppVhφh ⊂ [0, hk1)
s, ‖Vhφh‖∞ ≤ c1,

for some constants k1, c1.

The functions ψh := Vhφh then satisfy

(3.7) ‖ψh ∗′h f − f‖∞ ≤M dist(f, Sh)

for every f ∈ H. The constant M depends only on k, c and ρ(H) := max{‖θ‖∞ : eθ ∈ H}.

(3.8) Remark. The representation, hence the extension, of (Th|H )−1 as difference operators in the

approach here is merely a convenient choice. Any uniformly bounded uniformly local extensions

will do as well.

Proof: Set Θ for the spectrum of H. With Th as in (3.4), (2.3) and (2.1) imply that

(3.9) ‖Th‖ ≤ cks,

when regarding Th, say, as an endomorphism of L∞(IRs). We claim that for sufficiently small h,

the restrictions Th|H are equi-bounded below by some positive constant. We use it to define the

difference operators {Vh}h, which are uniformly bounded (at least for small enough h) and invert

{Th}h on H, (as done in [DR] in the derivation of the approximation order for exponential box

splines. The idea, for a polynomial H and h = 1, was originated in [CD]). First, we examine the

action of Th on the pure exponentials of H: for an exponential eθ, Th(eθ) = eθ

∑
νh(0) φh(α)e−θ·α

(with νh(0) := hZZs ∩ [0, hk)s), while

(3.10) |
∑

νh(0)

φh(α)e−θ·α| ≥ |
∑

νh(0)

φh(α)| − |
∑

νh(0)

φh(α)(1 − e−θ·α)| ≥ 1 − kscbh,
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using (2.1), (2.2) and (2.3). Here b depends on ρ(H) and k but independent of h, which means

that (for sufficiently small h and) for all eθ ∈ H

(3.11) Theθ = ch,θeθ, where |ch,θ| ≥ 1/2.

We now define

(3.12) Vh := (I −
∏

θ∈Θ

(I − (1/ch,θ)Th))/Th,

with I being the identity. (The division by Th here is formal, since Th appears as a factor in the

numerator of the right hand of (3.12).) Since, for each θ, I− (1/ch,θ)Th annihilates eθ, the product

term in the definition of Vh annihilates H, and hence, for every h, (VhTh)|H = I, which proves (a).

As for the functions {ψh}h in the theorem, with the aid of (3.9) and (3.11), we see that {Vh}h

is a bounded set of operators, and since each Vh is a linear combination of {T j
h}

#Θ−1
j=0 , it is a finite

difference operator supported on [0, hr)s ∩ hZZs (where r ≤ k#Θ), and hence (b) is valid.

To prove (3.7), we now take any f ∈ H and an arbitrary fh ∈ Sh. Since

(3.13) ‖ψh ∗′h f − f‖∞ ≤ ‖ψh ∗′h f − VhThfh‖∞ + ‖VhThfh − f‖∞,

it is sufficient to estimate each of the right-hand summands in (3.13).

As for the first one, we recall that since fh ∈ Sh then [B1], Thfh = φh ∗′h fh and hence

VhThfh = ψh ∗′h fh. Therefore

(3.14) ‖ψh ∗′h f − VhThfh‖∞ = ‖ψh ∗′h (f − fh)‖∞ ≤ ks
1c1‖f − fh‖∞.

For the second term, we use the fact that Vh inverts Th on H, hence

(3.15) ‖VhThfh − f‖∞ = ‖VhTh(fh − f)‖∞ ≤ ‖VhTh‖‖fh − f‖∞.

Summing (3.14) and (3.15), and in reliance on the boundedness of {VhTh}h, we obtain

‖ψh ∗′h f − f‖∞ ≤M‖f − fh‖∞,

which implies (3.7), since fh was arbitrary.

For later use, we examine in the following corollary the above construction under the scaling

assumption.

(3.16) Corollary. Under the assumption φh = σhφ1, all h, we have

σ1/hψh →
h→0

((I − (I − T1)
#Θ)/T1)φ1,

where {ψh}h are the functions constructed in (3.5)Theorem. The convergence is uniform.

Proof: Using the notations of (3.5)Theorem we have

σ1/hψh = σ1/hVhσhφ1.

