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ABSTRACT

It is shown that a linear functional � on a space of functions can be described by G, a
group of its symmetries, together with the restriction of � to certain G-invariant functions.

This simple consequence of invariant theory has long been used, implicitly, in the
construction of numerical integration rules. It is the author's hope that, by showing that
these ideas have nothing to do with the origin of the linear functional considered, e.g., as
an integral, they will be applied more widely, and in a systematic manner.

As examples, a complete characterisation of the rules of degree (precision) 3 with 4
nodes for integration on the square [�1; 1]2 is given, and a rule of degree 5 with 3 nodes

for the linear functional f 7! R h
�h

D2f is derived.

AMS (MOS) Subject Classi�cations: primary 41A05, (interpolation) 13A50, (invari-
ant theory) 14D25 (geometric invariants) secondary 65D25, (numerical di�erentiation
65D30, (numerical integration) 65D32 (quadrature and cubature formulas)
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1. Introduction

In the lectures `Exploiting symmetry in applied and numerical analyis' [AGM93], the
editors contend that:

\Symmetry plays an important role in theoretical physics, applied analysis, clas-
sical di�erential equations, and bifurcation theory. Although numerical analysis
has incorporated aspects of symmetry on an ad hoc basis, there is now a growing
collection of numerical analysts who are currently attempting to use symmetry
groups and representation theory as fundamental tools in their work."

In the same spirit, this paper presents the abstract machinery for dealing with the
`symmetries' of linear functionals, together with some applications to numerical analysis.

The paper is set out as follows. Section 2 gives a de�nition of the symmetry group
of a linear functional, with examples and discussion. In Section 3, the main result: that
a linear functional can be represented by a �nite group of its symmetries and its restric-
tion to certain functions invariant under these symmetries, is given. Some illuminating
applications to rule construction are given in Section 4. In Section 5, some relevant results
from the classical theory of G-invariant polynomials are outlined. Finally, in Section 6,
it is indicated how the ideas of this paper can be extended to describe the symmetries of
linear maps.

2. Symmetries

Throughout, let P denote a space of functions 
! IR, where 
 � IRn. The algebraic
dual of P , i.e., the space of linear functionals on P , will be denoted by P 0. The group of
a�ne transformations (invertible a�ne maps) on IRn will be denoted by A := A�(IRn).

For a linear functional � 2 P 0, and an a�ne map g 2 A, let g�� be the linear functional
given by

g�� : f 7! �(f � g):
De�nition. The symmetry group of a linear functional � 2 P 0 is

sym(�) := fg 2 A : g�� = �g;

it is a subgroup of A.

Example 2.1. Consider the symmetry group of a (nonzero) weighted Lebesgue inte-
gral

I : f 7!
Z
f w;

with w � 0, which is de�ned at least on polynomials.
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By the change of variables formula,

(g�1�I)f =

Z
(f � g�1)w =

Z
f jdet gjw � g:

Thus, g 2 sym(I) if and only if w = jdet gjw � g. This implies that jdet gj = 1, and so
sym(I) is a subgroup of the unimodular (or special a�ne) group, which consists of
the Lebesgue-measure-preserving a�ne transformations.

For integrals I that numerical analysts seek to approximate (see, e.g., Stroud [St71]),
sym(I) has a �xed point and so, (after a suitable translation), can be thought of as a group
of linear transformations. For example, if I is integration on the square

I(f) :=

Z
[a;b]2

f;

and P is some suitably chosen space, such as L1([a; b]2), or C([a; b]2), then sym(I) is the
group of symmetries of the square (the dihedral group of order 8).

Example 2.2. Consider the symmetry group of a numerical integration formula for
a weighted Lebesgue integral I (as in Example 2.1)

Q : f 7!
X
�2�

w(�)f(�);

where � is a �nite subset of IRn.
If � contains n + 1 points in general position and each appears with nonzero weight

{ as is the case when Q is of precision 1 { then sym(Q) is a �nite group. In this case,
sym(Q) can be viewed as a group of permutations on the nodes �, with those nodes in the
same orbit having equal weights. Additionally, sym(Q) is a subgroup of the unimodular
group (as is every �nite subgroup of A).

To help better understand the nature of sym(�), let the symmetry group of the
space P of functions be

sym(P ) := fg 2 A : P � g = Pg;
and the symmetry group of the domain 
 be

sym(
) := fg 2 A : g
 = 
g:

Then the following inclusion of groups holds:

sym(�) � sym(P ) � sym(
) � A:

Often sym(�) = sym(
), as was the case for integration over the square 
 := [a; b]2

(mentioned in Example 2.1).
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3. Representing symmetric linear functionals

Suppose G is a �nite subgroup of sym(P ), and #G is its order. For all p 2 P , de�ne

pG :=
1

#G

X
g2G

p � g 2 P:

Then the map
RG : P ! P : p 7! pG

is a linear projector. In keeping with the case when P is �, the space of polynomials, we
denote the range of RG, i.e., the space of G-invariant functions in P , by PG. The term
G-invariant is appropriate since p � g = p, 8g 2 G i� p 2 PG. The letter R is used because
p 7! pG is referred to by some authors as the Reynold's operator.

Next we present the main result, which is an abstract version of a result of Sobolev
[So62].

Theorem 3.1. If � 2 P 0, and G � sym(�) is a �nite subgroup of its symmetries, then

� = � � RG:

In other words, � is determined by G and the restriction of � to PG.

Proof. Since g 2 G � sym(�), we have that �(p � g) = �(p), 8p 2 P . Thus,

�(RG(p)) =
1

#G

X
g2G

�(p � g) = �(p); 8p 2 P:

The result of Sobolev

Let I be the integral of Example 2.1, and Q be the integration formula (for I) of
Example 2.2. Cools [C92] says that Q is invariant with respect to a group G � A
when:

(a) I is of the form

I(f) :=

Z



f w;

where w � 0, G � sym(
), and 8g 2 G, w � g = w.

(b) Q is such that g 2 G maps � onto �, with nodes in the same orbit having
equal weight.

It can readily be seen that conditions (a), (b) are equivalent to:

(a0) G � sym(I).

(b0) G � sym(Q).

In particular, the condition that Q be invariant with respect to G implies

G � sym(Ij�k ) \ sym(Qj�k );
where j�k denotes restriction to �k (the polynomials of degree k). Thus, as a corollary of
Theorem 3.1, one obtains Sobolev's theorem, as stated by Cools.
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Sobolev's theorem 3.2 (as in [C92]). If Q is invariant with respect to G, then Q is of
degree k for I if (and only if)

I(f) = Q(f); 8f 2 (�k)
G:

The original theorem of Sobolev [So62] dealt with the case when 
 is the sphere.

4. Applications

In this section we indicate how Theorem 3.1 can be used in numerical analysis by
giving two examples that concern rule construction.

Cubature rules

An integral I is said to be centrally symmetric if it satis�es

g�I = I;

when g is re
ection through the origin, i.e., g : x 7! �x. A numerical integration rule for
an area-integral is commonly referred to as a cubature formula.

In his dissertation (1973), M�oller proved that a cubature formula of degree 3 for a
centrally symmetric integral must have at least 4 nodes. In addition, such a formula with
4 nodes must itself be centrally symmetric. For details see M�oller [M79].

In Stroud [St71:p88], Sylvester's law of inertia is used to compute all (centrally sym-
metric) cubature formul� of degree 3 for the integral

I : f 7!
Z
[�1;1]2

f: (4:1)

This method, as pointed out by Stroud,

\is not readily extended to construct formulas of higher degree."

By comparison, using Sobolev's theorem, these, and higher order formul�, can be obtained,
see, e.g., Cools [C92].