Furthermore, the assumption φh = σhφ1 also implies that σ1/hThσh = T1, and the claim then

follows from the fact that the constants ch,θ involved in the definition of Vh satisfy limh→0 ch,θ = 1,

∀θ ∈ Θ ((3.10) bounds this limit from above by 1, and a similar argument provides the converse

inequality).
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The proofs of the main results make use of the “local approximation order”* notion (as do all

quasi-interpolation arguments). As a preparation, we define now the local approximation order

(or the “approximation order at a point”), and discuss some aspects of the local order which are

relevant to the context here.

(3.17) Definition. Let H be a subspace of C∞(IRs). We say that H admits a local approximation

order d at x ∈ IRs if for every f which is sufficiently smooth in a neighbourhood of x, there exists

g ∈ H such that

(3.18) |(f − g)(x+ y)| ≤ cf,x‖y‖
d
∞,

for all sufficiently small y.

Note that in case H is translation-invariant, the local approximation order of H is independent

of x. For an exponential H of the form (3.2), the results of [BR1] provide a useful characterization

of the local approximation order.

(3.19) Result. Assume H satisfies (3.2). Then the local approximation order d of H is determined

by the largest polynomial space Πd−1 for which the spectrum of H is total.

We recall that a set Ω is total for the function space F , if no f ∈ F\0 vanishes identically on

Ω.

For our purposes, it is also important to have some bounds on the approximant g in terms of

the Sobolev norm ‖f‖∞,d. This task is accomplished in the following proposition.

(3.20) Proposition. Let H be a finite-dimensional exponential space of local approximation order

d, which satisfies (3.2) and (3.3). Then, for every f ∈W d
∞ and every x ∈ IRs, the local approximant

g :=
∑

θ∈Θ
cθeθ ∈ H can be chosen such that

(3.21) |(f − g)(x+ y)| ≤ const‖f‖∞,d‖y‖
d
∞,

and

(3.22) max
θ∈Θ

|cθ| ≤ const‖f‖∞,d,

where const depends only on H.

Proof: The inequality (3.21) follows as a special case of the argument used in the proof of

Theorem 3.1 in [DR]. As for the second claim, in view of Result (3.19), we may assume without

loss that #Θ = dimΠd−1, since otherwise H can be replaced by a subspace of it of dimension

dimΠd−1 and with spectrum Θ′ which is still total for Πd−1.

* Unfortunately, the terminology “local approximation” is used in spline theory in two different

contexts: the “local approximation” mentioned in the introduction in conjunction with [BJ], is

thus a different notion.
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Now fix x ∈ IRs and f ∈W d
∞. The assumption on the local approximation order property of H

can be now combined with the fact that dimH = dimΠd−1 to conclude that the local approximant

g ∈ H for f at x is unique. This means that the semi norm

‖g‖′ := max
|α|<d

|Dαg(x)|

is a norm on H, hence is equivalent to the norm ‖
∑

θ∈Θ
cθeθ‖

′′ := maxθ∈Θ |cθ|. Since ‖g‖′ = ‖f‖′,

we obtain (3.22). The fact that the constant there is uniform in x, follows easily from the fact that

|eθ(x)| = 1 for every θ ∈ Θ and x ∈ IRs.

(3.23) Theorem. Suppose that {φh}h satisfy (2.1), (2.2) and (2.3). Let H be a finite-dimensional

exponential space that satisfies (3.2) and (3.3) and is of local approximation order d. Let {ψh}h be

the functions associated with H by (3.5)Theorem. Then, for some constants M1,M2 and for every

f ∈W d
∞,

(3.24) ‖ψh ∗′h f − f‖∞ ≤ ‖f‖∞,d (M1h
d +M2 max

eθ∈H
dist(eθ, Sh)).

Proof: Let f ∈ W d
∞ and x ∈ IRs. Choose g :=

∑
eθ∈H cθeθ ∈ H to be as in (3.20)Proposition.

Then, by (3.20)Proposition and (3.5)Theorem,

|(ψh ∗′h g − g)(x)| ≤ const‖f‖∞,d max
eθ∈H

dist(eθ, Sh).

Therefore,

|(ψh ∗′h f − f)(x)| ≤ |ψh ∗′h (f − g)(x)| + |(ψh ∗′h g − g)(x)|

≤ C1‖(f − g)|x+[0,hr]s‖∞ + C2‖f‖∞,d max
eθ∈H

dist(eθ, Sh)

≤ ‖f‖∞,d(M1h
d +M2 max

eθ∈H
dist(eθ, Sh)),

where in the first inequality, the fact that g(x) = f(x) has been used.

Combining (3.19)Result with (3.23)Theorem we conclude the following:

(3.25) Corollary. Suppose that {φh}h satisfy (2.1), (2.2) and (2.3). Then the following conditions

are equivalent

(a) For every f ∈W d
∞, dist(f, Sh) = O(hd).

(b) For any (every) finite Θ ⊂ iIRs which is total for Πd−1, the functions {ψh}h constructed in

(3.5)Theorem with respect to H := span{eθ}θ∈Θ satisfy ‖ψh ∗′h eθ − eθ‖∞ = O(hd), for every

θ ∈ Θ.

The above corollary gives rise to the following scheme for the determination of the approxima-

tion order from the directed family of spaces {Sh}h:
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(3.26) Scheme. Choose

Θ1 ⊂ Θ2 ⊂ ... ⊂ iIRs,

such that each Θd is total for Πd−1 and define Hd := span{eθ}θ∈Θd
. Then for d = 1, 2, .... do:

Step 1: Check your privious storage of approximation orders, if one of these is d, then stop. d is

your approximation order. (Skip this step for d = 1).

Step 2: Construct the quasi-interpolants {ψh∗
′
h}h (with respect to Hd).

Step 3: For each θ ∈ Θd\Θd−1, determine the order of ‖ψh ∗′h eθ − eθ‖∞. If one of these rates is d,

stop. d is then your approximation order. Otherwise store the smallest rate obtained here, increase

d by 1 and go to step 1. At this point you already know that the approximation order is at least

d+ 1, and does not exceed the least of the orders stored.

One way to choose the sets {Θd}d is

Θd = {iα : α ∈ ZZs
+, |α| ≤ d− 1}.

It should be emphasized that in practice the above results do not necessarily require the

identification of the approximation order for constructing good quasi-interpolants. Choosing H of

local approximation d, we may use {ψh}h of (3.5)Theorem, knowing that the order of the scheme

would be min{d, d0} where d0 is the (presumably unknown) approximation order.

The last result of this section provides the following improvement of (1.1)Theorem (for p = ∞).

(3.27) Theorem. Let φ be a compactly supported bounded function satisfying

∑

α∈ZZs

φ(α) 6= 0.

Define φh := σhφ, and Sh := span{Eαφh}α∈hZZs . Then the following conditions are equivalent:

(a) For every function f ∈W d
∞

(3.28) dist(f, Sh) = O(hd).

(b) Πd−1 ⊂ S1.

Proof: The implication (b) =⇒ (a) is well-known (and by now standard). For the converse, note

first that we may assume without loss that φ is normalized to satisfy (2.2). We then choose Θ to be

a finite subset of iIRs which is total for Πd−1 and define H := span{eθ}θ∈Θ. Then, since H ⊂W d
∞,

dist(f, Sh) = O(hd) for every f ∈ H and hence (3.23)Theorem (when combined with (3.19)Result)

implies that the {ψh}h constructed in (3.5)Theorem (with respect to the present H) satisfy

‖ψh ∗′h f − f‖∞ = O(hd),

for every f ∈ W d
∞. Rescaling each ψh back to the original mesh size we obtain a sequence of

functions {gh := σ1/hψh}h ⊂ S1, which, by (3.16)Corollary, converges uniformly to some g ∈ S1.

11



Now, choose f ∈ W d
∞ which coincides with a homogeneous polynomial p of degree k in a

neighbourhood of the origin. Then, for a fixed x ∈ IRs and sufficiently small h,

hk|(gh ∗′ p− p)(x)| =hk|(ψh ∗′h σhp)(hx) − p(x)|

=|(ψh ∗′h p− p)(hx)|

=|(ψh ∗′h f − f)(hx)|

≤‖ψh ∗′h f − f‖∞ = O(hd).