We now use Sobolev's theorem to �nd all the cubature formul� Q of degree 3 for the
integral I of (4.1) which have the minimum number of nodes. Since these formul� are
centrally symmetric, they must have nodes �(r cos a; r sin a), �(R cos A;R sin A) with
weights w, W respectively.

Let G be the group (of order 2) generated by re
ection through the origin. Since G
is contained within the symmetry groups of I and Q restricted to P := �3, it follows from
Theorem 3.1 that

Ij�3
= I � RG; Qj�3

= Q � RG; (4:2)

4



where
RG : �3 ! �0 ��0

2:

Here �0
2 denotes space of homogeneous quadratics. To see that the space (�3)G of G-

invariant cubics is �0 � �0
2, one can simply �nd the image of a basis for �3 under RG.

More details about G-invariant polynomials are given in Section 5.
From (4.2) it follows that Q is of degree 3, i.e., Ij�3

= Qj�3
, if and only if

Ij�0��0

2

= Qj�0��0

2

: (4:3)

By requiring that I and Q agree at the monomials 1, (�)2;0, (�)0;2, (�)1;1 (which form a
basis for �0 ��0

2), the following nonlinear system:

w +W = 2;

wr2cos2 a+WR2cos2A = 2=3;

wr2sin2 a+WR2sin2A = 2=3;

wr2sin a cos a+WR2sin A cos A = 0;

(4:4)

which is equivalent to (4.3), is obtained.
The last three equations in (4.4) are linear in wr2 and WR2, and the condition for

them to have a solution is that
A = a +

�

2
:

For the choice A = a+ �=2, there is a unique solution

wr2 =WR2 =
2

3
:

To additionally satisfy the �rst equation, i.e., that w +W = 2, one must have that

�
2� 2

3r2

�
R2 =

2

3
:

Hence we have shown the following.

Theorem 4.5 (see [St71:Th.3.9-2]). Let I be integration over the square [�1; 1]2.
Given any point

� := (r cos a; r sin a)

which is outside the circle of radius 1=
p
3, there is a unique centrally symmetric cubature

formula for I which is of degree 3 with 4 nodes, one of which is �. By M�oller's result, these
are all of the cubature formul� for I of degree 3 that have a minimum number of nodes.
For such a formula the weight for � and its antipodal point �� is

w =
2

3r2
:
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The other two points in the formula are

�(R cos(a + �=2); R sin(a + �=2));

where R := r=
p
3r2 � 1, which have weight

W =
6r2 � 2

3r2
=

2

3R2
:

Notice that R!1 as r! (1=
p
3)+.

a = �=4
r = R =

p
2=3

w =W = 1

a = �=6
r = 1=

p
2, w = 4=3

R = 1, W = 2=3

a = �=4
r =

p
2=5, w = 5=3

R =
p
2, W = 1=3

Fig. 4.1 Some examples of cubature formul� of degree 3 for integration over [�1; 1]2
which have the minimum number of nodes, with the circle of radius 1=

p
3 inscribed.

Remark. Given the many possible rules of Theorem 4.5, it is natural to ask whether some
might be preferred over others on the basis of considerations in addition to degree.

To the author's mind, the rule with nodes (�p1=3;�p1=3) each given weight 1,
i.e., the �rst rule of Fig. 4.1, is the most desirable. This rule has a simple form, and its
symmetry group (as a functional on a larger space than �3, such as C([�1; 1]2)) is the
dihedral group of the square - which is the symmetry group of I. In addition, it can
be obtained as the product of two univariate rules, and hence is exact for the space of
polynomials of co-ordinate degree 3 (which is larger than �3).