Thus, in case k ≤ d− 1, we obtain

(g ∗′ p− p)(x) = lim
h→0

(gh ∗′ p− p)(x) = 0.

We conclude that g ∗′ p = p for every homogeneous p ∈ Πd−1, hence for every p ∈ Πd−1, and since

g ∈ S1, Πd−1 ⊂ S1 as well.

4. Singularity and the case of several compactly supported functions

Our primary aim in this section is to obtain results concerning the approximation order in case

φ := φ1 satisfies the singularity condition

(4.1)
∑

α∈ZZs

φ(α) = 0,

and the refined spaces {Sh} are obtained by scaling. The questions we focus on are whether

good approximation rates are possible at all in such a situation (answer: yes), and whether the

approximation order is determined by the polynomials in S(φ) := S1(φ) in the same way as in the

regular case (answer: in general, no).

Some of the methods employed here are aimed to connect the case of a single φ to the case

of many φ’s. In doing so, we obtain several results on the latter case which are of independent

interest.

Throughout this section, φ is a compactly supported bounded function, S(φ) is the space

spanned by the integer translates of φ, and the spaces {Sh}h := {Sh(φ)}h are obtained by scaling

S(φ), i.e., Sh = σhS(φ).

We first show that (4.1) dashes any hope for a positive approximation order, unless the stronger

assumption

(4.2) φ ∗′ 1 = 0

is made:

(4.3) Proposition. Assume that (4.1) holds, yet φ ∗′ 1 6= 0. Then dist(1, Sh) 6= O(h).

Proof: Since 1 is translation-invariant, then dist(1, ExSh) = dist(1, Sh), for every h and every

real translation Ex of Sh. On the other hand, since φ ∗′ 1 6= 0, one can find a translate ψ := Exφ

which satisfies the regularity condition
∑

α∈ZZs ψ(α) 6= 0. Observing that Sh(ψ) = EhxSh(φ), we

conclude that dist(1, Sh(φ)) = dist(1, Sh(ψ)) for all h. As for ψ, this function is regular, hence

(2.13)Corollary implies that dist(1, Sh(ψ)) 6= O(h), unless ψ ∗′ 1 = const 6= 0. Yet, the latter

implies φ ∗′ 1 = const 6= 0, which is impossible, since by (4.1) (φ ∗′ 1)|ZZs = 0.
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To this end, we assume therefore that (4.2) holds and mention that already the authors of

[SF] indicated that (4.2) does not contradict good approximation orders (as a matter of fact, [SF]

identifies the “bad case” as being φ̂(0) = 0, a condition which is implied by (4.2)). Indeed, let φ

be a regular compactly supported function, and p a linear polynomial, p(1, . . . , 1) = 0. Defining

ψ := p(E)φ, we see that ψ is singular, yet S(φ) = S(ψ), hence the approximation rates from the

scales of S(ψ) can be arbitrarily high, as the approximation rates associated with S(φ) can.

In general, not every compactly supported singular spline is obtained by differencing a regular

one (the results in the sequel will prove this indirectly). However, in the univariate case, every

compactly supported function that satisfies (4.2) is obtained by differencing another function. This

leads to the following

(4.4) Proposition. For a univariate φ, (3.27)Theorem holds even without the assumption∑
α∈ZZ φ(α) 6= 0.

Proof: There is nothing to prove unless (4.1) holds. Moreover, if (4.2) does not hold, then

(4.3)Proposition shows that both (a) and (b) of (3.27)Theorem are false for every positive d. We

can therefore assume that (4.2) is valid. Now, choose k such that suppφ ⊂ [0, k). Invoking

Proposition 3.2 of [R2], we conclude that φ = (E− 1)ψ for some function ψ supported in [0, k− 1).

Since S(φ) = S(ψ), we may replace φ by ψ for determining the approximation order. If ψ satisfies

ψ ∗′ 1 = 0, the process can be repeated. After at most k − 1 steps, we obtain a function τ with

S(τ) = S(φ), which necessarily satisfies τ ∗′ 1 6= 0, hence we are reduced to the former case.

We are aiming now at proving the following

(4.5) Claim. There exists a singular compactly supported function φ for which the implication

(b) =⇒ (a) of (3.27)Theorem is invalid.

By the results so far, such φ cannot be univariate, and must satisfy (4.2). We will not construct

this φ explicitly. Instead we draw here a link between our setting and the more involved case of

several compactly supported functions, and make use of (negative) results known in the latter case.

The setting is as follows: Φ := {φj}n
j=1 is a set of compactly supported functions. S(Φ) is the

space spanned by their integer translates. An exponential space here is a space H which satisfies

(4.6) H ⊂
∑

θ∈Θ

eθΠ,

for some finite Θ ⊂ Cs. The minimal possible Θ in (4.6) is the spectrum of H. An exponential

is an element of an exponential space. For a compactly supported φ, we define H(φ) as the space of

all exponentials in S(φ). H(φ) is of importance in multivariate splines, since its local approximation

properties may lead to lower bounds on the approximation order attained by appropriate refined

versions of S(φ) ([DR], [BR3]). Here, we always assume that H(φ) is D-invariant, i.e., closed

under differentiations; this implies that H(φ) can be decomposed into

(4.7) H(φ) =
⊕

θ∈Θ

eθPφ,θ,

where Pφ,θ are finite-dimensional D-invariant polynomial spaces. Our result is as follows
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(4.8) Theorem. Let Φ be as above and assume that H(φj) is D-invariant for j = 1, ..., n. Then,

for s > 1, there exists a compactly supported ψ ∈ S(Φ) that satisfies

(4.9) H(φj) ⊂ H(ψ), j = 1, ..., n.

First, we show how the above theorem is connected to (4.5)Claim. In the above terminology,

a polynomial space is a special case of an exponential space. For a polynomial space, [B1] proves

that S(φ) ∩ Π is always D-invariant, and so (4.8)Theorem shows in particular that there exists a

compactly supported ψ ∈ S(Φ), which satisfies

(4.10) S(φj) ∩ Π ⊂ S(ψ), j = 1, ..., n.

Now, the example given in [BH2] provides an instance of a set Φ = {φ1, φ2} of two bivariate box

splines such that Π3 ⊂ S(Φ), yet the corresponding approximation order from {σhS(Φ)}h is only

3, (and not 4 as might have been expected). By (4.8)Theorem, there exists ψ ∈ S(Φ) satisfying

Π3 ⊂ S(ψ),

while the approximation order from Sh(ψ) is at most 3, since S(ψ) is a subspace of S(Φ).

In the rest of this section we prove (4.8)Theorem, and discuss other problems initiated by the

theorem and related to the case of several φ’s. The discussion of approximation orders for {Sh}h

ends therefore at this point. Note that we were unable to comment on the validity of the implication

(a) =⇒ (b) in (3.27)Theorem in the case (4.2) is assumed.

We turn now to the proof of (4.8)Theorem. This proof is based on the following result from

[BR2]:

(4.11) Result. Let eθP , P ⊂ Π be a D-invariant subspace of S(φ), φ being compactly supported.

Then, there exists a finite-dimensional D-invariant Q ⊂ Π such that eθQ is mapped by φ∗′ onto

eθP .

The theorem now follows by a repeated application of the following lemma:

(4.12) Lemma. Let φ1, φ2 be two compactly supported functions defined on IRs where s > 1. Let

H1,H2 be two D-invariant exponential spaces. If

(4.13) Hj ⊂ S(φj), j = 1, 2,

then there exists a compactly supported ψ ∈ S({φ1, φ2}) such that

(4.14) Hj ⊂ S(ψ), j = 1, 2.

Proof: Set Θj for the spectrum of each Hj . Since each Hj is D-invariant, it is a direct sum

of spaces of the form eθPθ, where θ ∈ Θj and Pθ is a D-invariant polynomial space. Hence, by

(4.11)Result, there exist finite-dimensional exponential spaces Fj with spectrum Θj , j = 1, 2, such

that

φj ∗
′ Fj = Hj .
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Define v1 := (1, 0, ..., 0), v2 := (0, 1, 0, ..., 0). Let Tj , j = 1, 2, be two non-trivial finite difference

operators such that, for j = 1, 2,

(a) Tj is supported on vjZZ;

(b) T1F2 = T2F1 = 0.