Numerical di�erentiation rules

In this example, we seek to approximate the linear functional

� : C2(IR)! IR : f 7!
Z a+h

a�h

D2f

by a rule of high degree based on 3 nodes.
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The symmetry group of �, which we denote by G, is of order 2, and generated by
re
ection through a. Seeking a rule � with the same symmetries, we must take

�(f) := w1f(a � �) + w2f(a) + w1f(a + �):

To simplify the calculations assume that a = 0. For this case the G-invariant polyno-
mials are the even polynomials. Thus, from Theorem 3.1 we obtain that:

If w1, w2, and � can be chosen so that � and � agree for the even monomials of
degree upto 2s, then the rule � has degree 2s + 1.

In this way we obtain:

�(f) := f(a �
p
2h) � 2f(a) + f(a +

p
2h);

which is a rule of degree 5 for �.

Remark. One might expect that (2h)�1� is a good approximation to the linear functional

� : f 7! D2f(a):

Indeed, we recognise (2h)�1� as the rule of precision 3 for � based on 3 nodes (with
stepsize

p
2h). To put it another way, the well-known rule

f 7! f(a � h)� 2f(a) + f(a + h)

h2
;

which is of degree 3 for �, is of degree 5 for

f 7! 1

h2

Z a+h2=2

a�h2=2

D2f:

5. G-invariant polynomials

In the examples of Section 4, P is a space of polynomials. However, Theorem 3.1
is in no way limited to this case. Other choices for P of possible interest include spaces
of splines, or complex functions. There has been little work on the G-invariance of such
spaces of functions.

On the other hand, the theory of G-invariant polynomials is a well-developed branch of
invariant theory, see, e.g., Humphreys [H90] and Benson [B93]. Here is a quick exposition
of some relevant results of the theory.

We have already used (for example in (4.2)) the fact that

�G
k := (�k)

G = �G \�k:
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It follows from the Hilbert basis theorem that �G is a �nitely generated IR-algebra. If G
is a group of linear transformations, then �G is homogeneous. The space �G is generated
by n algebraically independent polynomials of positive degree (together with 1), which are
called an integrity basis for G, if (and only if) G is a �nite re
ection group (of linear
transformations).

The dimensions of �G
k , for G a �nite group can be computed as follows. Let

Mk := dim�G
k � dim�G

k�1; with M0 := dim�G
0 = 1:

The series
P

kMkt
k is called the Poincar�e (alsoMolien) series for G. Molien's theorem,

see, e.g., [B93:p21], states that the following equality of formal power series holds:

1X
k=0

Mkt
k =

1

#G

X
g2G

1

det(1� tg)
:

6. Conclusion

All of the previous discussion about symmetries of linear functionals

� : P ! IR

holds more generally when IR is replaced by any linear space X, i.e., for a linear map

L : P ! X:

For g 2 A, let g � L be the linear map

g � L : P � g�1 ! X : f 7! L(f � g):

De�nition. The symmetry group of a linear map L 2 L(P;X) is

sym(L) := fg 2 A : g � L = Lg;

it is a subgroup of A.
With these de�nitions, the earlier arguments, with � now replaced by L, continue to

hold. In particular, so does the analogue of Thereom 3.1: if G � sym(L) is a �nite group
of symmetries of L, then

L = L � RG:

This representation of linear maps with symmetries could be used in numerical analysis
in the same way as was indicated for the case of linear functionals. Roughly, one wants to
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approximate some linear map (quite possibly the identity) that has symmetries, by choos-
ing a simpler map that has some of the same symmetries. To check that the approximation
has the desired polynomial reproduction, it is only necessary to check that certain invari-
ant polynomials are reproduced. Typical examples of such maps include quasi-interpolants
and linear multi-step methods (for solving ordinary di�erential equations).
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7. Additional comments

For g 2 G := sym(P ) the linear map

�g : P ! P : p 7! p � g

provides a right group action of G on P . The algebraic dual of the map �g is precisely

g� : P 0 ! P 0 : � 7! g � �

which gives a left group action of G on P 0.
The stabiliser of L under the action of sym(P ) on the linear maps L(P;X) is sym(L).
Symmetry groups transform in the following way

sym(g � L) = sym(L) � g; 8g 2 sym(P ):
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