Each Tj is a finite difference operator, and therefore for sufficiently high k, Tj(eθ()
kvj

) 6= 0,

for all θ ∈ Θ1 ∪ Θ2, which implies that TjUj is 1-1 on eθΠ for each θ ∈ Θ1 ∪ Θ2, where

Uj : f 7→ ()kvj

f, j = 1, 2.

Now, let Vj be a finite difference operator which inverts (TjUj)|Fj
from the left, and define Gj :=

VjUjFj . Note that T1 commutes with V1, V2 and U2, hence

T1G2 = V2U2T1F2 = 0, T1G1 = T1V1U1F1 = V1T1U1F1 = F1,

and similarly T2G1 = 0, T2G2 = F2. Define

ψ =
2∑

j=1

Tjφj .

Then, by the above,

ψ ∗′ G1 = φ1 ∗
′ (T1G1) + φ2 ∗

′ (T2G1) = φ1 ∗
′ F1 = H1,

and similarly ψ ∗′ G2 = H2.

(4.15) Corollary. Assume s > 1. Then every finite-dimensional D-invariant exponential space is

H(φ) for some compactly supported φ.

Proof: From [R1; Thm. 1.1] we know that every finite-dimensional D-invariant exponential sub-

space of eθΠ (with θ ∈ Cs) is H(φ) for some compactly supported φ. (4.8)Theorem then completes

the proof, since every finite-dimensional D-invariant exponential space is the sum of D-invariant

spaces of the form eθP ⊂ eθΠ.

The fact that the univariate case was not covered here is essential and is not related to the

technique used (cf. Proposition 4.6 in [R2], which shows that not every univariate D-invariant

exponential space is H(φ) for some φ). For completeness, we record the following result, which

under some “regularity” assumption (where regularity is now in the sense of [R2]) enables us to

obtain more, and in particular to include the univariate case.

(4.16) Theorem. Let Φ = {φ1, . . . , φn} be a collection of n compactly supported functions. For

j = 1, ..., n, let Hj be a D-invariant exponential subspace of S(φj) with spectrum Θj , such that,

for j 6= k,

(4.17) (Θj −Θk) ∩ 2πiZZs = ∅.
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Then there exists a compactly supported ψ ∈ S(Φ) with the properties

(a) Hj ⊂ S(ψ), ∀j;

(b) ψ ∗′ eθ 6= 0, in case θ ∈ Θj and φj ∗
′ eθ 6= 0.

Proof: As in the previous proof, we first apply (4.11)Result, to find exponential spaces {Fj}j

with corresponding spectra {Θj}j , such that φj ∗
′ Fj = Hj , j = 1, ..., n. The assumption (4.17)

then implies, [BAR], [BR3], the existence of difference operators {Tj}j supported on ZZs such

that

(4.18) TjFk = 0, for j 6= k, and Tj is 1 − 1 on
∑

θ∈Θj

eθΠ.

Defining ψ =
∑

j Tjφj , we obtain

(4.19) ψ ∗′ Fk =
∑

j

φj ∗
′ Tj(Fk) = Tk(φk ∗′ Fk) = TkHk.

Since Hk is D-invariant, hence translation-invariant, TkHk ⊂ Hk. Yet, Tk is 1-1 on
∑

Θk
eθΠ,

hence is also 1-1 on its subspace Hk. We conclude that TkHk = Hk, and (a) follows.

For (b), we first note that whenever j 6= k, TjHk = φk ∗′ (TjFk) = 0, by (4.18), and hence if

eθ ∈ Hj for some j, then, as in (4.19), ψ ∗′ eθ = Tj(φj ∗
′ eθ). Since Tj is injective on Hj , Tjeθ = ceθ

for some non-zero c, so that

ψ ∗′ eθ = c(φj ∗
′ eθ), c 6= 0,

and (b) follows.

Corollary 2.1 of [R1] shows that the above theorem is sharp in following sense: whenever

eθ, eϑ ∈ S(ψ) and θ − ϑ ∈ 2πiZZs\0, ψ ∗′ eθ = ψ ∗′ eϑ = 0.
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